We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

27

Implementation of Fault Tolerance
Techniques for Grid Systems

Meenakshi B. Bheevgade and Rajendra M. Patrikar

Visvesvaraya National Institute of Technology Deemed University, NAGPUR.
Visvesvaraya National Institute of Technology,

NAGPUR, MAHARASHTRA STATE,

INDIA

1. Introduction

In the modern era of super-computing, grid of computing nodes has emerged as a
representative means of connecting distributed computers or resources scattered all over the
world for the purpose of computing and distributed storage. Most of the organizations use
latest technologies to form a grid. Complex scientific problems in science and engineering
run for a long time and it becomes important to make them resistant to failures in the
underlying hardware and infrastructure. Grid Computing System has used for execution of
the application, which needs more time. During parallel application, the computation
cannot complete if any node(s) failures(s} encountered. Therefore, fault tolerance has
become necessity. The fault tolerant techniques usually compromise between efficiency and
reliability of the node in order to complete the computation even in presence of failures. The
goal usually is to preserve efficiency hoping that failures will be less. However, the
computational resources have increased in Grid but its dynamic behavior makes the
environment unpredictable and prone to failure. A major hurdle parallel applications facing
today is appropriate handling of failures that occur in the grid environment. Most
application developers are unaware of the different types of failures that may occur in the
grid environment. Understanding and handling failures imposes an undue burden on the
application developer already burdened with the development of their complex distributed
application. Thus, automatic handling of faults by grid middleware is necessary. This
strategy makes this functionality transparent to the application users. This would enable
different data-intensive grid applications to become fault-tolerant without each having to
pay a separate cost. In this chapter, we discuss the various strategies of fault tolerance. The
watchdog timer algorithm, a popular method in embedded systems, has been used to bring
in fault tolerance in cluster and grid environment. An implementation detail of the
watchdog timer like strategy in cluster environment is discussed in detail. This method
requires a modification of application program. This methodology was further developed in
which program state was collected at regular interval so as to start the program at
appropriate time. The technique allows the execution of long-running parallel application
even in the presence of node failure. The Watchdog Timer method is used in our work to

www.intechopen.com

532 Advanced Technologies

take care of hardware as well as software faults. The implementation of this method helped
us to detect the failure of the node. In the embedded systems, timer resets the system if fault
occurs. However, for the parallel computation performance applications this strategy may
prove to be costly and may not be possible every time. It is desirable that the application
running on the faulty node, which is usually a part of the program spawned by the main
routine, should continue to run on healthy node after failure detection. The strategy is that
the application resumed on the newly added node from the last saved data. In this method
the parallel application need to modify for collecting the state of the intermediate steps. This
strategy could be incorporated in the application itself. However, this may increase the
complexity of the application and may slow down the application. Thus the long running
applications need not start again from the beginning which is usually very costly. This task
is done by the master node and we assume that this node has a very high reliability. (In grid,
there is no domain controller. All nodes are treated as of same hierarchical level. The node
on which I execute and distribute the task from it, I refer that node as Master node for the
simplicity.) Since cluster and grid layers were different for the middleware implementation,
different sets of application were developed. The collection of state (i.e. data) of parallel
application at the middleware of cluster and grid layer using different sets of application
was referred as “Sanchita” (meaning Collection in Sanskrit language also abbreviated from
Search All Nodes for Collection of Hidden data (Process State) by Implementing The
Algorithm) Fault Tolerant Technique. The technique helps to take care of different types of
failures results to complete the task of computation and to achieve fault tolerance in cluster
and grid environment. These applications were integrated to make it transparent to user.

2. Review

Lot of work has been done on fault tolerant mechanisms in distributed parallel systems. The
focus of that work is on the provision of a single failure recovery mechanism. The different
types of failures have been detected called as failures detection and failures recovery
mechanisms have been applied. In perspective of parallel programs, there are vendor
implementations of check-point/restart for MPI applications running on some commercial
parallel computers. A checkpoint/restart implementation for MPI at NCCU Taiwan uses a
combination of coordinated and uncoordinated strategies for checkpointing MPI
applications. It is build on top of the NCCU MPI implementation uses Libtckpt as the back-
end checkpointer. A local daemon process coordinates checkpointing of the processes
running on the same node, while processes on different nodes are checkpointed in an
uncoordinated manner using message logging (Sankaran, et al., 2005). A limitation of the
existing systems for checkpointing MPI applications on commodity clusters is that they use
MPI libraries, which primarily serves as research platform in most of the cases. Secondly,
the checkpoint/restart system was tightly coupled to a specific single-process check-pointer.
Since single-process check-pointers usually support a limited number of platforms, limits
the range of systems on which this technique could be applied. A transparent checkpoint-
restart mechanism for commodity operating systems had evaluated that checkpoints and
restarts multiple processes in a consistent manner. This system combines a kernel-level
checkpoint mechanism with a hybrid user level and kernel-level restart mechanism to
leverage existing operating system interfaces and functionality as much as possible for
transparent checkpoint-restart (Laadan & Nieh, 2007). The fault tolerance problem in term of

