
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

9

GA-Based Q-Learning to Develop
Compact Control Table for Multiple Agents

Tadahiko Murata and Yusuke Aoki
Kansai University

Japan

1. Introduction

Recently reinforcement learning has received much attention as a learning method (Sutton,
1988; Watkins & Dayan, 1992). It does not need a priori knowledge and has higher capability
of reactive and adaptive behaviors. However there are some significant problems in
applying it to real problems. Some of them are deep cost of learning and large size of action-
state space. The Q-learning (Watkins & Dayan, 1992), known as one of effective
reinforcement learning, has difficulty in accomplishing learning tasks when the size of
action-state space is large. Therefore the application of the usual Q-learning is restricted to
simple tasks with the small action-state space. Due to the large action-state space, it is
difficult to apply the Q-learning directly to real problems such as control problem for robots
with many redundant degrees of freedom or multiple agents moving cooperatively one
another.
In order to cope with such difficulty of large action-state space, various structural and

dividing algorithms of the action-state space were proposed (Holland, 1986; Svinin et al.,

2001; Yamada et al., 2001). In the dividing algorithm, the state space is divided dynamically,

however, the action space is fixed so that it is impossible to apply the algorithm to the task

with a large action space. In the classifier system, “don’t care” attribute is introduced in

order to create general rules. But, that causes partially observable problems. Furthermore,

an ensemble system of general and special rules should be prepared in advance.

Considering these points, Ito & Matsuno (2002) proposed a GA-based Q-learning method

called “Q-learning with Dynamic Structuring of Exploration Space Based on Genetic

Algorithm (QDSEGA).” In their algorithm, a genetic algorithm is employed to reconstruct

an action-state space which is learned by Q-learning. That is, the size of the action-state

space is reduced by the genetic algorithm in order to apply Q-learning to the learning

process of that space. They applied their algorithm to a control problem of multi-legged

robot which has many redundant degrees of freedom and a large action-state space. By

applying their restriction method for the action-state space, they successfully obtained the

control rules for a multi-legged robot by their QDSEGA. However, the way to apply a

genetic algorithm in their approach seems so straightforward. Therefore we have proposed

a crossover for QDSEGA (Murata & Yamaguchi, 2005; Murata & Yamaguchi, 2008). Through

their computer simulations on a control problem of a multi-legged robot, they could make

about 50% reduction of the number of generations to obtain a target state of the problem.
Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,

 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 New Achievements in Evolutionary Computation

182

In this chapter, we apply the QDSEGA with the neighboring crossover to control multiple
agents. An application of QDSEGA to multiple agent system has been considered (Ito and
Gofuku, 2003; Ito et al., 2004) though, they still applied genetic operators straightforward.
We apply the neighboring crossover to Multi Agent Simulations (MAS) problem and show
its effectiveness to reduce the number of actions in a Q-table. We also propose a deletion
algorithm to make more compact Q-table in MAS problem. We employ the application in Ito
et al. (2004) where a Q-table is developed for homogeneous multiple agents. Computer
simulation results show that the size of Q-table can be reduced by introducing the proposed
neighboring crossover and the deletion algorithm.

2. QDSEGA

In this section, we briefly explain the outline of QDSEGA (Ito & Matsuno, 2002; Ito &
Gofuku, 2003; Ito et al., 2004; Murata & Yamaguchi, 2005). QDSEGA has two dynamics. One
is a learning dynamics based on Q-learning and the other is a structural dynamics based on
Genetic Algorithm. Figure 1 shows the outline of QDSEGA. In QDSEGA, each action is
represented by an individual of a genetic algorithm. According to actions defined by a set of
individuals, an action-state space called Q-table is created. Q-learning is applied to the
created Q-table. Then the learned Q-table is evaluated through simulations. A fitness value
for each action is assigned according to Q-table. After that, each individual (i.e., each action)
is modified through genetic operations such as crossover and mutation. We show some
details in these steps in the following subsections, and show our proposed method for
crossover and a deletion algorithm in the next section.

2.1 Action encoding

Each individual expresses a selectable action on the learning dynamics. It means that a set of
individuals is selected by genetic operations, and a learning dynamics is applied to the
subset. After the evaluation of the subset of actions, a new subset is restructured by genetic
operations.

