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1. Introduction     

Over the last couple of decades parallel robots have been increasingly studied and 
developed from both a theoretical viewpoint as well as for practical applications (Merlet, 
1995). Advances in computer technology and development of sophisticated control 
techniques have allowed for the more recent practical implementation of parallel 
manipulators. Some of the advantages offered by parallel manipulators, when properly 
designed, include an excellent load-to-weight ratio, high stiffness and positioning accuracy 
and good dynamic behavior (Merlet 1995, Stan 2003). The ever-increasing number of 
publications dedicated to parallel robots illustrated very well this trend. 
However, there are also some disadvantages associated with parallel manipulators, which 
have inhibited their application in some cases. Most serious of these is that the particular 
architecture of parallel manipulators leads to smaller manipulator workspaces than their 
serial counterparts. 
One of the main influential factors on the performance of the micro parallel robot is its 
structural configuration. The kinematic relations, statics, dynamics and structure stiffness 
are all dependent upon it. After its choice, the next step on the manipulator design should 
be to establish its dimensions. Usually this dimensioning task involves the choice of a set of 
parameters that define the mechanical structure of the parallel robots. The parameter values 
should be chosen in a way to optimize some performance criterion, dependent upon the 
foreseen application. Micro parallel robots can also be difficult to design (Stan, 2003), since 
the relationships between design parameters and the workspace, and behavior of the 
manipulator throughout the workspace, are not intuitive by any means. This is one of the 
reasons why Merlet (1995) argues that customization of parallel manipulators for each 
application is absolutely necessary in order to ensure that all performance requirements can 
be met by the manipulator. As a result, development of design methodologies for such 
manipulators is an important issue in order to ensure performance to their full potential. In 
particular, the development and refinement of numerical methods for workspace 
determination of various parallel manipulators is of utmost importance. 
There is a strong and complex link between the type of robot’s geometrical parameters and 
its performance. It’s very difficult to choose the geometrical parameters intuitively in such a 
way as to optimize the performance. Several papers have dealt with parallel robots to 
optimize performances (Stan, 2006). For example, various methods to determine workspace 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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of a parallel robot have been proposed using geometric or numerical approaches. Early 
investigations of robot workspace were reported by Gosselin (1990), Merlet (1994) and 
Cecarelli (2004). Stan (2003) presented a genetic algorithm approach for multi-criteria 
optimization of PKM. Most of the numerical methods to determine workspace of parallel 
manipulators rest on the discretization of the pose parameters in order to determine the 
workspace boundary. A method was proposed to determine the workspace by using 
optimization (Stan, 2006). 
In the next sections, the planar 2-dof micro parallel robot of interest, and the kinematics for 
this manipulator, is presented. The 2-dof micro parallel robot considered in this study is 
shown in Fig. 3, where its joints (A and C) connected to the ground are active and the others 
are passive joints. The input motions of the active joints can be independent from each other 
or be provided via a set of gears maintaining a specified phase angle between the two active 
joints. 
The objective of this chapter is to propose an optimization method for a planar micro 
parallel robot that uses performance evaluation criteria related to the workspace of micro 
parallel robot. Furthermore, a genetic algorithm is proposed as the principle optimization 
tool. The success of this type of algorithm for parallel robots optimization has been 
demonstrated in various papers (Stan, 2006). 

2. Genetic Algorithms for Optimization of Micro Parallel Robots 

2.1 Optimization based on Genetic Algorithms 

Optimization is the process of making something better. An engineer or scientist conjures 
up a new idea and optimization improves on that idea. Optimization consists in trying 
variations on an initial concept and using the information gained to improve on the idea. 
Optimization is the process of adjusting the inputs to or characteristics of a device, 
mathematical process, or experiment to find the minimum or maximum output or result 
(Fig. 1). The input consists of variables, the process or function is known as the cost function, 
objective function, or fitness function, and the output is the cost or fitness. If the process is 
an experiment, then the variables are physical inputs to the experiment. 
 