www.intechopen.com

Implementation of Fault Tolerance Techniques for Grid Systems 533

resource failure had addressed in (Nazir, Khan, 2006). The author devised a strategy for
fault tolerant job scheduling in computational grid. This strategy maintains history of the
fault occurrence of resource in Grid Information Service (GIS). Whenever a resource broker
has job to schedule, it uses the Resource Fault Occurrence History (RFOH) information from
GIS and depending on this information use different intensity of check pointing and
replication while scheduling the job on resources that have different tendency towards fault
acceptable service. The fault tolerance function is to preserve the delivery of expected
services despite the presence of fault-caused errors within the system itself and described by
the author Avizienis. (Avizienis, 1985). Errors had been detected, corrected, and permanent
faults were located and removed while the system continues to deliver acceptable service.
Execution of SPMD applications in a fault tolerant manner had achieved using check
pointing or replication method by Weissman (Weissman, 1999). For the purposes of a direct
quantitative comparison, a simple checkpoint model had assumed in which each SPMD task
saves its portion of the data domain on disk at a set of pre-determined iterations. Abawajy et
al. (Abawajy, 2004) define resource as any capability that must be scheduled, assigned, or
controlled by the underlying implementation to assure non-conflicting usage by processes.
Scheduling policies for Grid systems can be classified into space sharing (Thanalapati and
Dandamudi, 2001) and time-sharing. It is also possible to combine these two types of
policies into a hybrid policy to design an on-line scheduling policy. Tuong designed a
framework (Nguyen-Tuong, 2000), which enables the easy integration of fault-tolerance
techniques into object-based grid applications. Using programming tools augmented with
fault-tolerance capabilities, they have shown how applications had written to tolerate crash
failures. A fault tolerance service was designed to incorporated, in a modular fashion, into
distributed computing systems, tools, or applications. This service uses well-known
techniques based on un-reliable fault detectors to detect and report component failure, while
allowing the user to tradeoff timeliness of reporting against false positive rates (Stelling,
at.al, 1999). The authors in (Liang, et.al, 2003) described the approach from user viewpoint
of Grid and considered the nature of Grid faults across the board based on thread state
capturing mechanism, an exception handling method and mobile agent technology. Globus
has become the de facto standard for grid computing. The Globus toolkit consists of a set of
tools and libraries to support grid applications. Fault tolerance approaches in grid systems
had commonly achieved with checkpoint-recovery and job replication described in
[(J.B.Weissman and Womack, 1996),(Abawajy, 2004), and (Townend, 2004)] which create
replicas of running jobs and hoping that at least one of them succeeds in completing the job.
The authors in (J.B.Weissman and Womack, 1996) introduced a scheduling technique for a
distributed system that suffers from increased job delays due to insufficient number of
remote sites to run the replicas.

Fault tolerance in grid environment was achieved by scheduling jobs in spite of insufficient
replicas (Abawajy, 2004). This approach requires at least one site to volunteer for running
the replica before the execution can start.

The author Townend had submitted jobs replicas to different sites that return the checksum
of the result. (Townend, 2004), the checksums received from various sites then compared to
ensure whether majority results were the same, in order to avoid a result from a malicious
resource, which delays the retrieval of result until a majority had reached. Therefore, job
delay increase may result not only from failures but also from the verification overhead.
Wrzesinska proposed a solution that avoids the unneeded replication and restarting of jobs

www.intechopen.com

534 Advanced Technologies

by maintaining a global result table and allowing orphaned jobs to report to their
grandparent incase their parent dies (Wrzesinska., et.al.). However, their approach is strictly
for divide-and-conquer type of applications and cannot extend to environments where the
sub-processes require communication. “Grid Workflow” leaves recovery decisions to the
submitter of the job via user defined exception handling (Soonwook and Kesselman, 2003).
Grid Workflow employs various task-level error-handling mechanisms, such as retrying on
the same site, running from the last checkpoint, and replicating to other sites, as well as
masking workflow level failure. Nonetheless, most task-level fault tolerant techniques
mentioned by the authors Abawajy, Dandamudi, Weissman , and Womack. (Abawajy and
Dandamudi, 2003, Weissman and Womack, 1996, and Abawajy, 2004), attempted to restart
the job on alternative resources in the Grid in an event of a host crash. Hence, there is a need
for complementing these approaches by improving failure handling at the site level,
especially in a cluster-computing environment. In LinuxHA Clustering project, LinuxHA is
a tool for building high availability Linux clusters using data replication as the primary
technology. However, LinuxHA only provides a heartbeat and failover mechanism for a
flat-structure cluster which does not easily support the Beowulf architecture commonly
used by most job sites. OSCAR is a software stack for deploying and managing Beowulf
clusters (Mugler, et.al, 2003) and (Thomas Naughton, et al.,). This toolkit includes a GUI that
simplifies cluster installation and management. Unfortunately, a detrimental factor of the
Beowulf architecture is the single point of failure (SPoF). A cluster can go down completely
with the failure of the single head node. Hence, there is a need to improve the high-
availability (HA) aspect of the cluster design. The recently released HA-OSCAR software
stack is an effort that makes inroads here. HA-OSCAR deals with availability and fault
issues at the master node with multi-head failover architecture and service level fault
tolerance mechanisms. PBS (Bayucan, et.al, 1999) and Condor (Tannenbaum, et.al, 2002) are
resource management software widely used in the cluster community. While a HA solution
[CCM, LinuxHA] for Condor job-manager exists, there a dearth of such solutions for the PBS
job manager. The failure of Condor Central Manager (CM) leads to an inability to match
new jobs and respond to queries regarding job status and usage statistics. Condor attempts
to eliminate the single point of failure (i.e. the Condor CM) by having multiple CMs and a
high availability daemon (HAD) which monitors them and ensures one of them is active at
all times. Similarly, HA-OSCAR’s self-healing core monitors the PBS server among other
critical grid services (e.g. xinetd, gatekeeper etc), to guarantee the high availability in an
event of any failure. The fault tolerance design evaluation (Object Management Group,
2001), and (Friedman and E.Hadad) has performed by means of simulation, experiments or
combination of all these techniques. The reliability prediction of the system has compared to
that of the system without fault tolerance. Physical parameters, quality of fault detection and
recovery (Foster and A. Jamnitchi,2000), (Foster, et. al.,1999),(Sriram Rao,1999) and (Felber and
Narasimhan,2004) algorithms has used as parameters in generating reliability predictions.