Create Initial Random Population

Convert Gene to Action

Create Q-table

Q-learning

Selection

Reproduction (Crossover, Mutation)

Start

Calculate fitness from Q-table

End

Fig. 1. Outline of QDSEGA

www.intechopen.com

GA-Based Q-Learning to DevelopCompact Control Table for Multiple Agents

183

111011 action1

101110 action2

101010 action3

101111 action4

111011 action1

111011 action1
Not used

Population Phenotype

Q-table

Fig. 2. Q-table created from a set of individuals

2.2 Q-table

An action-state space called Q-table is created from the set of individuals. When several
individuals are the same code, only one action is used in the action-state space to avoid the
redundancy of actions. Figure 2 shows this avoidance process.

2.3 Learning dynamics

In QDSEGA, the conventional Q-learning (Watkins & Dayan, 1992) is employed as a
learning dynamics. The dynamics of Q-learning are written as follows:

)},(max),({),()1(),(asQasrasQasQ
a

′′++−←
′

γαα , (1)

where),(asQ is a Q-value of the state s and the action a , r is the reward, α is the

learning rate, and γ is the discount rate.

2.4 Fitness

The fitness)(iafit for each action is calculated by the following equation:

)()()(iufiQi afitkafitafit ⋅+= , (2)

where)(iQ afit is a fitness value for action ia calculated from Q-table,)(iu afit is a fitness

value for action ia calculated from the frequency of use, and fk is a non-negative constant

value to determine the ratio of)(iQ afit and)(iu afit . We show the detail explanation of

these factors in this subsection.
(a) Fitness of Q-table

The fitness of Q-table)(iQ afit is calculated from Q-values in the current Q-table. In order to

calculate)(iQ afit for each action ia the following normalization is taken place in advance

as for the Q-values in the current Q-table.
First, calculate the maximum and minimum value of each state as follows:

)),((max)(max asQsV
a

′=
′

, (3)

www.intechopen.com

 New Achievements in Evolutionary Computation

184

)),((min)(min asQsV
a

′=
′

. (4)

Then Q′ of the normalized Q-table is given as follows:

 If 0),(≥asQ Then pasQ
sV

p
asQ +

−
=′),(

)(

1
),(

max

, (5)

 Else (0),(<asQ) Then pasQ
sV

p
asQ +−=′),(

)(
),(

min

, (6)

where p is a constant value which means the ratio of reward to penalty. After this

normalization process, we fix the action ia and sort),(iasQ′ according to their value from

high to low for all states. We define the sorted),(iasQ′ as),(is asQ′ , and),1(is aQ′ means the

maximum value of),(iasQ′ , and),(iss aNQ′ means the minimum value of),(iasQ′ , where

sN is the size of states. Using the normalized and sorted Q-value),(is asQ′ , the fitness of

action ia is calculated as follows:

 () ∑ ∑
=

==
Ns

j

j

k is
jiQ

j

akQ
wafit

1

1)
),('

(, (7)

where jw is a weight which decides the ratio of special actions to general actions.
(b) Fitness of Frequency of Use

The fitness of frequency of use)(iu afit is introduced to save important actions. That fitness

is defined as follows:

 ∑ == aN

j juiuiu aNaNafit
1

)(/)()(, (8)

where aN is the number of all actions of one generation and)(iu aN is the number of times

which ia was used for in the Q-learning of this generation. Important actions are used

frequently. Therefore the actions with high fitness value of)(iu afit are preserved by this

fitness value.

2.5 Genetic algorithm and neighboring crossover

Ito & Matsuno (2002) says “the method of the selection and reproduction is not main subject
so the conventional method is used.” They employed a crossover that exchanges randomly

selected bits between the parent individuals according to the crossover probability cP . They

mutated each bit according to the mutation probability mP . They did not replace parent

individuals with offspring. Therefore the number of individuals is increased by the genetic
operations. As for the elite preserving strategy, they preserve 30% individuals with the
highest fitness value.
Since they did not modify genetic operators for QDSEGA, we have proposed a crossover
operation for the multi-legged robot control problem (MRC problem) in (Murata &
Yamaguchi, 2005; Murata & Yamaguchi, 2008). We developed a neighboring crossover for
QDSEGA for MRC problems.
The crossover employed in QDSEGA (Ito & Matsuno, 2002) causes drastic change in the
phenotype of a solution since randomly selected bits are changed between two solutions. If