 
 
 
 
 
 
 
Figure 1. Diagram of a function or process that is to be optimized. Optimization varies the 
input to achieve a desired output 

The genetic algorithm (GA) has been growing in popularity over the last few years as more 
and more researchers discover the benefits of its adaptive search. Genetic algorithms (GAs) 
were invented by John Holland in the 1960s and were developed by Holland and his 
students and colleagues at the University of Michigan in the 1960s and the 1970s. In contrast 
with evolution strategies and evolutionary programming, Holland's original goal was not to 
design algorithms to solve specific problems, but rather to formally study the phenomenon 
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of adaptation as it occurs in nature and to develop ways in which the mechanisms of natural 
adaptation might be imported into computer systems.  
Holland's 1975 book Adaptation in Natural and Artificial Systems presented the genetic 
algorithm as an abstraction of biological evolution and gave a theoretical framework for 
adaptation under the GA. Holland's GA is a method for moving from one population of 
"chromosomes" (e.g., strings of ones and zeros, or "bits") to a new population by using a 
kind of "natural selection" together with the genetics−inspired operators of crossover, 
mutation, and inversion. Each chromosome consists of "genes" (e.g., bits), each gene being 
an instance of a particular "allele" (e.g., 0 or 1).  
The selection operator chooses those chromosomes in the population that will be allowed to 
reproduce, and on average the fitter chromosomes produce more offspring than the less fit 
ones. Crossover exchanges subparts of two chromosomes, roughly mimicking biological 
recombination between two single−chromosome ("haploid") organisms; mutation randomly 
changes the allele values of some locations in the chromosome; and inversion reverses the 
order of a contiguous section of the chromosome, thus rearranging the order in which genes 
are arrayed. (Here, as in most of the GA literature, "crossover" and "recombination" will 
mean the same thing.).  
In a broader usage of the term, a genetic algorithm is any population-based model that uses 
selection and recombination operators to generate new sample points in a search space. 
Many genetic algorithm models have been introduced by researchers largely working from 
an experimental perspective. Many of these researchers are application oriented and are 
typically interested in genetic algorithms as optimization tools. A constrained single-
objective optimization problem can be converted to an unconstrained single-objective form 
by a penalty method (see, for example, Papalambros and Wilde, 1988). 
Fig. 2 shows graphically how the most basic Genetic Algorithms operations are performed. 
The top block of binary numbers in Fig. 2 represents a population. Each row is an individual 
that represents one solution to the design problem. One individual is made up of all of the 
design variables concatenated. The GA user can decide how many binary digits are needed 
to represent each design variable.  
In Fig. 2, there are 3 design variables of length 6, 7, and 4 binary digits. Initially, the 
population is generated randomly, and then the solutions are ranked from best to worst and 
a specified number of the lowest ranked individuals are replaced with combinations of the 
highest ranked individuals. The process of determining which of the highest ranked 
individuals are to be used is called selection. There are several differing methods of selection 
that can be used. Once selected, two individuals go through a process called crossover.  
The crossover operation is also shown in Fig. 2, wherein two individuals (or parents) 
exchange a segment of the binary digits creating two new individuals (or offspring). 
Another basic Genetic A operation is mutation. Mutation can occur on the two individuals 
selected for crossover or on a single individual. The mutation operation randomly mutates 
or changes the bits within the individual based on the mutation probability set by the user. 
Finding optimal values for the parameters used in the GA operations can be problematic. 
Parameter values that result in a relatively fast convergence for one problem may be slow 
for another. However, some general guidelines on the population size can be made on the 
basis of the binary string length of an individual. 
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Figure 2. Graphical Description of Genetic Algorithms 

Some of the advantages of a GA include that it: 

• optimizes with continuous or discrete variables, 

• doesn’t require derivative information, 

• simultaneously searches from a wide sampling of the cost surface, 

• deals with a large number of variables, 

• is well suited for parallel computers, 

• optimizes variables with extremely complex cost surfaces (they can jump out of a local 
minimum), 

• provides a list of optimum variables, not just a single solution, 

• may encode the variables so that the optimization is done with the encoded variables,  

• works with numerically generated data, experimental data, or analytical functions. 
These advantages are intriguing and produce stunning results when traditional 
optimization approaches fail miserably. 