When degradation of performance takes place during recovery, reliability predictions need
to be generated for various levels of performance. A different evaluation is needed when the
reliability includes a specification of a minimum number of faults that are to be tolerated;
regardless where in the system occurs. The fault tolerance techniques described in (Foster
and lamnitchi, 2000, Foster, et.al. 1999) and (Lorenzo,et.al., 1999) many times results in lower
performance because of the overheads required for reallocation of job which was subjected
to gracefully degradation mode. A gracefully degradable system is one in which the user

www.intechopen.com

Implementation of Fault Tolerance Techniques for Grid Systems 535

does not see errors except, perhaps, as a reduced level of system functionality. Current
practice in building reliable systems is not sufficient to efficiently build graceful degradation
into any system. In a system with an automatic reconfiguration mechanism, graceful
degradation becomes fairly easy to accomplish. After each error is detected, a new system
reconfiguration is done to obtain maximal functionality using remaining system resources,
resulting in a system that still functions, albeit with lower overall utility. A watchdog timer
is a computer hardware-timing device that triggers a system reset, if the main program does
not respond due to occurrence of some fault. The intention is to bring the system back from
the hung state into normal operation. The most common use of watchdog timer is in
embedded systems, where the specialized timer is often a built-in unit of a microcontroller.
Watchdog timer may be more complex, attempting to save debug information onto a
persistent medium; i.e. information useful for debugging the problem that caused the fault.
The watchdog timer has been utilized for a fault tolerant technique in many serial
applications. Usual implementation of this technique requires hardware implementation of
timer/counter that usually interrupts CPU for corrective actions. Thus, although fault
tolerant clusters are being researched for some time now, implementation of the fault
tolerance architecture is a challenge. There are various types of failures which may occur in
the cluster. Prediction of failure mechanism is very difficult task and strategies based on a
particular failure mode may not help (Sriram,et.al.,1999, Toenend and Xu, 2003, & Felbar
and Narasimham,2005). Typically, fault detection can be done by some sort of response and
respond method (Toenend, 2003). Assuming that the node has been faulty and not
responding, in such cases the software testing has been done to re-check that the node has
been responding. If the fault is transient then rechecks are to be done and if repeated re-
checks show the failure of the system then the system is re-booted. If the fault persists after
rebooting of the system then the node implied to be faulty and has to be removed from the
list of available nodes. For this, the two algorithms i.e. Fault detection algorithm and
recovery algorithm have been studied and partially implemented in our work also. In the
next section we define important terms which are used in implementation of all the fault
tolerance mechanisms.

2.1 Process State, RPC and Compute Bound

Process state is the state field in the process descriptor. A process referred as a task, is an
instance of a program in execution. The process is runnable, and it is either currently
running or it is on a ready state waiting to run. This is the only possible state for a process
executing in a portion of system memory in which user processes run; it can also apply to a
process in kernel space (i.e., that portion of memory in which the kernel executes and
provides its services) that is actively running. A signal is a very short message that can send
to a process, or to a group of processes, that contains only a number identifying the signal. It
permits interaction between user mode processes and allows the kernel to notify processes
of system events. A signal can make a process aware that a specific event has occurred, and
it can force a process to execute a signal handler function included in its code. Processes in
user mode had forbidden to access those portions of memory that had allocated to the
kernel or to other programs. RPC (Remote procedure call) - A system call is a request made
via a software interrupt by an active process for a service performed by the kernel. The wait
system call tells the operating system to suspend execution of that process until another
process has completed. An interrupt is a signal to the kernel that an event has occurred, thus

www.intechopen.com

536 Advanced Technologies

result in changes in the sequence of instructions that has executed by the CPU. A software
interrupt, also referred to as an exception, is an interrupt that originates in software, usually
by a program in user mode. Process execution has stopped; the process is not running nor is
it eligible to run. The state occurs if the process receives the SIGSTOP, SIGTSTP, SIGTTIN or
SIGTTOU signal (whose default action is to stop the process to which they had sent) or if it
receives any signal while it has being debugged.

