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1. Introduction 

One of the major challenges in human-robot interaction is how to enable the use of 
unrestricted hand motion as a tool for communication. The direct use of hand as an input 
tool enables the user to connect to systems more naturally, allowing them to become an 
integral part of our daily lives. A vision-based approach, using cameras to capture data, 
supports non-contact and unrestricted movement of the hand. Nonetheless, the high 
degrees of freedom (DOF) of the hand is an essential issue to tackle in articulated hand 
motion tracking and pose estimation. 
In this paper, we present our vision-based model-based approach, which uses multiple 
cameras and predictive filtering, to estimate the pose of the hand. We build on the research 
of Ueda et al., whose work can separately estimate the global pose (wrist position and palm 
orientation) and the local pose (finger joint angles), but not simultaneously (Ueda et al., 
2003). We address the problem through the use of a non-linear filter, Unscented Kalman 
Filter (UKF), to track the motion and simultaneously estimate the global and local poses of 
the hand. 
The rest of the paper is organized as follows. Section 2 presents the related works and 
Section 3 discusses the UKF. Section 4 explains the hand pose estimation system and Section 
5 details how we use the UKF for tracking and pose estimation. Experimental results and 
discussions are found in Section 6. 

2. Related works 

There are two main techniques to a vision-based hand pose estimation: appearance-based 
and model-based. Appearance-based approach uses two dimensional features such as 
silhouettes or colors, in order to compare the input image to a database of pose images and 
determine the hand pose (Athitsos & Sclaroff, 2003; Shimada et al., 2001). However, 
appearance-based approach is perspective-limited and usually gives solution only to a 
specific task problem (Pavlovic et al., 1997). 

Source: Human-Robot Interaction, Book edited by: Daisuke Chugo,  
 ISBN 978-953-307-051-3, pp. 288, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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In model-based approach, the hand motion is modeled parametrically, giving a more 
precise and generic result. It tries to minimize the error between a predefined model of the 
hand and the observation data. 
A full DOF hand has at least 27 parameters composed of 6 global (rotation and translation of 
the hand) and 21 local (finger joint angles). In a model based approach, the hand is 
represented as a model that describes its characteristics. The models can be classified in 
three groups: geometric model, statistical model, and physical based model. Geometric 
model uses various geometric primitives to represent the physical structure of the hand. 
Examples of geometric model include truncated quadrics (Stenger et al., 2001) and 
cardboard (Wu et al., 2001). On the other hand, statistical models define a hand shape as a 
variation of a mean model shape (Huang & Jeng, 2001). A physical based model considers 
the effect of various forces on the hand pose. Skeletal model covered with B-spline surface 
(Kuch & Huang, 1994), quadric surface (Ueda et al., 2003), or voxels (Causo et al., 2009) are 
examples of a physical based model. 
Erol et al. classified hand pose estimation and motion tracking methods as either single-
hypothesis tracking or multiple hypotheses tracking (Erol et al., 2007). In the former, the 
matching error between the model and the observation data is minimized by a best fit 
search. This technique includes optimization based methods like Gauss Newton (Rehg & 
Kanade, 1994), Genetic Algorithm (Lien & Huang, 1998), or Stochastic Gradient Descent 
(Bray et al., 2004) and physical-force models that uses force (Ueda et al., 2003), Unscented 
Kalman Filter (UKF) (Stenger et al., 2001; Causo et al., 2008) or Iterative Closest Point (ICP) 
algorithm (Delamarre & Faugeras, 1999). 
Multiple hypotheses tracking, wherein multiple pose estimates are considered at each time 
frame, tries to address the issues of single hypothesis tracking such as the presence of 
singularity or spurious local minima. This includes tree-based search (Thayananthan et al., 
2003), template matching (Shimada et al., 2001), and particle filtering (Lin et al., 2002). 
Hand motion tracking is not a linear problem, but predictive tracking solutions for non-
linear systems are available including Extended Kalman Filter (EKF), UKF, Gaussian sum 
filter, particle filter, and grid-based methods. Extended Kalman Filter is a straight-forward 
adaptation of the Kalman Filter to non-linear systems. Shimada et al. used EKF to estimate 
the pose of the hand and refine the 3D shape model even when using only a monocular 
camera and without any depth information (Shimada et al., 1998). A modified EKF through 
constraint fusion was used by Azoz et al. to localize and track an articulated arm (Azoz et 
al., 1998). Another extension of the Kalman Filter is the UKF (Julier & Uhlmann, 1997) which 
Stenger et al. used to track the motion of the hand modelled as truncated quadrics (Stenger 
et al., 2001). 
Gumpp et al. used particle filtering (PF) to track the hand motion of the user in order to 
control a 20 DOF robot hand (Gumpp et al., 2006). Lin et al. parametrized the hand 
configuration space to be able to use a lower number of particles and consequently speeded 
up the computation (Lin et al., 2002). Thayananthan et al. and Stenger et al. both used grid-
based filtering to search for the representative pose by traversing the tree nodes with high 
probabilities (Thayananthan et al., 2003; Stenger et al., 2004). They were able to do a fast 
search because the tree nodes’ probabilities are updated during tracking and they skip the 
children of the nodes with small probabilities. 