www.intechopen.com

GA-Based Q-Learning to DevelopCompact Control Table for Multiple Agents

185

the change of solution in phenotype is so drastic, the good part of the solution may be
broken. In order to avoid causing such drastic change among solutions, we proposed a
crossover between similar parent solutions. We define the similarity by the number of the

same genes in the same locus of a chromosome. We introduced a parameter simk to denote

the similarity. Thus, the crossover is applied among individuals that have the same genes

more than simk .

This kind of the restriction for the crossover has been proposed in the research area of
distributed genetic algorithms (DGAs). Researches on DGAs can be categorized into two
areas: coarse-grained genetic algorithms (Tanese, 1989; Belding, 1995) and fine-grained
genetic algorithms (Mandelick & Spiessens, 1989; Muhlenbein et al., 1991; Murata et al.,
2000). In the coarse-grained GAs, a population, that is ordinarily a single, is divided into
several subpopulations. Each of these subpopulations is individually governed by genetic
operations such as crossover and mutation, and subpopulations communicate each other
periodically. Algorithms in this type are called the island model because each subpopulation
can be regarded as an island. On the other hand, several individuals are locally governed by
genetic operations in fine-grained GAs. In a fine-grained GA, each individual exists in a cell,
and genetic operations are applied to an individual with individuals in neighboring cells.
The DGAs are known to have an advantage to keep the variety of individuals during the
execution of an algorithm, and avoid converging prematurely.
While we don’t define any solution space such as cells or islands in our proposed crossover,
our restriction in crossover operation may have the same effect of keeping variety in a
population and attain the effective search.

3. Transportation task using Q-learning

3.1 Transportation task

We consider a transportation task shown in Ito & Gofuku (2003) and Ito et al. (2004). Figure
3 shows a transportation task used in this chapter. There is a world with 25 cells and a goal
cell shown in “G” where five agents exist in Cell 0 and Cell 4. The aim of the transportation
task is to convey a load shown in “L1” to the goal cell. In order to carry “L1” to “G”, the

G

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

20 21 22 23 24

L2

L1

1 3

5 7 9

2 4

6 8 10

SW

Fig. 3. Transportation task

www.intechopen.com

 New Achievements in Evolutionary Computation

186

other load shown in “L2” should be removed from Cell 22. Simultaneously, the door of “G”
should be opened before carrying “L1”. To open the door, the switch shown in “SW” should
be pushed by an agent in Cell 23.
Each load has a mobile direction. As shown in Figure 3, “L1” can be moved only in the
vertical direction, and “L2” only in the horizontal direction. To move a load, more than one
agent should push it toward the same movable direction. Therefore, to convey “L1” to “G”,
agents should remove “L2” from Cell 22, open the door, and move “L1” to the goal.
In order to control actions of each agent, Ito & Gofuku, (2003); Ito et al., (2004) employed
their QDSEGA where the state of the agent is handled as a chromosome of an individual to
which genetic operators are applied. Figure 4 shows the chromosome representation of the
agent location in Figure 3. Each chromosome consists of genes with the same number of
agents. The figure in each gene shows the identification number of cell where the agent
locates. Since the agents with odd number locate in Cell 0, all genes for those agents have 0
as its value.

Chromosome 0 4 0 4 0 4 0 4 0 4

1 2 3 4 5 6 7 8 9 10

Fig. 4. Chromosome representation for the agents in Figure 3

0 4 0 4 0 4 0 4 0 4

12 2 9 10 4 16 4 10 23 3

12 9 4 18 1 20 3 18 12 3

10 3 11 4 3 13 21 11 18 22

10

3

11

4

3

13

21

11

18

22

12

9

4

18

1

20

3

18

12

3

12

2

9

10

4

16

4

10

23

3

0

4

0

4

0

4

0

4

0

4

States

Actions

1 1 11

1 1 11

1 5.4 122

1 9.9 111

Fig. 5. An example of Q-table with a set of chromosomes

3.2 Q-learning in our simulation

Q-table of the Q-learning is generated using a set of chromosomes. Figure 5 shows an
example of Q-table that shows the relations of agent locations.
In Figure 5, each column in the Q-table shows a chromosome generated by genetic
operations. Rows of the table consist of the same chromosomes of the columns. That is, the
chromosomes in the rows act as states in the Q-table, and the chromosomes in the column