Compute Bound - Computers that predominantly used peripherals were characterized as 10
(input output bound) bound. A computer is frequently CPU bound implies that upgrading
the CPU or optimizing code will improve the overall computer performance. CPU bound
(or compute bound) is when the time for a computer to complete a task is determined
principally by the speed of the central processor and main memory. Processor utilization is
high, perhaps at 100% usage for many seconds or minutes. There are few interrupts such as
those generated by peripherals. With the advent of multiple buses, parallel processing,
multiprogramming, preemptive scheduling, advanced graphics cards, advanced sound
cards and generally, more decentralized loads, it became less likely to identify one particular
component as always being a bottleneck. It is likely that a computer's bottleneck shifts
rapidly between components. Furthermore, in modern computers it is possible to have 100%
CPU utilization with minimal impact to another component. Finally, tasks required of
modern computers often emphasize quite different components, so that resolving bottleneck
for one task may not affect the performance of another. For these reasons, upgrading a CPU
does not always have a dramatic effect. The concept of being CPU bound is now one of
many factors considered in modern computer performance. We have developed a code that
helps us to know if failure is encountered. This is done by transferring data from all the
nodes to master node (here we define master node, which spawns the jobs to other nodes) in
Grid Environment.

3. Implementation

Today many idle machines are used to form the cluster so that parallel application can be
executed on those clusters. We have used LAM/MPI software to make the cluster of the
workstations and PCs. This LAM/MPI is open software and has been mostly used for
research work. There is another popular standard for inter-cluster communication i.e.
Globus Toolkit, which is used to form a grid. This tool also has been used mainly for
research work. There are many commercial tools available to form the grid which are used
for commercial purpose than research work we have not used them. In our work, we had
build the two different clusters, later the two clusters were connected to form a grid (cluster-
to-cluster communication), which handles run-time communications between parallel
programs running on different clusters. In this work, first we had worked on cluster to find
the failures encountered while executing parallel application. (Here the master node of each
cluster had connected to form a grid.) The focus of the work was to design a method in
cluster and grid environment such that it will help to detect failures if any, during
computation of parallel application. In addition, a method is implemented which ignores
the failures encountered and complete the parallel computation. The system is classified into
two layers. These two layers are referred as -

1) Grid Layer (i.e. Upper Layer) and
2) Cluster Layer (i.e. Lower layer).

www.intechopen.com

Implementation of Fault Tolerance Techniques for Grid Systems 537

The two layers are as shown in figure 1a and 1b.

S ERERED
R ERNERED

Cluster 1 Cluster 2
I1-Master INode of N1- Master Node of
Cluster 1 Cluster 2

Fig. 1a Cluster Layer

Grid Layer |
| |
N1 N1 |
Cluster 1 Cluster 2
Node 1

Fig. 1b Grid Layer

The grid layer of the system connects individual computers and clusters to form a grid as
shown in figure 1b. The cluster layer connects the nodes in one group to offer their resources
in the grid. These two layers were completely different but they were dependent on each
other, if parallel application is executed in the grid environment. Due to these reasons
different problems arises and different software solutions were used in both cases. In grid
environment a Monte Carlo parallel application was executed from specific node say n, for
our convenience, we referred that node as master node. There is no specific master/client
concept in grid environment. From the user’s point of view, both the layers are unique. The
cluster-to-cluster communication approach allows programmers to collect the result of
parallel program stored in one node to another node. In the cluster layer, we considered a
set of nodes under control of one administrator. The nodes need to be detached from the
grid during the routine work of the user (owner of the node since we were utilizing the idle
time of the computer). Later on, re-connect the node when it is idle. The nodes cannot be a
part of the grid when users work with it (nodes). The node may reboot incorrectly, it may
killed the tasks it processed.

If only part! of the node had used during the user worked, the rest may still connected to the
cluster to continue the computation.

I(In a multi-processor node, the user may use one processor; the remaining processors may be
allocated to the cluster for computation of parallel application. From remaining nodes available in a
cluster, only few nodes can be part of the cluster and grid while users (owner(s) of the node(s)) for
their personal work may use other nodes).

www.intechopen.com

538 Advanced Technologies

In grid layer, as mentioned above, we connect two different clusters and few individual
compute nodes with various security policies (authorization and authentication to access the
node) as required in our project, we uses Globus Toolkit, for this purpose. This toolkit
provides basic mechanisms such as communication, authentication, network information,
and data access, resource location, resource scheduling, authentication, and data access. As
the size of high performance clusters multiplies, probability of system failure also grows
marginally, thereby, limiting further scalability. A system fault can cause by internal or
external factors. For example, internal factors may include as specification and design errors,
manufacturing defects, component defects, and component wear out. External factors may
be included radiation, electromagnetic interference, operator error, and natural disasters
and so on. The failure may also be due to hardware faults or software faults. As a result, it is
almost certain for applications that run for a long time to face problem from either type of
faults. Regardless, how well a system had designed, or how reliable the components are, a
system cannot be completely free from failures. However, it is possible to manage failures to
minimize its impact on a system.