2.2 Pareto-optimality 

Multiobjective problems are special in the sense that they do not have a unique solution. 
Usually there is no single solution for which all objectives are optimal. The solution to a 
multiobjective problem therefore comprises a set of solutions for which holds that there are 
no other solutions that are superior considering all objectives. These solutions are called 
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Pareto-optimal. Hence, optimizing a multiobjective problem is comprised of finding Pareto 
optimal solutions. 
The notion of Pareto-optimality is defined in terms of dominance. Let's assume that a 
multiobjective problem has k objectives. Assuming that this is a minimization problem, then 

a solution x = (x1, x2, …, xk) is said to dominate another solution y = (y1, y2, … , yk) if ∀i xi≤yi 

and ∃i xi < yi. Solution x is a member of the Pareto-set, or said to be non-dominated, if there is 
no other solution y such that y dominates x. The multiobjective problem can now be defined 
as finding solutions which are non-dominated. 
Over the years, several evolutionary approaches to multiobjective problems have been 
introduced. The most commonly used approach is to combine the objective function into a 
single objective function using weighting coefficients and penalty functions. This problem-
transformation enables the use of a simple single-objective genetic algorithm to find a single 
solution, which may be feasible, so requiring no further searches. Weights and penalty 
functions are generally hard to set accurately though, whereas both are very problem 
dependent (Richardson et al., 1989). As a result, the solution a GA comes up with may not 
fulfill all the designer’s needs. The solution may not even be non-dominated. Setting the 
weights correctly requires a certain amount of search space knowledge, which is often not 
available in advance. This way of dealing with multiobjective optimization is therefore not 
always applicable or efficient. 
Another, and perhaps more effective approach, is to use genetic algorithms to locate Pareto-
optimal solutions. These solutions are, by definition, located on a boundary, known as the 
Pareto-front. We would like the solutions to cover the Pareto-front as well as possible, as to 
obtain a good representation of this front. This approach requires an extensive exploration 
of the search space and it is this requirement that makes evolutionary algorithms extremely 
applicable in this case. Their massive parallel exploration of search spaces is an invaluable 
advantage over other more conventional techniques in locating Pareto-optimal solutions. 
This Pareto-based approach has additional benefits as well. This approach offers multiple 
solutions from which a decision maker can select the solution that is best suited according to 
additional criteria, without requiring additional searches. Pareto based optimization is 
hence a more transparent and efficient way of dealing with multiobjective problem. 
A Pareto solution is proper if the tradeoff rate between the objectives in the neighborhood of 
that solution is bounded. In other words, in the neighborhood of a proper Pareto point, a 
finite increase in one objective is possible only at the expense of some reasonable decrease in 
one other objective. A proper Pareto solution is a good candidate design solution (Stan, 
2003). 

3. Two DOF RRRRR Micro Parallel Robot 

3.1 Geometrical description of the micro parallel robot 

The micro parallel robot considered in this paper is the 2-dof planar parallel mechanism 
shown in Fig. 3. The micro parallel robot consists of a five-bar mechanism connected to a 
base by two rotary actuators, which control the two output degrees of freedom of the end-
effector. The actuators are joined to the base and platform by means of revolute joints 
identified by the letters A–D. It will be assumed that AO=OC=AC/2. The coordinates of 
point P, the end-effector point, are (xP, yP). In more general terms, the actuator joint angles 
are the input variables, i.e. . The global coordinates of the working point P 
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form the output coordinates, i.e. . The 2-dof micro parallel robot may be used 

only for positioning P in the x-y plane. It is evident that this manipulator thus has 2-dof. 
Thus, the generalized coordinates for this kind of micro parallel robot are therefore given 
by: 

  (1) 