www.intechopen.com

GA-Based Q-Learning to DevelopCompact Control Table for Multiple Agents

187

act as actions the agent can take in the fired state. When the ten agents locates in the start
position (Cell 0 or Cell 4 as in Fig. 3), the current position is shown as (0, 4, 0, 4, 0, 4, 0, 4, 0, 4)
in the table. If the target position (10, 3, 11, 4, 3, 13, 21, 11, 18, 22) is selected as an action from
the current position, Agent “1” moves from Cell 0 to Cell 10, Agent “2” moves from Cell 4 to
Cell 3, and so on.
With this Q-table, Q-learning is applied. In order to move each agent to the target position,
Ito & Gofuku, (2003) and Ito et al., (2004) proposed the following rules.

<R1: The rule to decide a path to a target position>

 If txix ≠)(Then xxixixix t Δ))(sgn()()1(−−=+ ,)()1(iyiy =+ ,

 Else if tyiy ≠)(Then yyiyiyiy t Δ))(sgn()()1(−−=+ ,)()1(ixix =+ ,

 Else)()1(ixix =+ ,)()1(iyiy =+ .

where tt yx , are the coordinates of the target position, and)(),(iyix are the coordinates of

the current position of the agent in time i. Using this rule, the agent moves in horizontal
direction first, then it moves vertically to the target position.

<R2: The rule to avoid a collision>
 If obstacle is on the course that is given by R1 Then
 If the obstacle is load Then Employ R3
 Else Don’t move
 Else Move using R1

Since the collision between agents is assumed to avoid using traffic rules, Ito & Gofuku,
(2003); Ito et al., (2004) considered only the collision between an agent and a load. If the load
can not be carried by the agent alone, it should stop until other agents come.

<R3: The rule to move the load>
 If Load is on the course that is given by R1 Then Push the Load to the way that the agent
 has to go
 Else Move using R1

If the way that the agent has to go is not the direction to which the load can be moved, the
agent should stop beside the load.

<R4: The rule to open the door>
 If Switch is in a cell where the agent stops Then Turn on the switch to open the door
 Else Nothing is done

3.3 A deletion algorithm to create more compact control table
When we observe a Q-table developed by QDSEGA, some actions or chromosomes are not
used in moving multiple agents. That is, unnecessary actions are generated through genetic
operations. In order to make a compact Q-table, we mark the chromosomes that are not
used for a prespecified term in Q-Learning process.

4. Computer simulation

4.1 Parameter specifications

In this section, we show the simulation results to compare the conventional QDSEGA and
the QDSEGA with the neighboring crossover shown in Subsection 2.5 and the deletion

www.intechopen.com

 New Achievements in Evolutionary Computation

188

algorithm in Subsection 3.3. The neighboring crossover can be applied to the parent

solutions that have the same genes more than simk . In this paper, we employed

8,6,4,2,0=simk . Since 10=simk means the crossover between the same chromosomes,

we did not use. When 0=simk , the crossover is applied between any parent solutions. The

deletion algorithm is applied when the reward for the developed Q-table becomes larger
than 100. This means that the deletion algorithm is applied after attaining the goal by
multiple agents.
We employed the same parameter specifications as shown in Ito & Gofuku (2003) and Ito et
al. (2004) except the learning rate and the discount rate in Equation (1). We found better
specifications for those parameters by preliminary simulations:

[Genetic Algorithm]
 The number of individuals: 300,
 Selection: Roulette selection,
 Type of crossover: uniform crossover,
 The probability of crossover: 0.2,
 Type of mutation: change the value among valid cell number,
 The probability of mutation: 0.001,
 The number of generations: 100,

 Weights in Equation (2): 200=fk ,

 Weights in Equation (7): 5.0,5.01 ==
sN

ww ,),...,2(0 1−== si Niw .