We had implemented the fault tolerance technique (we called this technique as watchdog
timer algorithm technique) for a cluster by writing routines on a master (server) node. The
method implemented in our work includes re-checks to take care of transient faults included
in the initial allocation phase. The cluster environment had booted by using only available
nodes. In the beginning if the failure had been detected while allocating the task, then task
had to reallocate again. After allocation, the state of entire parallel application had checked
at specific intervals of time-period as it had done by hardware watchdog timer. In this
phase, master node monitored an output data of the program at client node at specific time
intervals. At the same time, the data had been stored on the reliable storage on the local disk
as well as on the disk of the master node. The storage had done for all the nodes in the
available list of the nodes. If any of the node had not reported or not responded when a
master node send a message to all nodes in cluster environment, then that particular node
had to be checked for x times. In this phase, the master node reallocates the task if failure
had detected. This was done again to avoid the transient faults after certain intervals of time.
Then the task had allocated once again after the application had terminated. Here, the
checkpoint had done for x times because of any one reason tabulated in Table 1:

1 If at first call client’s CPU utilization is 100%, it will unable to respond about its
existence. In second call, the client may respond and update the status.

2 If link failure occurs due to network failure or due to some other reason, the Master
node may try to reboot the client remotely. Therefore, in next call the client may
respond and update the status.

3. If it is not possible to reboot the client remotely, it has to be rebooted at the site, and
if the rebooting is done in within stipulated time, it will respond in the next call.
4 Lastly, if any of the above options is not feasible and there is no response from client

in the stipulated period, the master node will drop the current node from the list,
add a new node and resume the job from the earlier check-pointed state on this new
node.

Table 1. Reasons for the non-responding node

www.intechopen.com

Implementation of Fault Tolerance Techniques for Grid Systems 539

After the allocation phase starts, the client nodes had checked at regular intervals. If the
allocation of job failed or the computation of the application failed due to network failure or
node failure or may be some hardware component failure, then the flag had set to 1,
indicates that the node will not be usable for the computation. Lastly, within stipulated
time-period, if any of the above options was not feasible and there was no response from
client node, the master node will drop the current node from the list, add another node and
resume the job from the last best check-pointed state on another available or added node. It
was possible to calculate the checksum that indicates correct behavior of a computation
node. The watchdog timer algorithm will periodically test the computation with that
checksum. The master node collects the data, which it determine the “state” of the client
node when queried by the server. The algorithm given below in figure 2 is in the form of
pseudo code.

e The Watchdog Timer Algorithm described below is implemented after LAM
booting is done. Before Lam booting, a small procedure was implemented for
creating the list of participating host.

for (i=1 to p) {
do while (lexecution_complete)
{
Monitor the application at regular intervals of time say t
seconds;
collect the data into the client and send it to master when queried
by it;
if (client Iresponding)
{ check for x times; // reason as given in table 1
if (success)
continue;
else
{ drop the node;
add a new node ;
resume application on another available node say m in the queue.

)
}
}

)
Fig. 2. Watchdog Timer Fault Tolerant Technique

The actual implementation of the watchdog timer technique in our project work helped to
detect the faults. The application had resumed on available node from the previous state
saved data. Thus helps to recover the computation with the help of watchdog timer
algorithm. Thus using the fault detection algorithm, recovery algorithm and watchdog
theory we are able to improve the new algorithm. Thus, this method helped us to improve
the reliability of the application although the performance degraded slightly because of
computation overheads. Another drawback is that to store the data at specified interval of
time one had to modify the parallel application(s). Thus to overcome the serious issue of

www.intechopen.com

540 Advanced Technologies

fault tolerance, another method i.e. Sanchita fault tolerant technique was implemented that
collected the data at specified interval of time. The data had collected at compute bound
rather than I/O bound. This data collection helped to restart the interrupted computation on
another available node(s). This method is very effective approach for dealing with specified
faults (like link failure, node failure). The state of the entire parallel application had saved
into a file, and later it had transferred to the master node (the node on which the application
is launched and distribution of task is done). In this work, the tool available in Linux called
strace was used. A small program, was written to get the parent PID and child PID of the
execution program. The tool helped to collect the information of system calls and to store
the signals received by the process. This tool was used to store the relevant data of the
parallel application at specified interval of time. The tool runs until the computation of
parallel program does not complete. Then the relevant data was stored into a file in the local
hard disk. The master node queried (send message) for the client nodes to check for the
aliveness. The client node respond to the query and it send back the stored file to the master
node. When a fault encountered, the application restarted from a recent last-saved point. In
the beginning, to start with for applying the fault tolerant techniques, the experiment was
done on one cluster only. Later the work had been carried out to find the problems
encountered when the parallel application executed in grid environment. In this technique,
the master node checks the aliveness of each node of the cluster at regular intervals of time
by using a program. If the client node received the query done by master node, then client
node replied to the master node about its existence. At the same time, it updated the master
node with the status of the running process. If the client node did not respond before adding
another node and resuming the process at that(another) node, the master node checks for x
times and waits for response for approximately x+1 seconds. There can be number of
situations in each call as explained above in table 1. The Sanchita fault tolerant technique
was implemented and tested to store the last-saved state of the standard Monte Carlo
application. The process state had resumed on the same node if any soft errors encountered.
If hardware errors encountered such as, communication did not established or any physical
problem of the node then the process resumed on another available node. The Sanchita
technique applied at the middleware layer had given in the form of pseudo code as shown
in figure 3. Each statement in the given pseudo code contained one or more than one
program (or sub-routine).