3. The Unscented Kalman Filter (UKF) 

Unscented Kalman Filter belongs to the Kalman Filter (KF) family. It is a recursive estimator 
that uses information from the previous time frame in addition to the current observation 
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measurement to make an estimate of the current state. Unlike the KF though, EKF and UKF 
are designed for non-linear systems. Extended Kalman Filter (EKF) is the more commonly 
used technique between the two. However, it requires the computation of Jacobian matrices, 
which is non-trivial in most cases. 
In contrast, UKF uses unscented transformation method, which calculates the statistics of a 
random variable that undergoes non-linear transformation (Julier & Uhlmann, 1997). It is 
accurate up to the second order and requires fewer samples compared to a similar particle 
filter. Xiong et al. studied the performance of UKF under certain conditions and showed that it 
performs robustly in general tracking applications of non-linear systems (Xiong et al., 2006). 
Figure 1 shows the overview of the UKF process, which is composed of two main parts, 
similar to the KF. First is the time-update, wherein the initial state estimate is computed by 
selecting sigma points and solving for its mean and covariance. The observation is also 
propagated in this step and its mean and covariance are also calculated. The second part is 
the measurement update. The Kalman gain and cross-covariance of the propagated state 
and the propagated observation are calculated and used to update the state and its 
covariance. The computational details are discussed next. 
 

 

Fig. 1. The Unscented Kalman Filter (UKF) process. This is very similar to the Kalman Filter, 
except that the initial state estimate (under the Time Update box) is obtained from the sigma 
(particle) propagation. 

For a given tracking problem, consider the state dynamics, 

 (1) 

where: 
f is the system dynamics, 
Xk is the state vector of size n at time k, and 
Rk is the state noise covariance. 
UKF makes an initial estimate of the state vector, by selecting sigma points through 
Equation 2: 

 

(2) 

www.intechopen.com



 Human-Robot Interaction 

 

158 

where: 

φ is the ith column of  

Pk−1 is the covariance estimate from the previous iteration, 

k−1 is the state estimate from the previous iteration, and 

λ is the scaling parameter. 
2n+1 sigma points are selected to approximate the posterior mean and covariance of the 
state vector. The selection of the sigma points is deterministic and is set by adjusting the 
scaling parameter λ: 

 (3) 

where: 

α determines the distribution of the points around the mean and is set to a small positive 
value, and 

κ is a secondary parameter set to 0 or 3 − n. 

Equation 1 is applied to  to obtain the propagated state vector : 

 (4) 

The mean  and the covariance  of the propagated sigma points are computed: 

 
(5) 

 
(6) 

The weight Wi is computed according to the following: 

 
(7) 

β is used to include information about the distribution of the state variable. It is found to be 
optimal at β = 2 for a Gaussian distribution. 
Likewise, the observation vector is propagated using the propagated sigma points: 

 
(8) 

where: 
h describes the nonlinear observation function, 

 is the propagated observation vector, 

 is the propagated state vector, and 
Sk is the measurement noise covariance. 

Then , the mean of the propagated observation vector, and its covariance  are 

calculated using the same weights defined in Equation 7: 

 
(9) 
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(10)

Up until this point is the time update block of Fig. 1. 
The succeeding steps are part of the measurement update. The observation vector Yk is 
obtained from sensor measurements. Then the cross-covariance of the state and the 
observation vectors,  , is calculated in order to derive the Kalman gain Kk. 