[Q-learning]

 Reward: When “L1” reaches the goal, 100=r ,

 When “L1” moves up or “L2” is removed, 20=r ,

 When “L1” moves down or “L2” blocks the course of “L1”, 20−=r ,

 When any agent can not move to the target position, 10−=r ,

 Learning rate in Equation (1): 9.0=α ,

 Discount rate in Equation (1): 1.0=γ ,

 ε -greedy action selection: 10% random action,

 The number of trials of each learning dynamics: 10,000.

4.2 Simulation results

Figures 6 and 7 show that the average reward for the obtained Q-table and an average
number of actions (or situations) in Q-table. The average reward for Q-table is calculated
over the last 100 trials among 10,000 trials. The maximum average reward is 130. These

figures show that the proposed QDSEGA with 4,2=simk could obtain the better or similar

average reward with comparing to the algorithm without the neighboring crossover. As for

the number of actions, the larger simk enables the less number of actions as shown in Figure

7. This shows that a compact Q-table can be obtained using the proposed neighboring
crossover. Obtaining a compact Q-table enables users to find important actions to control
the multiple agents.
In order to obtain a compact Q-table with high average reward, we apply our proposed

neighboring crossover after the average reward becomes larger than 100. Since the

www.intechopen.com

GA-Based Q-Learning to DevelopCompact Control Table for Multiple Agents

189

neighboring crossover is applied to the similar parent solutions, that crossover often

produces the offspring that is the same chromosome. This causes the reduction of the size of

Q-table. As shown in Figure 7, the number of actions in the Q-table reduced rather than the

previous QDSEGA. However, this reduction may prevent improving the performance in the

average reward.

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Generation

A
v

e
ra

g
e
 R

e
w

a
rd

W
o

rs
e
 <

=
=

>
 B

e
tt

e
r

Previous k_sim=2 k_sim=4

k_sim=6 k_sim=8

Fig. 6. Gain attained by Q-learning generated by QDSEGA

0

50

100

150

200

250

300

0 20 40 60 80 100

Generation

#
 o

f
A

c
ti

o
n

s

B
e
tt

e
r

<
=

=
>

 W
o

rs
e

Previous k_sim=2 k_sim=4

k_sim=6 k_sim=8

Fig. 7. The number of actions in Q-table generated by QDSEGA

Figures 8 and 9 show that the average reward and the average number of actions in Q-table.
From these figures, we can see that the proposed QDSEGA can keep the high average

reward with any value of simk . Figure 9 shows that the large value of simk enables to

reduce the number of actions in Q-table.

www.intechopen.com

 New Achievements in Evolutionary Computation

190

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Generation

A
v

e
ra

g
e
 R

e
w

a
rd

W
o

rs
e
 <

=
=

>
 B

e
tt

e
r

Previous k_sim=2 k_sim=4

k_sim=6 k_sim=8

Fig. 8. Gain attained by Q-learning generated by QDSEGA applied the neighboring
crossover when obtaining 100 reward

0

50

100

150

200

250

300

0 20 40 60 80 100

Generation

#
 o

f
A

c
ti

o
n

s

B
e
tt

e
r

<
=

=
>

 W
o

rs
e

Previous k_sim=2 k_sim=4

k_sim=6 k_sim=8

Fig. 9. The number of actions in Q-table generated by QDSEGA applied the neighboring
crossover when obtaining 100 reward

Although the neighboring crossover has an effect to reduce the number of actions, there are
some actions that are not used in moving agents. Therefore, we apply the deletion algorithm
in Subsection 3.3. Figures 10 and 11 show the results of QDSEGA with neighboring
crossover and the deletion algorithm. From these figures, we can see that the deletion
algorithm does not degrade the performance in the average reward but have a fine effect to
reduce the number of actions. By combining the neighboring crossover and the deletion
algorithm, we could obtain more compact control table with high performance than using
the previous algorithms.

www.intechopen.com

GA-Based Q-Learning to DevelopCompact Control Table for Multiple Agents

191

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Generation

A
v

e
ra

g
e
 R

e
w

a
rd

W
o

rs
e
 <

=
=

>
 B

e
tt

e
r

Previous Deletion k_sim=2

k_sim=4 k_sim=6 k_sim=8

Fig. 10. Gain attained by Q-learning generated by QDSEGA applied the neighboring
crossover and the deletion algorithm when obtaining 100 reward

