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1. Introduction 

The financial time series forecasting is considered a rather difficult problem, due to the 
many complex features frequently present in such time series (irregularities, volatility, 
trends and noise). Several approaches have been studied for the development of predictive 
models able to predict time series, based on its past and present data. 
In the attempt to solve the time series prediction problem, a wide number of linear statistical 
models were proposed. Among them, the popular linear statistical approach based on Auto 
Regressive Integrated Moving Average (ARIMA) models [1] is one of the most common 
choices. However, since the ARIMA models are linear and most real world applications 
involve nonlinear problems, this can introduce an accuracy limitation of the generated 
forecasting models. 
In the attempt to overcome linear statistical models limitations, other nonlinear statistical 
approaches have been developed, such as the bilinear models [2], the threshold 
autoregressive models [3], the exponential autoregressive models [4], the general state 
dependent models [5], amongst others. The drawbacks of those nonlinear statistical models 
are the high mathematical complexity associated with them (resulting in many situations in 
similar performances to the linear models) and the need, most of the time, of a problem 
dependent specialist to validate the predictions generated by the model, limiting the 
development of an automatic forecast system [6]. 
Alternately, Artificial Neural Networks (ANNs) based approaches have been applied for 
nonlinear modeling of time series in the last two decades [7-14]. However, in order to define 
a solution to a given problem, ANNs require the setting up of a series of system parameters, 
some of them are not always easy to determine. The ANN topology, the number of 
processing units, the algorithm for ANN training (and its corresponding variables) are just 
some of the parameters that require definition. In addition to those, in the particular case of 
time series forecasting, another crucial element necessary to determine is the relevant time 
lags to represent the series [15]. In this context, evolutionary approaches for the definition of 
neural network parameters have produced interesting results [16{20]. Some of these works 
have focused on the evolution of the network weights whereas others aimed at evolving the 
network architecture. 

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,  
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In this context, a relevant work was presented by Ferreira [15], consisting of the Time-delay 
Added Evolutionary Forecasting (TAEF) method definition, which performs a search for the 
minimum number of necessary dimensions (the past values of the series) to determine the 
characteristic phase space of the time series. The TAEF method [15] finds the most fitted 
predictor model for representing a time series, and then performs a behavioral statistical test 
in order to adjust time phase distortions that may appear in the representation of some 
series. 
Nonlinear filters, on the other hand, have been widely applied to signal processing. An 
important class of nonlinear systems is based on the framework of Mathematical 
Morphology (MM) [21, 22]. Many works have focused on the design of morphological 
systems [21, 23-28]. An interesting work was presented by Salembier [29, 30], which 
designed Morphological/Rank (MR) filters via gradient-based adaptive optimization. Also, 
Pessoa and Maragos [31] proposed a new hybrid filter, referred to as 
Morphological/Rank/Linear (MRL) filter, which consists of a linear combination of an MR 
filter [29, 30] and a linear Finite Impulse Response (FIR) filter [31]. In the branch of the filters 
and Artificial Intelligence integration, Pessoa and Maragos [32] also proposed a neural 
network architecture involving MRL operators at every processing node. 
In the morphological systems context, another work was presented by Araújo et al. [33, 34]. 
It consists of an evolutionary morphological approach for time series prediction, which 
provides a mechanism to design a predictive model based on increasing and non-increasing 
translation invariant morphological operators and according to Matheron decomposition 
[35] and Banon and Barrera decomposition [36]. 
This work proposes the Morphological-Rank-Linear Time-lag Added Evolutionary 
Forecasting (MRLTAEF) method in order to overcome the random walk dilemma for 
financial time series prediction, which performs an evolutionary search for the minimum 
dimension to determining the characteristic phase space that generates the financial time 
series phenomenon. The proposed MRLTAEF method is inspired on Takens Theorem [37] 
and consists of an intelligent hybrid model composed of an MRL filter [31] combined with a 
Modified Genetic Algorithm (MGA) [16], which searches for the particular time lags capable 
of a fine tuned characterization of the time series and estimates the initial (sub-optimal) 
parameters of the MRL filter. Each individual of the MGA population is trained by the 
averaged Least Mean Squares (LMS) algorithm to further improve the MRL filter 
parameters supplied by the MGA. After training the model, the MRLTAEF method chooses 
the most tuned predictive model for the time series representation, and performs a 
behavioral statistical test [15] and a phase fix procedure [15] to adjust time phase distortions 
observed in financial time series. 
Furthermore, an experimental analysis is conducted with the proposed MRLTAEF method 
using six real world financial time series. Five well-known performance metrics are used to 
assess the performance of the proposed method and the obtained results are compared with 
the previously presented methods in literature. 
This work is organized as follows. In Section 2, the fundamentals and theoretical concepts 
necessary for the comprehension of the proposed method are presented, such as the time 
series prediction problem, the random walk dilemma for financial time series prediction, 
linear and nonlinear statistical models, neural network models, genetic algorithms (standard 
and modified), intelligent hybrid models (in particular the TAEF method). Section 3 shows 
the fundamentals and theoretical concepts of mathematical morphology and the MRL filter 
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definition and its training algorithm. Section 4 describes the proposed MRLTAEF method. 
Section 5 presents the performance metrics which are used to assess the performance of the 
proposed method. Section 6 shows the simulations and the experimental results attained by 
the MRLTAEF method using six real world financial time series, as well as a comparison 
between the results achieved here and those given by standard MLP networks, MRL filters 
and the TAEF method [15]. Section 7 presents, to conclude, the final remarks of this work. 

