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1. Introduction 

Recently reinforcement learning has received much attention as a learning method (Sutton, 
1988; Watkins & Dayan, 1992). It does not need a priori knowledge and has higher capability 
of reactive and adaptive behaviors. However there are some significant problems in 
applying it to real problems. Some of them are deep cost of learning and large size of action-
state space. The Q-learning (Watkins & Dayan, 1992), known as one of effective 
reinforcement learning, has difficulty in accomplishing learning tasks when the size of 
action-state space is large. Therefore the application of the usual Q-learning is restricted to 
simple tasks with the small action-state space. Due to the large action-state space, it is 
difficult to apply the Q-learning directly to real problems such as control problem for robots 
with many redundant degrees of freedom or multiple agents moving cooperatively one 
another. 
In order to cope with such difficulty of large action-state space, various structural and 

dividing algorithms of the action-state space were proposed (Holland, 1986; Svinin et al., 

2001; Yamada et al., 2001). In the dividing algorithm, the state space is divided dynamically, 

however, the action space is fixed so that it is impossible to apply the algorithm to the task 

with a large action space. In the classifier system, “don’t care” attribute is introduced in 

order to create general rules. But, that causes partially observable problems. Furthermore, 

an ensemble system of general and special rules should be prepared in advance. 

Considering these points, Ito & Matsuno (2002) proposed a GA-based Q-learning method 

called “Q-learning with Dynamic Structuring of Exploration Space Based on Genetic 

Algorithm (QDSEGA).” In their algorithm, a genetic algorithm is employed to reconstruct 

an action-state space which is learned by Q-learning. That is, the size of the action-state 

space is reduced by the genetic algorithm in order to apply Q-learning to the learning 

process of that space. They applied their algorithm to a control problem of multi-legged 

robot which has many redundant degrees of freedom and a large action-state space. By 

applying their restriction method for the action-state space, they successfully obtained the 

control rules for a multi-legged robot by their QDSEGA. However, the way to apply a 

genetic algorithm in their approach seems so straightforward. Therefore we have proposed 

a crossover for QDSEGA (Murata & Yamaguchi, 2005; Murata & Yamaguchi, 2008). Through 

their computer simulations on a control problem of a multi-legged robot, they could make 

about 50% reduction of the number of generations to obtain a target state of the problem. 
Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,  
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In this chapter, we apply the QDSEGA with the neighboring crossover to control multiple 
agents. An application of QDSEGA to multiple agent system has been considered (Ito and 
Gofuku, 2003; Ito et al., 2004) though, they still applied genetic operators straightforward. 
We apply the neighboring crossover to Multi Agent Simulations (MAS) problem and show 
its effectiveness to reduce the number of actions in a Q-table. We also propose a deletion 
algorithm to make more compact Q-table in MAS problem. We employ the application in Ito 
et al. (2004) where a Q-table is developed for homogeneous multiple agents. Computer 
simulation results show that the size of Q-table can be reduced by introducing the proposed 
neighboring crossover and the deletion algorithm. 

2. QDSEGA 

In this section, we briefly explain the outline of QDSEGA (Ito & Matsuno, 2002; Ito & 
Gofuku, 2003; Ito et al., 2004; Murata & Yamaguchi, 2005). QDSEGA has two dynamics. One 
is a learning dynamics based on Q-learning and the other is a structural dynamics based on 
Genetic Algorithm. Figure 1 shows the outline of QDSEGA. In QDSEGA, each action is 
represented by an individual of a genetic algorithm. According to actions defined by a set of 
individuals, an action-state space called Q-table is created. Q-learning is applied to the 
created Q-table. Then the learned Q-table is evaluated through simulations. A fitness value 
for each action is assigned according to Q-table. After that, each individual (i.e., each action) 
is modified through genetic operations such as crossover and mutation. We show some 
details in these steps in the following subsections, and show our proposed method for 
crossover and a deletion algorithm in the next section. 

2.1 Action encoding 

Each individual expresses a selectable action on the learning dynamics. It means that a set of 
individuals is selected by genetic operations, and a learning dynamics is applied to the 
subset. After the evaluation of the subset of actions, a new subset is restructured by genetic 
operations. 
 