In general, factors imposed by the physical construction of the planar parallel manipulator, 
which limit the workspace, may be related to the input variables or a combination of input, 
output and intermediate variables. An example of former type for the planar parallel 
manipulator are joint angles limits, and of the latter, limits on the angular displacement of 
the revolute joints connecting the legs to the ground and to the platform. These limiting 
factors are described by means of inequality constraints and may, respectively, take the 
general forms: 

 vmin ≤ v ≤ vmax (2) 

 gmin ≤ g(u, v) ≤ gmax (3) 

The above general definitions are necessary in order to facilitate the mathematical 
description of kinematics and workspaces of the 2-dof planar micro parallel robot. In this 
study mixed constraints, represented by (3), are not taken into consideration. 
 
 

 

Figure 3. Micro parallel robot with 2 degrees of freedom 
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Figure 4. The 4 types of functioning of micro parallel robot with 2 degrees of freedom 

 

Figure 5. CAD model of the micro parallel robot of type RRRRR 

3.2 The kinematics of the RRRRR micro parallel robot 

Kinematic analysis of five-bar micro parallel robot is needed before carrying out derivations 
for the mathematical model. It is considered the five-bar micro parallel robot with revolute 
joints as in Fig. 1. It is known the length of the links as well as the fixed joints coordinates. 
The five-bar mechanism is symmetric toward Oy-axis, thus la = ld = l respectively lb = lc = L. 
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Actuators are placed in A and C. Attaching to each link a vector, on the OABPO respectively 
OCDPO, we can write successively the relations: 

 DPCDOCOPBPABOAOP ++=++= ;  (4) 

Based on the above relations, the coordinates of the point P have the following forms:      
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In this part, kinematics of a planar micro parallel robot articulated with revolute type joints 
has been formulated to solve direct kinematics problem, where the position, velocity and 
acceleration of the micro parallel robot end-effector are required for a given set of joint 
position, velocity and acceleration.  
The Direct Kinematic Problem (DKP) of micro parallel robot is an important research 
direction of mechanics, which is also the most basic task of mechanic movement analysis 
and the base such as mechanism velocity, mechanism acceleration, force analysis, error 
analysis, workspace analysis, dynamical analysis and mechanical integration. For this kind 
of micro parallel robot solving DKP is easy. Coordinates of point P in the case when values 

of joint angles are known 1q  and 2q are obtained from relations: 
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The speed of the point P is obtained differentiating the relations (1). Thus results: 
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and J represents the Jacobian matrix. 
Acceleration of the point P is obtained by differentiating of relation (8), as it yields: 
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Figure 6. The two forward kinematic models: (a) the up-configuration and (b) the down-
configuration 

Based on the inverse kinematics analysis are determined the motion lows of the actuator 
links function of the kinematics parameters of point P. 
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The values of joint angles iq , (i = 1…4) knowing the coordinates xP, yP of point P, may be 

computed with the following relations: 
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From Eq. (14), one can see that there are four solutions for the inverse kinematics problem of 
the 2-dof micro parallel robot. These four inverse kinematics models correspond to four 
types of working modes (see Fig. 7). 
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c)      d) 

Figure 7. The four inverse kinematics models: (a)”+−“ model; (b)” −+“ model; (b)” −−“ 
model; (d)”++“ model 
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Figure 8. Graphical User Interface for solving the inverse kinematics problem of 2 DOF 
micro parallel robot 

 

Figure 9. Robot configuration for micro parallel robot xP=-15 mm yP=100 mm 

 

Figure 10. Robot configuration for micro parallel robot xP=-30 mm yP=120 mm 
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Figure 11. Robot configuration for micro parallel robot xP=40 mm yP=95 mm 

 

Figure 12. Robot configuration for micro parallel robot xP=0 mm yP=130 mm 

3.3 Singularities analysis of the planar 2-dof micro parallel robot 

In the followings, vector v is used to denote the actuated joint coordinates of the 
manipulator, representing the vector of kinematic input. Moreover, vector u denotes the 
Cartesian coordinates of the manipulator gripper, representing the kinematic output. The 
velocity equations of the micro parallel robot can be rewritten as: 