www.intechopen.com

Implementation of Fault Tolerance Techniques for Grid Systems 541

Algorithm:(in the form of pseudo code)
While (execution in progress) do
begin
for (each node in cluster) do
begin
ping node for aliveness;
if (alive) then
begin
collect checkpoint state from node;
save in master node file;
end;
else
begin
retry check for aliveness for k times;
if(success) then
begin
collect checkpoint state from node;
save in master node file;
end;
else
begin
drop node transfer computation to another node;
end;
end;
end;
end;
Fig. 3. Algorithm used in Sanchita Fault Tolerant technique

4. Results

Watchdog timer algorithm was implemented in a SMP cluster based on the Linux. All nodes
had the LAM/MPI software installed on it. The Monte Carlo application had tested in a
parallel mode. The time required for the execution with and without applying the watchdog
timer algorithm had shown in figure 4. The columns plotted in the graph pointed the
following- The Column 1 pointed that the watchdog Timer algorithm (WDTA) method had
not applied and no faults were injected. The column 2 indicates data when WDTA method
applied and no fault injected. This is to check that the WDTA code worked properly. The
last column 3 pointed when WDTA method applied and one failure injected. The files are
saved after interval of t seconds on individual nodes. The filename is referred as the node
number followed by date followed by time. This time-stamped of the file helped to
recognize from where the data has been collected. The files had collected on the master node
when queried by it. If any failures encountered then the node had been checked for say x
times about its existence. After checking if client node did not respond then the node had
been treated as failed node. This failed node had replaced by another node. Some time to
improve the performance of the grid; we had added few nodes in the cluster environment.
These nodes were added only to check if performance had improved in the grid

www.intechopen.com

542 Advanced Technologies

environment. The performance had improved a lot. The programs were written using script
language and ‘C/C++" Language to add and drop the node. It also helped to improve the
performance of the computation. The code was able to restart the application on another
node. Further the work had been implemented in the grid environment. We had also taken
care of the reliability of the grid environment. We had calculated the reliability of the grid
environment to keep the nodes in spare. The work helped to resume the application from
the last stored data that were based on the theories of the compute bound and process state.
Thus, in the grid environment also, the status of the parallel application computed on the
master node as well as on the client nodes (which are denoted by the rank(s) from ‘0" to n,
where ‘n” is the number of nodes) were collected. The same methodology is used here for
the nomenclature of the filename i.e. the filename is referred as the node number followed
by date followed by time. Thus date and time-stamped of the file helped to recognize from
where the data had been collected. The work had been carried out to find if any failed node
encountered. If encountered, then it was possible to resume the job on the new node and
drop the earlier (failed) node. Further the second method i.e. Sanchita fault tolerance
technique (SFIT) was implemented in the middleware level of the cluster and grid
environment. When the application starts execution, the middleware level code takes care of
the failures encountered. Using the Sanchita technique, the status of the computation was
collected and shown in figure 5(few lines). Figure 6 shows the graph plotted with different
combinations as shown in Table 2.

When SFTIT Fault Node

code applied | encountered Added
No No Yes
No No No
Yes No Yes
Yes No No
Yes Yes Yes

Table 2. Data for SFTT

Before and after WDTA code is applied

5 1000

c

o 800 4

Q N e

@ 600 -

£ 400 -

@ .

g | .__, _,

e 1 2 3
No fault No fault One Fault
No WDTA applied WDTA applied WDTA applied

WDTA - Watchduyg Tiner Algurittun

Fig. 4. Before and after applying WDTA code

www.intechopen.com

Implementation of Fault Tolerance Techniques for Grid Systems 543

read (3, Oxbffacf80, 80) = ? ERESTARTSYS (To be restarted)

--- SIGINT (Interrupt) @ 0 (0) ---

clone(child_stack=0,

flags=CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD,
child_tidptr=0xb7fe1708) = 5304

sigreturn() = ? (mask now [USR2])

read(3, Oxbffacf80, 80) = ? ERESTARTSYS (To be restarted)