 

Create Initial Random Population 

Convert Gene to Action

Create Q-table

Q-learning

Selection

Reproduction (Crossover, Mutation) 

Start 

Calculate fitness from Q-table 

End 

 

Fig. 1. Outline of QDSEGA 
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Q-table 

 

Fig. 2. Q-table created from a set of individuals 

2.2 Q-table 

An action-state space called Q-table is created from the set of individuals. When several 
individuals are the same code, only one action is used in the action-state space to avoid the 
redundancy of actions. Figure 2 shows this avoidance process. 

2.3 Learning dynamics 

In QDSEGA, the conventional Q-learning (Watkins & Dayan, 1992) is employed as a 
learning dynamics. The dynamics of Q-learning are written as follows: 

 )},(max),({),()1(),( asQasrasQasQ
a

′′++−←
′

γαα ,  (1) 

where ),( asQ  is a Q-value of the state s  and the action a , r  is the reward, α  is the 

learning rate, and γ  is the discount rate. 

2.4 Fitness 

The fitness )( iafit  for each action is calculated by the following equation: 

 )()()( iufiQi afitkafitafit ⋅+= ,  (2) 

where )( iQ afit  is a fitness value for action ia  calculated from Q-table, )( iu afit  is a fitness 

value for action ia  calculated from the frequency of use, and fk  is a non-negative constant 

value to determine the ratio of )( iQ afit  and )( iu afit . We show the detail explanation of 

these factors in this subsection.  
(a) Fitness of Q-table 

The fitness of Q-table )( iQ afit  is calculated from Q-values in the current Q-table. In order to 

calculate )( iQ afit  for each action ia  the following normalization is taken place in advance 

as for the Q-values in the current Q-table. 
First, calculate the maximum and minimum value of each state as follows:  

 )),((max)(max asQsV
a

′=
′

,  (3) 
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Then Q′  of the normalized Q-table is given as follows: 
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where p is a constant value which means the ratio of reward to penalty. After this 

normalization process, we fix the action ia  and sort ),( iasQ′  according to their value from 

high to low for all states. We define the sorted ),( iasQ′  as ),( is asQ′ , and ),1( is aQ′  means the 

maximum value of ),( iasQ′ , and ),( iss aNQ′  means the minimum value of ),( iasQ′ , where 

sN  is the size of states. Using the normalized and sorted Q-value ),( is asQ′ , the fitness of 

action ia  is calculated as follows:  

 ( ) ∑ ∑
=

==
Ns

j

j

k is
jiQ

j

akQ
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1

1 )
),('

( ,  (7) 

where jw  is a weight which decides the ratio of special actions to general actions.  
(b) Fitness of Frequency of Use 

The fitness of frequency of use )( iu afit  is introduced to save important actions. That fitness 

is defined as follows:  

 ∑ == aN

j juiuiu aNaNafit
1

)(/)()( ,  (8) 

where aN  is the number of all actions of one generation and )( iu aN  is the number of times 

which ia  was used for in the Q-learning of this generation. Important actions are used 

frequently. Therefore the actions with high fitness value of )( iu afit  are preserved by this 

fitness value.  

2.5 Genetic algorithm and neighboring crossover 

Ito & Matsuno (2002) says “the method of the selection and reproduction is not main subject 
so the conventional method is used.” They employed a crossover that exchanges randomly 

selected bits between the parent individuals according to the crossover probability cP . They 

mutated each bit according to the mutation probability mP . They did not replace parent 

individuals with offspring. Therefore the number of individuals is increased by the genetic 
operations. As for the elite preserving strategy, they preserve 30% individuals with the 
highest fitness value. 
Since they did not modify genetic operators for QDSEGA, we have proposed a crossover 
operation for the multi-legged robot control problem (MRC problem) in (Murata & 
Yamaguchi, 2005; Murata & Yamaguchi, 2008). We developed a neighboring crossover for 
QDSEGA for MRC problems. 
The crossover employed in QDSEGA (Ito & Matsuno, 2002) causes drastic change in the 
phenotype of a solution since randomly selected bits are changed between two solutions. If 
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the change of solution in phenotype is so drastic, the good part of the solution may be 
broken. In order to avoid causing such drastic change among solutions, we proposed a 
crossover between similar parent solutions. We define the similarity by the number of the 

same genes in the same locus of a chromosome. We introduced a parameter simk  to denote 

the similarity. Thus, the crossover is applied among individuals that have the same genes 

more than simk . 