 0vBuA =+ &&  (16) 
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Where [ ]Tq,qv 21
&&& = , [ ]TPP y,xu &&& = and where A and B are square matrices of dimension 

2, called Jacobian matrices, with 2 the number of degrees of freedom of the micro parallel 
robot. Referring to Eq. (13), (Gosselin and Angeles, 1990), has defined three types of 
singularities which occur in parallel kinematics machines. 
(I) The first type of singularity occurs when det(B)=0. These configurations correspond to a 
set of points defining the outer and internal boundaries of the workspace of the micro 
parallel robot. 
(II) The second type of singularity occurs when det(A)=0. This kind of singularity 
corresponds to a set of points within the workspace of the micro parallel robot. 
(III) The third kind of singularity when the positioning equations degenerate. This kind of 
singularity is also referred to as an architecture singularity (Stan, 2003). This occurs when 
the five points ABCDP are collinear.  
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Figure 13. Some configurations of singularities: (a) the configuration when lb and lc are 
completely extended (b) both legs are completely extended; (c) the second leg is completely 
extended and (d) the first leg is completely extended 

In this chapter, it will be used to analyze the second type of singularity of the 2-dof micro 
parallel robot introduced above in order to find the singular configuration with this type of 
micro parallel robot. For the first type of singularity, the singular configurations can be 
obtained by computing the boundary of the workspace of the micro parallel robot. 
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Furthermore, it is assumed that the third type of singularity is avoided by a proper choice of 
the kinematic parameters. 
For this micro parallel robot, we can use the angular velocities of links lc and lb as the output 
vector. Matrix A is then written as: 
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From Eq. (17), one then obtains: 

 
).sin()det( 34bc qqllA −⋅⋅=

 (18) 

From Eq. (18), it is clear that when ....,,2,1,0,qq 34 ±±=+= nnπ then 

.0)Adet( =  In other words if the two links lc and lb are along the same line, the micro 

parallel robot is in a configuration which corresponds to be second type of singularity. 

 

Figure 14. Examples of architectural singular configurations of the RRRRR micro parallel 
robot 

3.4 Optimal design of the planar 2-dof micro parallel robot 
The performance index chosen corresponds to the workspace of the micro parallel robot. 
Workspace is defined as the region that the output point P can reach if q1 and q2 changes 
from 2π without the consideration of interference between links and the singularities. There 
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were identified five types of workspace shapes for the 2-dof micro parallel robot as it can be 
seen in Figs. 15-20.  
Each workspace is symmetric about the x and y axes. Workspace was determined using a 
program made in MATLAB™. Analysis, visualization of workspace is an important aspect 
of performance analysis. A numerical algorithm to generate reachable workspace of parallel 
manipulators is introduced. 
 

 

Figure 15. The GUI for calculus of workspace for the planar 2 DOF micro parallel robot 

 

 

  

 Figure 16. Workspace of the 2 DOF micro parallel robot 
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Figure 17. Workspace of the 2 DOF micro parallel robot 

 

  

Figure 18. Workspace of the 2 DOF micro parallel robot 

 

 

Figure 19. Workspace of the 2 DOF micro parallel robot 
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Figure 20. Workspace of the 2 DOF micro parallel robot 

The above design of 2 DOF micro parallel robot employed mainly traditional optimization 
design methods. However, these traditional optimization methods have drawbacks in 
finding the global optimal solution, because it is so easy for these traditional methods to trap 
in local minimum points (Stan, 2003). 
GA refers to global optimization technique based on natural selection and the genetic 
reproduction mechanism. GA is a directed random search technique that is widely applied 
in optimization problems. This is especially useful for complex optimization problems 
where the number of parameters is large and the analytical solutions are difficult to obtain. 
GA can help to find out the optimal solution globally over a domain.  
The design of the micro parallel robot can be made based on any particular criterion. Here a 
genetic algorithm approach was used for workspace optimization of 2 DOF micro parallel 
robot.  
For simplicity of the optimization calculus a symmetric design of the structure was chosen. 
In order to choose the robot dimensions d, la, lb, lc, ld we need to define a performance index 
to be maximized. The chosen performance index is workspace W. 
One objective function is defined and used in optimization. It is noted as W, and 
corresponds to the optimal workspace. We can formalize our design optimization problem 
as the following equation: 