---SIGCHLD (Child exited) @ 0 (0) ---

read(3,"\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 20\ 0\ 0\ 0\ 6\ 244\ 4\ 10\ 1\ 0\ 0\ 0\ 360\ 337\ 354"...,
80)=8

readv(3,{"n\ 353\ 377\ 277\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0n\ 353\ 377\ 277\ 1\ 0\ 0\ 0\ 20\ 0"...,
64}, {"\ 0\3\ 0\ 17\ 0\ 0\ 24\ 223\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0", 16}], 2) = 80
rt_sigprocmask(SIG_UNBLOCK, [USR2], NULL, 8) =0
rt_sigprocmask(SIG_BLOCK, [USR2], NULL, 8) =0

.................................. sa_family=AF_INET, sin_port=htons(32769),
sin_addr=inet_addr("192.168.0.202")}, [16]) = 95sendto(6,

"\ 0\ 2\ 310k\ 0\ 0\ 0\ 0", 8, n [6])recvfrom(6,

"\ 0\ 0\ 0\ 1\ 0\ 2\ 310A\ 0\ 0\ 0\ 0@\ 0\ 0\ 7\ 0\ 0\ 0\ 0\ 0\ 0\ 0#\ 0\ 0\ 1\ 0"..., 8252,
sin_addr=inet_addr("192.168.0.203")}, [16]) = 95sendto(6, "\ 0\ 2\ 3101\ 0\ 0\ 0\ 0",
8, 0, {sa_family=AF_INET, sin_port=htons(32769),
sin_addr=inet_addr("192.168.0.203")}, 16) = 8write(14, " 100 200 2470860"..., 35)

= 35select(13, [3 5 6 7 10 11], NULL, [3 5 6 7 10 11], NULL) = 1 (in [6])recvfrom(6,

Fig. 5. Sample File for tracing the parallel application running on the Grid System. (This is
the few statements of the file)

Computational Time required Before and
after code is applied

250

200 -
150
100 - ’
‘mm N
o .
1 2 3 4 2]

Differant combinations{ as shown in Table 2} for
axecution of parallel application

Time in seconds

Fig. 6. The data collected before and after implementing the Sanchita Fault Tolerant
Technique in cluster and grid environment.

www.intechopen.com

544 Advanced Technologies

In figure 6, Column 1 and 2 pointed the data when SFTT was not applied and no failures
injected but one node was added. The time required after adding one node is less as
compared to column 1. The third and fourth column pointed when Sanchita Fault Tolerant
Technique (SFTT) was applied with no failure injected but node was added. These indicate
that the SFTT code checks for every possibility of failures to complete the task. Column 5
pointed when SFTT was applied and one node failure encountered at the time of
computation and another available node was added. From the last two columns, it was
concluded that slightly more time was required to complete the computation.

5. Conclusion

The fault tolerant techniques are required in today’s” cluster and grid environment since
large applications are being run today for various applications and failure of single node can
cause delays of days in execution and their by development also. In this chapter, two such
techniques are described. These techniques are implemented in the application and in
middleware layer of the cluster as well in the grid environment. Both the techniques i.e.
watchdog timer and Sanchita were helpful in taking care of failures. However, in case of
watchdog timer algorithm, the parallel application requires modification to get the status of
the intermediate steps of the computation at specific intervals of time. It is the burden on the
application developer. So in order to overcome this, Sanchita FT Technique was
implemented. In this technique, states of the running jobs are collected at central (master)
node and intermediate results are stored. The incomplete task (computation) due to node
failure has resumed on another node using the latest computational data stored in a file.
Thus, the application will take longer time but execution will be completed by resuming the
task using the latest data stored on another node. Thus, system will gracefully degrade with
failure. However, overall reliability will improve, which is needed for execution of many
complex programs.

6. Acknowledgement

I would like to thank Professor Dr. C.S.Moghe for his kind support and suggestions during
this work.

7. References

Oren Laadan & Jason Nieh, (2007). Transparent Checkpoint-Restart of Multiple Processes on
Commodity Operating Systems, 2007 USENIX Annual Technical Conference

B. Nazir, T. Khan,(2006) Fault Tolerant Job Scheduling in Computational Grid, 2006 1EEE, pp
708-713

A. Avizienis, (1985) “The N-version Approach to Fault-Tolerant Software” -IEEE
Transactions on Software Engineering - vol. 11 1985

J. H. Abawajy,(2004). Fault-Tolerant Scheduling Policy for Grid Computing Systems, 2004
IEEE.

J.H. Abawajy and S. P. Dandamudi.,(2003). Parallel job scheduling on multi-cluster
computing systems, In Proceedings of the IEEE International Conference on Cluster
Computing (Cluster 2003), Hong Kong, China, December 1-4 2003.

www.intechopen.com

Implementation of Fault Tolerance Techniques for Grid Systems 545

J. H. Abawajy,04-26-2004 “Fault-Tolerant Scheduling Policy for Grid Computing systems”,
18th International Parallel and Distributed Processing Symposium, 04-26-04 Santa
Fe, New Mexico

T. Thanalapati and S. Dandamudi.,(July 2001). An efficient adaptive scheduling scheme for
distributed memory multicomputers, IEEE Transactions on Parallel and Distributed
Systems, 12(7):758-768, July 2001.