 
(11)

 
(12)

Finally, the state and covariance estimates are updated: 

 (13)

 
(14)

where  is the state estimate, and Pk is its covariance at time k. These values become the 
input to the next iteration, i.e.,  becomes  and Pk becomes Pk−1. Then the whole 
process repeats again. 
Upon initialization of the filter,  and Pk−1 in Equations 1 and 2 are set to some initial 
values and become  and P0, respectively. The scaling parameter values are adjusted 
heuristically. 
For further discussion and details on the implementation of UKF, consult Julier & Uhlmann 
(Julier & Uhlmann, 1997) and Wan & Van der Merwe (Wan & van der Merwe, 2000). 

4. Hand pose estimation using multi-viewpoint cameras 

The vision-based hand pose estimation system takes its input from multiple cameras, which 
are positioned so that they see with the least amount of occlusion (Fig. 2). 
 

 

Fig. 2. Multiple viewpoint camera system. 
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The system is model-based as it uses a skeletal model of the hand (Fig.3). It represents the 
hand as a set of five manipulators with a common base point at the wrist. Each finger is a 
manipulator with several links and joints. The metacarpophalangeal (MCP) and 
carpometacarpal (CMC) joints have two DOFs each to account for flexion-expansion and 
abduction-adduction motions. The rest of the joints has one DOF each. The thumb has a 
special configuration. It has only 4 joints and 4 links, for a total of 5 DOFs. The wrist, which 
accounts for the global pose, has six DOFs for translation and rotation. The model has a skin 
composed of quadric surfaces, which will be referred to as surface model throughout this 
paper. The surface model represents the underlying skeletal configuration of the links and 
the joints. In summary, the skeletal model has 19 joints, 31 DOFs, 24 links and a total of 744 
surface quadrics. 
 

 

Fig. 3. The hand models. The skeletal model is covered with quadric surfaces. The voxel data 
is derived from the silhouettes of the input images. 

The observation data of the system is the images from the cameras converted to voxel data 
by shape-from-silhouette technique (Szeliski, 1993). In other words, the voxel data 
represents the current hand pose as seen by the cameras. 
Ueda et al., minimized the error between the voxel data and the skeletal model using virtual 
force (Ueda et al., 2003). Although their technique has the advantages of being simple and 
fast, it cannot estimate the global and local poses simultaneously. It also has difficulty in 
recovering from erroneous estimation. 
In our proposed approach, we estimated the global and the local parameters simultaneously 
using UKF. Instead of being limited to finger movements, it will also allow the palm’s 
rotation and the wrist’s translation to be estimated. This enables the hand pose estimation 
system to accept a more dynamic hand motion as input. 

5. UKF in hand pose estimation 

We present in this section how we used UKF to estimate the hand pose. We chose UKF over 
EKF or particle filter because of its simple implementation, fewer number of particles 
needed, and accuracy of up to the second order (Julier & Uhlmann, 1997). Moreover, for our 
system, the relationship between the observation data and the hand pose is non-linear. 
Figure 4 illustrates the process of using UKF to estimate the skeletal pose of the hand using 
the voxel data as input. The step by step explanation is as follows: 
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Fig. 4. Details of the proposed method. Dashed lines indicate comparison of models in order 
to obtain error measurements. 

1. The state vector is set to  while the state covariance is set to Pk−1. During 
initialization, the state is set to zero (X0) while the state covariance is set to some value (P0). 

2. The color image inputs from the multiple cameras are converted to silhouettes. 
3. Using shape-from-silhouette approach, the silhouette images are converted to voxel 

data. 
4. Sigma points are selected using  and Pk−1. 
5. Hand pose is estimated using UKF: 

a. Apply Equation 1, the state dynamics equation, to the sigma points . This gives 

the propagated state vectors , illustrated as variations of hand poses. 

b. Calculate the mean value of the propagated state vectors 
 
and its covariance . 