This kind of the restriction for the crossover has been proposed in the research area of 
distributed genetic algorithms (DGAs). Researches on DGAs can be categorized into two 
areas: coarse-grained genetic algorithms (Tanese, 1989; Belding, 1995) and fine-grained 
genetic algorithms (Mandelick & Spiessens, 1989; Muhlenbein et al., 1991; Murata et al., 
2000). In the coarse-grained GAs, a population, that is ordinarily a single, is divided into 
several subpopulations. Each of these subpopulations is individually governed by genetic 
operations such as crossover and mutation, and subpopulations communicate each other 
periodically. Algorithms in this type are called the island model because each subpopulation 
can be regarded as an island. On the other hand, several individuals are locally governed by 
genetic operations in fine-grained GAs. In a fine-grained GA, each individual exists in a cell, 
and genetic operations are applied to an individual with individuals in neighboring cells. 
The DGAs are known to have an advantage to keep the variety of individuals during the 
execution of an algorithm, and avoid converging prematurely.  
While we don’t define any solution space such as cells or islands in our proposed crossover, 
our restriction in crossover operation may have the same effect of keeping variety in a 
population and attain the effective search. 

3. Transportation task using Q-learning 

3.1 Transportation task 

We consider a transportation task shown in Ito & Gofuku (2003) and Ito et al. (2004). Figure 
3 shows a transportation task used in this chapter. There is a world with 25 cells and a goal 
cell shown in “G” where five agents exist in Cell 0 and Cell 4. The aim of the transportation 
task is to convey a load shown in “L1” to the goal cell. In order to carry “L1” to “G”, the 
 

 
G 

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4 

20 21 22 23 24

L2 

L1 

1 3

5 7 9

2 4

6 8 10

SW

 

Fig. 3. Transportation task 
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other load shown in “L2” should be removed from Cell 22. Simultaneously, the door of “G” 
should be opened before carrying “L1”. To open the door, the switch shown in “SW” should 
be pushed by an agent in Cell 23. 
Each load has a mobile direction. As shown in Figure 3, “L1” can be moved only in the 
vertical direction, and “L2” only in the horizontal direction. To move a load, more than one 
agent should push it toward the same movable direction. Therefore, to convey “L1” to “G”, 
agents should remove “L2” from Cell 22, open the door, and move “L1” to the goal. 
In order to control actions of each agent, Ito & Gofuku, (2003); Ito et al., (2004) employed 
their QDSEGA where the state of the agent is handled as a chromosome of an individual to 
which genetic operators are applied. Figure 4 shows the chromosome representation of the 
agent location in Figure 3. Each chromosome consists of genes with the same number of 
agents. The figure in each gene shows the identification number of cell where the agent 
locates. Since the agents with odd number locate in Cell 0, all genes for those agents have 0 
as its value. 
 

Chromosome 0 4 0 4 0 4 0 4 0 4

1 2 3 4 5 6 7 8 9 10

 

Fig. 4. Chromosome representation for the agents in Figure 3 
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Fig. 5. An example of Q-table with a set of chromosomes 

3.2 Q-learning in our simulation 

Q-table of the Q-learning is generated using a set of chromosomes. Figure 5 shows an 
example of Q-table that shows the relations of agent locations. 
In Figure 5, each column in the Q-table shows a chromosome generated by genetic 
operations. Rows of the table consist of the same chromosomes of the columns. That is, the 
chromosomes in the rows act as states in the Q-table, and the chromosomes in the column 
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act as actions the agent can take in the fired state. When the ten agents locates in the start 
position (Cell 0 or Cell 4 as in Fig. 3), the current position is shown as (0, 4, 0, 4, 0, 4, 0, 4, 0, 4) 
in the table. If the target position (10, 3, 11, 4, 3, 13, 21, 11, 18, 22) is selected as an action from 
the current position, Agent “1” moves from Cell 0 to Cell 10, Agent “2” moves from Cell 4 to 
Cell 3, and so on. 
With this Q-table, Q-learning is applied. In order to move each agent to the target position, 
Ito & Gofuku, (2003) and Ito et al., (2004) proposed the following rules. 
 