 Obj_function=max(W) (19) 

Optimization problem is formulated as follows: the objective is to evaluate optimal link 
lengths which maximize (16). The design variables or the optimization factor is the ratios of 
the minimum link lengths to the base link length b, and they are defined by: 

 ld/d (20) 
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Figure 21.  Flowchart of the optimization Algorithm with GAOT (Genetic Algorithm 
Optimization Toolbox) 

Constraints to the design variables are: 

 0,6<ld/d<1,2 (21) 

 la=ld, lb=lc, lb=1,2la (22) 

For this example the lower limit of the constraint was chosen to fulfill the condition ld≥d/2. 
For simplicity of the optimization calculus the upper bound was chosen ld≤1,2d. 
During optimization process using genetic algorithm it was used the following GA 
parameters, presented in Table 1. A genetic algorithm (GA) is used because its robustness 
and good convergence properties. The GA approach has the clear advantage over 
conventional optimization approaches in that it allows a number of solutions to be 
examined in a single design cycle. The traditional methods searches optimal points from 
point to point, and are easy to fall into local optimal point. Using a population size of 50, the 
GA was run for 100 generations. A list of the best 50 individuals was continually maintained 
during the execution of the GA, allowing the final selection of solution to be made from the 
best structures found by the GA over all generations. 
We performed a kinematic optimization in such a way to maximize the workspace index W. 
It is noticed that optimization result for micro parallel robot when the maximum workspace 

of the 2 DOF planar micro parallel robot is obtained for dld / =1,2. The used dimensions for 

the 2 DOF parallel micro robot were: la=72 mm, lb=87 mm, lc=87 mm, ld=72 mm, d=60 mm. 
Maximum workspace of the micro parallel robot was found to be W= 9386 mm2. The results 
show that GA can determine the architectural parameters of the robot that provide an 
optimized workspace. Since the workspace of a micro parallel robot is far from being 
intuitive, the method developed should be very useful as a design tool. 
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1 Population 50 

2 Generations 100 

3 Crossover rate 0,08 

4 Mutation rate 0,005 

Table 1. GA Parameters 

However, in practice, optimization of the micro parallel robot geometrical parameters 
should not be performed only in terms of workspace maximization. Some parts of the 
workspace are more useful considering a specific application.  
Indeed, the advantage of a bigger workspace can be completely lost if it leads to new 
collision in parts of it which are absolutely needed in the application. However, it’s not the 
case of the presented structure. 
In the second case of optimization of the 2 DOF micro parallel robot there have been used 4 
optimization criteria: 

1. transmission quality index →  T=1 the best value and the maximum one 

2. workspace →  a higher value is desirable 

3. stiffness index →  a higher value is desirable 

4. manipulability index →  a higher value is desirable 

Beside workspace which is an important design criterion, transmission quality index is 
another important criterion.  
The transmission quality index couples velocity and force transmission properties of a 
parallel robot, i.e. power features (Hesselbach et al., 2003). Its definition runs: 

 
1

2

−⋅
=

JJ

I
T  (23) 

where I is the unity matrix.  
T is between 0<T<1; T=0 characterizes a singular pose, the optimal value is T=1 which at the 
same time stands for isotropy (Hesselbach et al., 2003). 
The manipulability condition number is a quality number in the sense of Yoshikawa, can be 
defined in terms of the ratio of a measure of performance in the task space and a measure of 
effort in the joint space. 