A. Nguyen-Tuong, “Integrating Fault-Tolerance Techniques in Grid Applications”- Report,
2000

P. Stelling, et.al (1999). A Fault Detection Service for Wide Area Distributed Computations,
1999.

J. Liang, et. Al (2003). A Fault Tolerance Mechanism in Grid, 0-7803-5/04/2003, IEEE pp.
457-461.

J. B. Weissman and D.Womack.,(1996). “Fault tolerant scheduling in distributed networks”-
Technical Report CS-96-10, Department of Computer Science, University of
Virginia, Sep. 25 1996.

P. Townend, and J. Xu,(2003). “Fault Tolerance within Grid environment”, Proceedings of
AHMZ2003, http://www.nesc.ac.uk/events/ahm200 3/AHMCD/pdf/063.pdf,
page 272, 2003

Soonwook Hwang and Kesselman, C, (2003). “Grid workflow: a flexible failure handling
framework for the grid”, High Performance Distributed Computing,2003.
Proceeding 12th IEEE International Symposium, 22-24 June 2003,Pages 126 - 137.

John Mugler, et.al.(2003) “OSCAR Clusters”, Proceedings of the Ottawa Linux Symposium
(OLS'03), Ottawa, Canada, July 23-26, 2003. Thomas Naughton, et al. “The OSCAR
Toolkit”

T. Tannenbaum, et. Al. (2002). Derek Wright, Karen Miller, and Miron Livny, "Condor -A
Distributed Job Scheduler", -Beowulf Cluster Computing with Linux, The MIT Press,
2002. ISBN: 0-262-69274-0.

Ibeaus Bayucan, et al. (1999), “Portable Batch System External Reference Specification”, MR]
Technology Solutions, May 1999.

Ian Foster et al, “The Anatomy of the Grid: Enabling Scalable Virtual Organizations”,
International J. Supercomputer Applications, 15(3), 2001.

Ian Foster and A. Iamnitchi,(2000). ”A problem - Specific Fault-Tolerance Mechanism for
Asynchronous, Distributed Systems”, IEEE, p.4-13 2000.

Ian Foster, et. al (1999.” A Fault Detection Service for Wide Area Distributed Computations”,
Cluster Computing, v.2 n.2,p.117-128, 1999.

Sriram Rao, et. al, (1999). Lorenzo Alvisi, Harrick M.V in, “Egida : An Extensible Toolkit For
Low-overhead Fault-Tolerance, Fault-Tolerant Computing”, Digest of Papers.
Twenty-Ninth Annual International Symposium, p. 45-55, 1999.

J.G. Ganssle, (2004). “Great Watchdogs”, V-1.2, Gaanssel Group, updated January, 2004.
P.Townend and J. Xu,(2003) ”Replication-based Fault-Tolerance in a Grid
Environment”, citeceer, 2003.

Pascal Felber, Proya Narasimhan,(2004) ,Member, IEEE, “Experiences, Strategies, and
Challenges in Building Fault-Tolerant CORBA Systems”, IEEE transactions on
Computers, Vol.53, NO.5, May 2004.

www.intechopen.com

546 Advanced Technologies

Sriram Sankaran,et.al(2005) Parallel Checkpoint /Restart for MPI Applications. International
Journal of High Performance Computing Applications, Vol. 19, No. 4, 479-493
(2005)

CCM, Adding High Availability to the Condor Central Manager,
http:/ /dsl.cs.rechnion.ac.il/ projects/ goxal/ project_pages/ha/ha.html.

LinuxHA , Clustering Project, http:/ /www linuxha.net/index.pl.

www.intechopen.com

Advanced Technologies

Edited by Kankesu Jayanthakumaran

ISBN 978-953-307-009-4

Hard cover, 698 pages

Publisher InTech

Published online 01, October, 2009

oo Published in print edition October, 2009

This book, edited by the Intech committee, combines several hotly debated topics in science, engineering,
medicine, information technology, environment, economics and management, and provides a scholarly
contribution to its further development. In view of the topical importance of, and the great emphasis placed by
the emerging needs of the changing world, it was decided to have this special book publication comprise thirty
six chapters which focus on multi-disciplinary and inter-disciplinary topics. The inter-disciplinary works were
limited in their capacity so a more coherent and constructive alternative was needed. Our expectation is that
this book will help fill this gap because it has crossed the disciplinary divide to incorporate contributions from
scientists and other specialists. The Intech committee hopes that its book chapters, journal articles, and other
activities will help increase knowledge across disciplines and around the world. To that end the committee
invites readers to contribute ideas on how best this objective could be accomplished.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Meenakshi B. Bheevgade and Rajendra M. Patrikar (2009). Implementation of Fault Tolerance Techniques for
Grid Systems, Advanced Technologies, Kankesu Jayanthakumaran (Ed.), ISBN: 978-953-307-009-4, InTech,
Available from: http://www.intechopen.com/books/advanced-technologies/implementation-of-fault-tolerance-
techniques-for-grid-systems

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia RE EBHERT K655 HBERR R ARE A 40558 TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