<R1: The rule to decide a path to a target position> 

                If txix ≠)(  Then xxixixix t Δ))(sgn()()1( −−=+ , )()1( iyiy =+ , 

                Else if tyiy ≠)(  Then yyiyiyiy t Δ))(sgn()()1( −−=+ , )()1( ixix =+ , 

                Else )()1( ixix =+ , )()1( iyiy =+ . 
 

where tt yx ,  are the coordinates of the target position, and )(),( iyix  are the coordinates of 

the current position of the agent in time i. Using this rule, the agent moves in horizontal 
direction first, then it moves vertically to the target position. 
 

<R2: The rule to avoid a collision> 
               If obstacle is on the course that is given by R1 Then 
                  If the obstacle is load Then Employ R3 
                  Else Don’t move 
               Else Move using R1 
 

Since the collision between agents is assumed to avoid using traffic rules, Ito & Gofuku, 
(2003); Ito et al., (2004) considered only the collision between an agent and a load. If the load 
can not be carried by the agent alone, it should stop until other agents come. 
 

<R3: The rule to move the load> 
               If Load is on the course that is given by R1 Then Push the Load to the way that the agent 
               has to go 
               Else Move using R1 
 

If the way that the agent has to go is not the direction to which the load can be moved, the 
agent should stop beside the load. 
 

<R4: The rule to open the door> 
                If Switch is in a cell where the agent stops Then Turn on the switch to open the door 
                Else Nothing is done 

3.3 A deletion algorithm to create more compact control table 
When we observe a Q-table developed by QDSEGA, some actions or chromosomes are not 
used in moving multiple agents. That is, unnecessary actions are generated through genetic 
operations. In order to make a compact Q-table, we mark the chromosomes that are not 
used for a prespecified term in Q-Learning process. 

4. Computer simulation 

4.1 Parameter specifications 

In this section, we show the simulation results to compare the conventional QDSEGA and 
the QDSEGA with the neighboring crossover shown in Subsection 2.5 and the deletion 
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algorithm in Subsection 3.3. The neighboring crossover can be applied to the parent 

solutions that have the same genes more than simk . In this paper, we employed 

8,6,4,2,0=simk . Since 10=simk  means the crossover between the same chromosomes, 

we did not use. When 0=simk , the crossover is applied between any parent solutions. The 

deletion algorithm is applied when the reward for the developed Q-table becomes larger 
than 100. This means that the deletion algorithm is applied after attaining the goal by 
multiple agents. 
We employed the same parameter specifications as shown in Ito & Gofuku (2003) and Ito et 
al. (2004) except the learning rate and the discount rate in Equation (1). We found better 
specifications for those parameters by preliminary simulations: 
 

[Genetic Algorithm] 
  The number of individuals: 300, 
  Selection: Roulette selection, 
  Type of crossover: uniform crossover, 
  The probability of crossover: 0.2, 
  Type of mutation: change the value among valid cell number, 
  The probability of mutation: 0.001, 
  The number of generations: 100, 

  Weights in Equation (2):  200=fk , 

  Weights in Equation (7): 5.0,5.01 ==
sN

ww , ),...,2(0 1−== si Niw . 

 

[Q-learning] 

  Reward: When “L1” reaches the goal, 100=r , 

  When “L1” moves up or “L2” is removed, 20=r , 

                               When “L1” moves down or “L2” blocks the course of “L1”, 20−=r , 

                               When any agent can not move to the target position, 10−=r , 

  Learning rate in Equation (1): 9.0=α , 

  Discount rate in Equation (1): 1.0=γ , 

  ε -greedy action selection: 10% random action, 

  The number of trials of each learning dynamics: 10,000.  

4.2 Simulation results 

Figures 6 and 7 show that the average reward for the obtained Q-table and an average 
number of actions (or situations) in Q-table. The average reward for Q-table is calculated 
over the last 100 trials among 10,000 trials. The maximum average reward is 130. These 

figures show that the proposed QDSEGA with 4,2=simk  could obtain the better or similar 

average reward with comparing to the algorithm without the neighboring crossover. As for 

the number of actions, the larger simk  enables the less number of actions as shown in Figure 

7. This shows that a compact Q-table can be obtained using the proposed neighboring 
crossover. Obtaining a compact Q-table enables users to find important actions to control 
the multiple agents. 
In order to obtain a compact Q-table with high average reward, we apply our proposed 

neighboring crossover after the average reward becomes larger than 100. Since the 
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neighboring crossover is applied to the similar parent solutions, that crossover often 

produces the offspring that is the same chromosome. This causes the reduction of the size of 