0

50

100

150

200

250

300

0 20 40 60 80 100

Generation

#
 o

f
A

c
ti

o
n

s

B
e
tt

e
r

<
=

=
>

 W
o

rs
e

Previous Deletion k_sim=2

k_sim=4 k_sim=6 k_sim=8

Fig. 11. The number of actions in Q-table generated by QDSEGA applied the neighboring
crossover and the deletion algorithm when obtaining 100 reward

Table 1 shows the average number of actions obtained at the final generation. From this
table, we can see that the number of actions is reduced by the neighboring crossover and the
deletion algorithm. Especially the deletion algorithm could reduce it without degrading the
performance of the developed control table using neighboring crossover.
After obtaining a compact control table, we can examine the states and actions that are used
to reach the goal. We can see that in order to achieve the task to bring “L1” to the goal, only
two actions are required from the initial states shown in Figure 3. For example, the two
actions in Figure 12 are enough to convey “L1” to the goal with ten agents. Figure 13 shows
the states or positions of the agents according to the obtained states shown in Figure 12.

www.intechopen.com

 New Achievements in Evolutionary Computation

192

Without Deletion Algorithm Previous 2 4 6 8

of actions 222.2 210.8 196.9 149.2 96.5

With Deletion Algorithm Previous 2 4 6 8

of actions 46.6 39.0 28.0 30.2 25.1

Table 1. Size of the Q-table at the final generation

Initial State 0 4 0 4 0 4 0 4 0 4

Transition 23 1 15 7 12 3 24 12 16 19

Final State 21 15 23 22 16 22 16 7 16 21

1 2 3 4 5 6 7 8 9 10

Fig. 12. Succession of the states to achieve the goal

Fig. 13. Achievement of carrying the load to the goal

www.intechopen.com

GA-Based Q-Learning to DevelopCompact Control Table for Multiple Agents

193

5. Conclusion

In this chapter, we show the effectiveness of the neighboring crossover and the deletion
algorithm especially in reducing the size of the Q-table. By reducing the Q-table, it becomes
easy to read the Q-table that is required for attaining the objective to reach the goal and
minimizes the memory to store the developed control table.
As for other further study, we can bring other objective functions to achieve the goal. In
Figures 6, 8, and 10, we compared the average reward as shown in the previous study (Ito
and Gofuku, 2003; Ito et al., 2004). From these figures, we could minimize the total moving
cost of all the agents to achieve the goal.
Furthermore, Ito and Gofuku (2003) examined the effectiveness of QDSEGA for multi-agent
system with heterogeneous ability. We can show the effectiveness of the neighboring
crossover in that problem too.

6. Acknowledgments

This work was partially supported by the MEXT, Japan under Collaboration with Local
Communities Project for Private Universities starting 2005.

7. References

Belding, T. C. (1995). The distributed genetic algorithm revisited. Proceedings of 6th
International Conference on Genetic Algorithms, pp. 114-121, ISBN 1558603700,
University of Pittsburgh, July 1995, Morgan Kaufmann Publishers, Inc., San
Francisco, USA

Holland, J. H. (1986). Escaping brittleness: the possibilities of general purpose learning
algorithms applied to parallel rulebased system, Machine Learning: An artificial
intelligence approach, Vol. 2, pp. 593-623, Morgan Kaufmann Publishers Inc., ISBN
0934613001, San Francisco, USA

Ito, K. & Matsuno, F. (2002). A study of reinforcement learning for the robot with many
degrees of freedom –Acquisition of locomotion patterns for multi legged robot-,
Proceedings of IEEE International Conference on Robotics and Automation, pp. 392-397,
ISBN 0780372727, Washington, D.C., USA, May 2002, Institute of Electrical and
Electronics Engineers, Inc., Piscataway, USA

Ito, K. & Gofuku, A. (2003). Hybrid autonomous control for heterogeneous multi-agent
system, Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2500-2505, ISBN 0780378601, Las Vegas, October 2003, Institute of
Electrical and Electronics Engineers, Inc., Piscataway, USA