The  is the filter’s initial state estimate. 

c. Propagate the observation vector  by computing the error between the 

propagated state  and the voxel data. 

d. Calculate , the mean value of the propagated observation vectors, and its 

covariance . 

e. Calculate the cross covariance . 

f. Compute Kalman gain Kk using Equation 12. 

g. Compute state estimate  and its covariance Pk. The hand pose estimate is defined 

by . 
6. Update the hand pose.  and Pk become the next iteration’s  and Pk−1, 

respectively. 
7. The process repeats from Step 2 for the next iteration. 
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5.1 The state dynamics and composition of the state vector 
A key factor in using a predictive filter is using the correct state dynamics. For the hand 
pose estimation, we used a second order dynamics or constant acceleration model, which 
describes the change in the state vector over time. It also captures the nature of the hand 
motion better than a constant velocity model does.  

In Equation (15), Xk is the state vector at time k, Δt is the time interval between frames, Vk is 
the noise covariance of the state vector, and I is the identity matrix. The state noise 
covariance accounts for all the disturbances not accounted for by the dynamics; it was 
determined heuristically in the experiments. The uncertainties of the dynamics are modeled 
to be independent for the position, velocity, and acceleration components. 

 

(15)

The state vector X is composed of both global (rotation and translation) and local (finger 
joint angles) pose parameters and their respective first and second order derivatives 

(velocity and acceleration). In Equation 16, θn is either a global or local parameter,  is its 
velocity, and  its acceleration. 

 
(16)

5.2 The observation function and composition of the observation vector 
The observation function of our system is the non-linear process of obtaining the 

observation vector given a hand pose configuration. A given state vector, X, specifies a 

combination of finger joint angles and wrist data that can be represented by the hand model 

as a particular pose. After converting the state vector to a hand model’s pose, we obtain the 

error between the voxel data (Step 3 of Fig. 4) and the hand model. We designed the 

observation vector to contain the error measurement between the voxel data (the observed 

hand pose) and the hand model (the surface model). 

The observation vector is composed of the geometric distance measured between the voxel 
data and the hand surface model. The distance is computed by checking whether each 
quadric Qi of the surface model is located inside or outside of the voxel data. If it is outside, 
the Manhattan distance di between the center of the quadric and the nearest voxel is 
measured. If it is inside, di is set to zero. It is repeated for all the quadrics of the surface 
model. Figure 5 illustrates the process. 
The distance values are stacked to form the observation vector Y: 

 (17)

In order to lessen the computation time, the size of the observation vector can be decreased. 
In our experiments, instead of obtaining distance measurements from all quadrics (744 in 
total), we only sampled 140 quadrics. It made the computation time more manageable. 
Additionally, at every time step, we always take distance measurements from the same set 
of quadrics. We are able to follow the motion of the finger links from one time frame to 
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Fig. 5. The calculation of geometric error between surface model and voxel data. 

another by keeping track of the changes in the distance values of the selected quadrics. That 
way, we can say that a sense of direction is encoded in the observation vector. Thus, the 
observation vector contains the magnitude of change of the finger link’s motion, as well as 
its general sense of direction. 
To interpret the observation vector, a zero error between the model and the observation (i.e., 
Y = 0) implies that the hand model is completely inside the voxel data. Some value in the 
observation vector indicates that the fingers have moved in certain direction. 
Finally, in Equation 13, Yk is always set to zero, based on two things. First, comparing the 
voxel data to itself and computing distance measurements will just yield zero. Second, from 
the perspective of the filter, Yk = 0 can be interpreted to mean that the observation (sensor) 
measurement is not completely reliable and that we have to correct it through the  

Kk(Yk − ) term of Equation 13. 

5.3 Initialization and filter tuning 
Filter fine tuning and proper parameter initialization are important tasks when 
incorporating a predictive filter to a motion tracking solution. As mentioned above, the state 
vector is set to zero value (X0) at the initial step. The zero values assigned to the state 
parameters mean that the hand model is at its initial pose. The hand is said to be at initial 
pose when the palm is flat open and the fingers are extending away from the palm. 
Likewise, the state covariance matrix’s diagonal is set to some value (P0). 
The fine-tuning parameters of λ (see Equation 3) were also determined heuristically. For 

example, α was set to a small value between 1 and 1x10−4, κ was set to (3 − n), and β was set 
to 2. Likewise, selection of the noise covariances Rk and Sk is also critical. 