2. Fundamentals 

In this section, the fundamentals and theoretical concepts necessary for the comprehension 
of the proposed method will be presented. 

2.1 Time series forecasting problem 
A time series is a sequence of observations about a given phenomenon, where it is observed 
in discrete or continuous space. In this work all time series will be considered time discrete 
and equidistant. 
Usually, a time series can be defined by 

 (1) 

where t is the temporal index and N is the number of observations. The term Xt will be seen 
as a set of temporal observations of a given phenomenon, orderly sequenced and equally 
spaced. 
The aim of prediction techniques applied to a given time series (Xt) are to provide a 
mechanism that allows, with certain accuracy, the prediction of the future values of Xt, 
given by Xt+k, k = 1, 2, …, where k represents the prediction horizon. These prediction 
techniques will try to identify certain regular patterns present in the data set, creating a 
model capable of generating the next temporal patterns, where, in this context, a most 
relevant factor for an accurate prediction performance is the correct choice of the past 
window, or the time lags, considered for the representation of a given time series. 
Box & Jenkins [1] shown that when there is a clear linear relationship among the historical 
data of a given time series, the functions of auto-correlation and partial auto-correlation are 
capable of identifying the relevant time lags to represent a time series, and such procedure is 
usually applied in linear models. However, when it uses a real world time series, or more 
specifically, a complex time series with all their dependencies on exogenous and 
uncontrollable variables, the relationship that involves the time series historical data is 
generally nonlinear, which makes the Box & Jenkins' analysis procedure of the time lags 
only a crude estimate. 
In a mathematical sense, such a relationship involving time series historical data defines a d-
dimensional phase space, where d is the minimum dimension capable of representing such 
relationship. Therefore, a d- dimensional phase space can be built so that it is possible to 
unfold its corresponding time series. Takens [37] proved that if d is sufficiently large, such 
phase space is homeomorphic to the phase space that generated the time series. Takens' 
Theorem [37] is the theoretical justification that it is possible to build a state space using the 
correct time lags, and if this space is correctly rebuilt, Takens' Theorem [37] also guarantees 
that the dynamics of this space is topologically identical to the dynamics of the real system 
state space. 
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The main problem in reconstructing the original state space is naturally the correct choice of 
the variable d, or more specifically, the correct choice of the important time lags necessary 
for the characterization of the system dynamics. Many proposed methods can be found in 
the literature for the definition of the lags [38-40]. Such methods are based on measures of 
conditional probabilities, which consider, 

 (2) 

where f(xt-1, xt-2,…, xt-d) is a possible mapping of the past values to the facts of the future 
(where xt-1 is the lag 1, xt-2 is the lag 2,…, xt-d is the lag d) and rt is a noise term. 
However, in general, these tests found in the literature are based on the primary 
dependence among the variables and do not consider any possible induced dependencies. 
For example, if 

 (3) 

it is said that xt-1 is the primary dependence, and the dependence induced on xt-2 is not 
considered (any variable that is not a primary dependence is denoted as irrelevant). 
The method proposed in this work, conversely, does not make any prior assumption about 
the dependencies between the variables. In other words, it does not discard any possible 
correlation that can exist among the time series parameters, even higher order correlations, 
since it carries out an iterative automatic search for solving the problem of finding the 
relevant time lags. 

2.2 The random walk dilemma 

A naive prediction strategy is to define the last observation of a time series as the best 
prediction of its next future value (Xt+1 = Xt). This kind of model is known as the Random 
Walk (RW) model [41], which is defined by 