 
TJJM ⋅= det(  (24) 

If J is quadratic Eq. (4) reduces to M=det(J). The goal is to have a value of M as large as 
possible. 
The stiffness condition number runs using the matrix K: 

 
11 )( −− ⋅⋅⋅=⋅= TT JJJJKKS  (25) 

If the guiding chains of the machine between frame and working platform have different 
stiffness, the matrix K must be replaced by the matrix: 
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11)( −− ⋅⋅= JCJK T

C  (26) 

where the diagonal matrix C contains the stiffness of the single guiding chain. The reciprocal 

value of S is between 1/10 ≤< S ; a singular pose is again characterized by 0/1 =S , 

whereas 1/1 =S is the optimal (isotropic) index. 

In the following figures, the performances evaluation throughout the workspace of the 
planar 2 DOF micro parallel robot is presented.   
 
 
 
 
 
 
 
 
 
 

 

Figure 22. Transmission quality index for 2 DOF micro parallel robot 
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Figure 23. Manipulability index for 2 DOF micro parallel robot 

 

Figure 24. Stiffness index for 2 DOF micro parallel robot 

Objective function: 

Obj_Fun= ),,,( MSATf  
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Optimization parameters: 

dl  and d  

Constraints: 

11080 ≤≤ dl  and 12090 ≤≤ d  

Optimization problem is formulated as maximization of the objective function: 

 max(Obj_fun( dld , )). (27) 

In Fig. 25 the Pareto front for optimization of a five-bar parallel micro robot for 4 
optimization criteria, transmission quality index, workspace, manipulability and stiffness, is 
presented. For finding the Pareto front have been generated by a number of 500 generations. 
This approach focuses around the concept of Pareto optimality and the Pareto optimal set. 
Using these concepts of optimality of individuals evaluated under a multi objective 
problem, they each propose a fitness assignment to each individual in a current population 
during an evolutionary search based upon the concepts of dominance and non-dominance 
of Pareto optimality. More details regarding the developing the Pareto front can be found in 
(Stan, 2003). 
 

 

Figure 25.  Pareto front for 4 optimization criteria: transmission quality index, workspace, 
manipulability and stiffness. 
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Since the finding of the solution for the multicriteria optimization doesn’t end without 
choosing a compromise, there isn’t need for an extreme precision for the values of the 
extreme positions. As Kirchner proved in (Kirchner and Neugebauer, 2000), optimization 
can be helped by a good starting population. The quality of the optimization depends 
essentially on the calculated number of generations. 
In functioning of the genetic algorithms there have been used the following genetic 
algorithms parameters: 

Size of population: 50 

Generations: 10 

Crossover rate: 0,07 

Mutation rate: 0,01 

Maximum number of generations: 500 

Table 2. The GA Parameters 

Based on the presented optimization methodology we can conclude that the optimum 
design and performance evaluation of the micro parallel robot is the key issue for an 
efficient use of micro parallel robots. This is a very complex task and in this paper was 
proposed a framework for the optimum design considering basic characteristics of 
workspace, singularities, isotropy. 

4. Conclusion 

An optimization design of 2-dof micro parallel robot is performed with reference to 
kinematic objective function. Optimum dimensions can be obtained by using the 
optimization method. Finally, a numerical example is carried out, and the simulation result 
shows that the optimization method is feasible. The main purpose of the chapter is to 
present kinematic analysis and to investigate the optimal dynamic design of 2-dof micro 
parallel robot by deriving its mathematical model. By means of these equations, optimal 
design for 2-dof micro parallel robot is taken by using GA. Optimal design is an important 
subject in designing a 2-dof micro parallel robot. Here, intended to show the advantages of 
using the GA, we applied it to a multicriteria optimization problem of a 2 DOF micro 
parallel robot. Genetic algorithms (GA) are so far generally the best and most robust kind of 
evolutionary algorithms. A GA has a number of advantages. It can quickly scan a vast 
solution set. Bad proposals do not affect the end solution negatively as they are simply 
discarded. The obtained results have shown that the use of GA in such kind of optimization 
problem enhances the quality of the optimization outcome, providing a better and more 
realistic support for the decision maker. Pareto front was found and non-dominated 
solutions on this front can be chosen by the decision-maker. 
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