6. Experimental results and discussion 

For all the experiments we have done, we used eight cameras in order to get finer voxel data. 
Additionally, the voxel resolution used was 2×2×2[mm] per octant or voxel unit. We also 
estimated a total of 15 hand pose parameters: 3 global and 12 local. The global parameters are 
roll, pitch and yaw. The local parameters are the 2 DOFs of the MCP and 1 DOF of the PIP. The 
following constraint gives the value of the DIP joint angle relative to the PIP: 
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(18)

The proposed method was tested on several hand motions. Various hand motion data were 
obtained using a dataglove. These data, which we considered as the ground truth for all our 
experiments, were then used to create virtual versions of the different hand motions. These 
virtual motions were used as input to the pose estimation system and tracked. Proper 
initialization of the hand model and the voxel data (i.e., they must overlap initially) is 
necessary for filter convergence. Fortunately, the use of simulated motion eliminated this 
issue. 
Figures 6, 7, and 8 show a hand motion that has been tracked successfully. The motion 
(Motion A) is that of a hand whose wrist is rotating and twisting, while the fingers (with the 
exception of the thumb) are simultaneously closing slowly. This motion involves three 
global and 12 local parameters. The wrist’s roll, pitch, and yaw (see Fig. 6) and the four 
fingers’ PIP (1 DOF) and MCP (2 DOFs) were estimated with good accuracy. Figure 7 shows 
only the MCP’s expansion-flexion data (left column) and the PIP (right column). 
 

 

Fig. 6. Global estimation result when the fingers are closing simultaneously. Solid line is the 
ground truth values (actual); broken lines are the estimate (roll, pitch, yaw). 

For Fig. 6 and Fig. 7, the black solid line is the ground truth value while the dotted and 

dashed lines are the estimate values. For all the fingers, the filter initially shows estimation 

errors by as much as 10 degrees, although it eventually converges to the desired value. The 

filter also gets lost but tries to get back on track. This can be seen as a noisy estimation in the 

pinky’s MCP joint estimation (Fig.7 left side, top graph). We had to implement range 

constraints on the finger motion to ensure that awkward poses, for example fingers bending 

backward too much, do not happen. This can be seen as a plateau on the pinky’s PIP 

estimation graph (Fig.7 right side, top graph). 

Snapshots of the motion described above are shown in Fig.8. The top row is the virtually- 
generated motion and the bottom row is the result of the pose estimation. The numbers 
above each column of image correspond to the points in Fig. 7 when the images were taken. 
The local motion manifests in the images as the closing and opening of the fingers, while the 
global motion shows as the twisting of the wrist and palm. 
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Fig. 7. MCP and PIP estimation results for fingers closing simultaneously while the wrist is 
rotating. Solid lines are the ground truth values; the dotted lines are the pose estimation 
result. The numbered vertical lines show when the snapshots in Fig. 8 were taken. 
 

 

Fig. 8. Snapshots of estimation result. The numbers above each image column correspond to 
the points in Fig. 7 when the snapshots were taken. The motion is for a rotating wrist while 
the fingers are closing simultaneously. 
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Two more motions were tested to demonstrate the flexibility of the system. Snapshots of the 
estimation results are shown in Fig.9 (Motion B) and Fig.10 (Motion C). For both motions, 
the wrist is rotating and twisting due to roll, pitch, and yaw motions. In Fig.9, the hand is 
moving two fingers at a time. In Fig.10, the fingers successively bending towards the palm 
one by one, starting from the pinky toward the index finger and then opening in the reverse 
order. 
 

 

Fig. 9. Snapshots of the observed hand motion and their corresponding estimated hand 
poses. The motion is that of a hand rotating while the fingers are closing two at a time. 
 

 

Fig. 10. Snapshots of the observed hand motion and their corresponding estimated hand 
poses. The motion is that of a hand rotating while the fingers are closing one at a time 
starting from the pinky going to the index. 