Ito, K., Gofuku, A. & Takeshita, M. (2004). Hybrid autonomous control for multi mobile
robots, Advanced Robotics, Vol. 18, No. 1, pp. 83-99, ISSN 01691864

Mandelick, B. & Spiessens, P. (1989). Fine-grained parallel genetic algorithms, Proceedings of
3rd International Conference on Genetic Algorithms, pp. 428-433, ISBN 1558600063,
George Mason University, June 1989, Morgan Kaufmann Publishers, Inc., San
Francisco, USA

Muhlenbein, H., Schomisch, M. & Born, J. (1991). The parallel genetic algorithm as function
optimizer, Proceedings of 4th International Conference on Genetic Algorithms, pp. 271-

www.intechopen.com

 New Achievements in Evolutionary Computation

194

278, ISBN 1558602089, San Diego, July 1991, Morgan Kaufmann Publishers, Inc.,
San Francisco, USA

Murata, T. & Yamaguchi, M. (2005). Neighboring Crossover to Improve GA-Based Q-
Learning Method for Multi-Legged Robot Control, Proceedings of Genetic and
Evolutionary Computation Conference 2005, pp. 145-146, ISBN 1595930108,
Washington, D.C., June 2005, The Association for Computing Machinery, Inc., New
York , USA

Murata, T. & Yamaguchi, M. (2008). Multi-Legged Robot Control Using GA-Based Q-
Learning Method With Neighboring Crossover, In: Frontiers in Evolutionary
Robotics, Iba (Ed.), pp. 341-352, I-Tech Education and Publishing, ISBN
9783902613196, Vienna, Austria

Murata, T., Ishibuchi, H. & Gen, M. (2000). Cellular genetic local search for multi-objective
optimization, Proceedings of Genetic and Evolutionary Computation Conference 2000,
pp. 307-314, ISBN 1558607080, Las Vegas, July 2000, The Association for Computing
Machinery, Inc., New York, USA

Sutton, R. S. (1988). Reinforcement Learning: An Introduction, The MIT Press, ISBN 0262193981,
Cambridge, USA

Svinin, M., Ushio, S., Yamada, K. & Ueda, K. (2001). An evolutionary approach to
decentralized reinforcement learning for walking robots, Proceedings of the 6th
International Symposium on Artificial life and Robotics, pp. 176-179, Tokyo, January
2001

Tanese, R. (1989). Distributed genetic algorithms, Proceedings of 3rd International Conference on
Genetic Algorithms, pp. 434-439, ISBN 1558600063, George Mason University, June
1989, Morgan Kaufmann Publishers, Inc., San Francisco

Watkins, C.J.C.H. & Dayan, P. (1992). Technical note q-learning, Machine Learning, Vol. 8, pp.
279-292

Yamada, K., Ohkura, K., Svinin, M. & Ueda, K. (2001). Adaptive segmentation of the state
space based on bayesian discrimination in reinforcement learning, Proceedings of the
6th Int. Symposium on Artificial life and Robotics, pp. 168–171, Tokyo, January 2001

www.intechopen.com

New Achievements in Evolutionary Computation

Edited by Peter Korosec

ISBN 978-953-307-053-7

Hard cover, 318 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary computation has been widely used in computer science for decades. Even though it started as far

back as the 1960s with simulated evolution, the subject is still evolving. During this time, new metaheuristic

optimization approaches, like evolutionary algorithms, genetic algorithms, swarm intelligence, etc., were being

developed and new fields of usage in artificial intelligence, machine learning, combinatorial and numerical

optimization, etc., were being explored. However, even with so much work done, novel research into new

techniques and new areas of usage is far from over. This book presents some new theoretical as well as

practical aspects of evolutionary computation. This book will be of great value to undergraduates, graduate

students, researchers in computer science, and anyone else with an interest in learning about the latest

developments in evolutionary computation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tadahiko Murata and Yusuke Aoki (2010). GA-Based Q-Learning to Develop Compact Control Table for

Multiple Agents, New Achievements in Evolutionary Computation, Peter Korosec (Ed.), ISBN: 978-953-307-

053-7, InTech, Available from: http://www.intechopen.com/books/new-achievements-in-evolutionary-

computation/ga-based-q-learning-to-develop-compact-control-table-for-multiple-agents

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