Q-table. As shown in Figure 7, the number of actions in the Q-table reduced rather than the 

previous QDSEGA. However, this reduction may prevent improving the performance in the 

average reward. 
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Fig. 6. Gain attained by Q-learning generated by QDSEGA 
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Fig. 7. The number of actions in Q-table generated by QDSEGA 

Figures 8 and 9 show that the average reward and the average number of actions in Q-table. 
From these figures, we can see that the proposed QDSEGA can keep the high average 

reward with any value of simk . Figure 9 shows that the large value of simk  enables to 

reduce the number of actions in Q-table. 

www.intechopen.com



 New Achievements in Evolutionary Computation 

 

190 

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Generation

A
v

e
ra

g
e
 R

e
w

a
rd

W
o

rs
e
 <

=
=

>
 B

e
tt

e
r

Previous k_sim=2 k_sim=4

k_sim=6 k_sim=8

 

Fig. 8. Gain attained by Q-learning generated by QDSEGA applied the neighboring 
crossover when obtaining 100 reward 
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Fig. 9. The number of actions in Q-table generated by QDSEGA applied the neighboring 
crossover when obtaining 100 reward 

Although the neighboring crossover has an effect to reduce the number of actions, there are 
some actions that are not used in moving agents. Therefore, we apply the deletion algorithm 
in Subsection 3.3. Figures 10 and 11 show the results of QDSEGA with neighboring 
crossover and the deletion algorithm. From these figures, we can see that the deletion 
algorithm does not degrade the performance in the average reward but have a fine effect to 
reduce the number of actions. By combining the neighboring crossover and the deletion 
algorithm, we could obtain more compact control table with high performance than using 
the previous algorithms. 
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Fig. 10. Gain attained by Q-learning generated by QDSEGA applied the neighboring 
crossover and the deletion algorithm when obtaining 100 reward 
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Fig. 11. The number of actions in Q-table generated by QDSEGA applied the neighboring 
crossover and the deletion algorithm when obtaining 100 reward 

Table 1 shows the average number of actions obtained at the final generation. From this 
table, we can see that the number of actions is reduced by the neighboring crossover and the 
deletion algorithm. Especially the deletion algorithm could reduce it without degrading the 
performance of the developed control table using neighboring crossover. 
After obtaining a compact control table, we can examine the states and actions that are used 
to reach the goal. We can see that in order to achieve the task to bring “L1” to the goal, only 
two actions are required from the initial states shown in Figure 3. For example, the two 
actions in Figure 12 are enough to convey “L1” to the goal with ten agents. Figure 13 shows 
the states or positions of the agents according to the obtained states shown in Figure 12. 
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Without Deletion Algorithm Previous 2 4 6 8 

# of actions 222.2 210.8 196.9 149.2 96.5 

 

With Deletion Algorithm Previous 2 4 6 8 

# of actions 46.6 39.0 28.0 30.2 25.1 

Table 1.  Size of the Q-table at the final generation 
 

 

Initial State 0 4 0 4 0 4 0 4 0 4

Transition 23 1 15 7 12 3 24 12 16 19

Final State 21 15 23 22 16 22 16 7 16 21

1 2 3 4 5 6 7 8 9 10

 

Fig. 12. Succession of the states to achieve the goal 

 

Fig. 13. Achievement of carrying the load to the goal 

www.intechopen.com



GA-Based Q-Learning to DevelopCompact Control Table for Multiple Agents  

 

193 

5. Conclusion 

In this chapter, we show the effectiveness of the neighboring crossover and the deletion 
algorithm especially in reducing the size of the Q-table. By reducing the Q-table, it becomes 
easy to read the Q-table that is required for attaining the objective to reach the goal and 
minimizes the memory to store the developed control table. 
As for other further study, we can bring other objective functions to achieve the goal. In 
Figures 6, 8, and 10, we compared the average reward as shown in the previous study (Ito 
and Gofuku, 2003; Ito et al., 2004). From these figures, we could minimize the total moving 
cost of all the agents to achieve the goal. 
Furthermore, Ito and Gofuku (2003) examined the effectiveness of QDSEGA for multi-agent 
system with heterogeneous ability. We can show the effectiveness of the neighboring 
crossover in that problem too. 
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