To compare the accuracy of our estimation results, Fig.11 shows the average of absolute 
errors for all the joints estimated. The absolute errors range from 0.20 to 3.40 degrees per 
joint for every iteration. However, the actual change of angle per iteration of any joint, based 
on the ground truth data, is less than 1 degree only. We can interpret this range of absolute 
error as an indication of the filter’s effort to converge to the ground truth value. Physically 
speaking, even a three degree motion of a joint is not easy to perceive due to the presence of 
the muscle and the skin covering the finger bones. Thus, the converging behavior is 
noticeable in the graphs of Fig.6 and 7 but imperceptible in the snapshots of Fig.8. 
Furthermore, we compared our results with the original model-fitting approach’s in (Ueda 
et al., 2003); a predictive filtering versus model-fitting comparison. Fig.12 establishes the 
robustness of using the UKF against using the virtual force based model-fitting. The figure 
shows the estimation result of both methods for the Index PIP joint. Both methods try to 
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converge to the true value, but a closer look shows that the model-fitting has more difficulty 
in doing so. Between frames 100 to 200, the Index PIP is expanding and flexing (i.e., bending 
and stretching), and the UKF is able to track this movement quite well. The filter’s 
estimation results fluctuate as it tries to converge to the true value yet manages to recover 
from the fluctuations. On the other hand, it takes some time for the model-fitting approach 
to recover from its over-estimation and overshoots its estimates. In short, the proposed 
method showed better error recovery than the model-fitting method. 
 

 

Fig. 11. Average absolute error of each DOF. The motion is that of a hand rotating while the 
fingers are closing simultaneously. 

 

Fig. 12. Comparison of Index PIP estimation results of the original model fitting approach 
and the proposed method. 

There are several issues to address when implementing a predictive filter in hand pose 
estimation. First is the composition of the state and observation vectors, more importantly, 
its size. In our experiments, the dimension of the state vector was 45: the 15 hand 
parameters (3 global + 12 local) and their respective first and second order derivatives while 
the observation vector’s was 140. The size of the observation vector was adjusted until the 
optimum size is attained. A trade off between size and computation speed is needed here. If 
the observation vector is too small, there would not be enough information for the filter to 
process, but too big a size and the computation time increases considerably. 
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For the state vector, the size is largely determined by the dynamics model of the system. 
Since we chose a constant acceleration dynamics, we had to incorporate the first and second 
derivatives of the state variables in the state vector. Fortunately, inclusion of known hand 
constraints can help lessen the dimensions of the state vector. For example, we used the 
coupling constraint between the PIP and the DIP (Equation 18), thus shrinking the state 
vector by nine parameters. 
The second important consideration in UKF is the noise covariance of the state (Equation 1) 
and the observation (Equation 8) vectors. The stability and convergence of the filter depend 
on the accurate choice of covariances (Xiong et al., 2006). In our case, all the covariances, 
listed in Table 1 were determined heuristically. The same noise covariances were applied to 
all the motions discussed here. Likewise, noise covariances for the observation measurement 
were also determined heuristically. We used different noise covariances for the different 
motions (see Table 2). 
 

 

Table 1. Covariance values used for the state vector. 
 

 

Table 2. Covariance values used for the observation vector. 

Lastly, the filter’s computation speed is another important consideration. As mentioned 
before, for the UKF, computation speed depends largely on the size of the state vector and 
the observation vector. Minimizing either or both can result in faster computations, which in 
turn leads to a more stable and accurate filtering. Modifications to UKF, or its equivalent 
methods, to further lessen the number of sigma particles from 2n + 1 have already been 
reported in the literature. For example, Julier et al. used only n + 1 number of particles (Julier 
& Uhlmann, 2002). La Viola compared the performance of EKF and UKF in head tracking 
and found that using quaternions to encode the joint angles resulted to better estimation, 
even by just using EKF (La Viola, 1996). 
In our experiments, the computation speed of the filter is around 0.87 seconds for every 
iteration or roughly 1Hz. However, the usual frame capture speed of cameras is around 
30Hz. Thus, there is a need to speed up the proposed method. 

7. Conclusion and future work 

We introduced a predictive filter, Unscented Kalman Filter, to a vision-based model-based 
system in order to estimate the global and local poses of the hand simultaneously. The UKF 
minimizes error between the hand model and the voxel data and computes the initial pose 
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estimate by propagating 2n + 1 sigma particles. We were able to show estimation results for up 
to 3 global and 12 local pose parameters in different motions and demonstrate better error 
recovery than a previous pose estimation technique. The results presented in this paper used 
virtually generated motion obtained from actual hand motion to verify our method. 
Our future work includes the implementation of the proposed method in a real camera 
system and the use of a calibrated hand model. Moreover, an adaptation of the original UKF 
technique to the hand dynamics is necessary in order to speed up the computation and 
improve the accuracy and over-all stability of the filtering process. 
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