 (4) 

or 

 (5) 

where Xt is the current observation, Xt-1 is the immediate observation before Xt, and rt is a 
noise term with a gaussian distribution of zero mean and standard deviation σ (rt ≈ N(0, σ)). 
In other words, the rate of time series change (ΔXt) is a white noise. 
The model above clearly implies that, as the information set consists of past time series data, 
the future data is unpredictable. On average, the value Xt is indeed the best prediction of 
value Xt-1. This behavior is common in the finance market and in the economic theory and 
its so-called random walk dilemma or random walk hypothesis [41]. 
The computational cost for time series forecasting using the random walk dilemma is 
extremely low. Therefore, any other prediction method more costly than a random walk 
model should have a very superior performance than a random walk model, otherwise its 
use is not interesting in the practice. 
However, if the time series phenomenon is driven by law with strong similarity to a random 
walk model, any model applied to this time series phenomenon will tend to have the same 
performance as a random walk model. 
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Assuming that an accurate prediction model is used to build an estimated value of Xt, 
denoted by , the expected value (E[·]) of the difference between  and Xt must tend to 
zero, 

 (6) 

If the time series generator phenomenon is supposed to have a strong random walk linear 
component and a very weak nonlinear component (denoted by g(t)), and assuming that E[rt] 
= 0 and E[rtrk] = 0 (∀ k ≠t), the expected value of the difference between  and Xt will be 

 
But  , then  and 

 (7) 

Therefore, in these conditions, to escape the random walk dilemma is a hard task. 
Indications of this behavior (strong linear random walk component and a weak nonlinear 
component) can be observed from time series lagplot graphics. For example, lagplot 
graphics where strong linear structures are dominant with respect to nonlinear structures 
[42], generally observed in the financial and economical time series. 

2.3 Linear statistical models 
The time series prediction process consists of representing the time series features through a 
model able to extend such features to the future. According to Box & Jenkins [15], classical 
statistical models were developed to represent the following kind of information patterns: 
constants, trends and sazonalities. However, there are some variations that occur in such 
patterns as irregularities, volatility, noise, amongst other. 
In this way, it is possible to verify that the statistical models are based on transcendental or 
algebraic time functions, which can be represented by 

 (8) 

where bi and fi(t) (i = 1, 2,…, k) denotes, respectively, the constant parameters and 
mathematical functions of t. Term rt represents a random component or noise. 
However, there are other ways for time series modeling, where Xt will be modeled as a 
temporally ordered random component function, from the present to the past (rt, rt-1, rt-2,…). 
This kind of representation is kwon as “linear filter models”, which is widely applied when 
the time series observations are highly correlated [1]. In this way, Xt can be defined by 

 (9) 

where m and yi (i = 1, 2,…, k) are constants. 
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Therefore, the time series prediction process consists of an accurate parameters estimation of 
the prediction models to build the future behavior of a given phenomenon.  
Box & Jenkins Models In the literature, several models were proposed to solve the time 
series prediction problem. Among these models, it is verified that a wide number of them 
are linear: Simple Moving Averages (SMA) [43, 44], Simple Exponential Smoothing (SES) 
[43, 44], Brow's Linear Exponential Smoothing (BLES) [43, 44], Holt's Bi-parametric 
Exponential Smoothing (HBES) [43, 44], Adaptive Filtering (AF) [43, 44], are some examples 
of that. However, among these linear models, the Box & Jenkins [1] models receive a special 
mention, given that, in practice, are the most popular and commonly used to solve the time 
series prediction problem. 
Box and Jenkins [1] a set of algebraic models, referred to as Auto-Regressive Integrated 
Moving Average (ARIMA) models, where it builds an accurate prediction for a given time 
series. The ARIMA model is based on two main models: 
1. Auto-Regressive (AR), which is defined by 

 (10)

where , being μ defined as the mean of the time series. Terms φi (i = 1, 

2,…, p) denotes the auto-regressive coefficients. 
2. Moving Average (MA), which is defined by 

 (11)

Assuming that , it has 

 (12)

where  represent the moving average operator. 
The union of both AR and MA models build a model known as Auto-regressive Moving 
Average (ARMA) of order (p,q), which was proposed in the attempt to build the most 
parsimonious model as possible, given that, with the inclusion of auto-regressive and 
moving average terms in a unique model can be seen as a possible solution to obtain a small 
number of model parameters. In this way, the ARMA model is defined by 

 (13)

The ARIMA model basically consists of the application of data to the high-pass filter, which 
is sensible only to high frequencies of the function, which is applied to the ARMA model. 
Such a filter is represented by letter “I” (integrated) in the ARIMA notation and this is the 
main difference among the separated data by a constant distance d. This procedure, known 
as data differences, is performed to remove the data trends, building the time series as a 
stationary process, that is, an ARIMA(p,d,q) model is an algebraic study that show as a time 
series variable (Xt) is related with its past values (Xt-1,Xt-2,…,Xt-p) and the past noisy term 
values (rt-1, rt-2,…, rt-p), differentiated d times [15]. 
In this way, Box & Jenkins [1] proposed a procedure able to find an adequate prediction 
model to solve the time series prediction problem, as be seen in Figure 1. 
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Fig. 1. Box & Jenkins method procedure. 

According to Figure 1, it verifies that the first step (identification) uses two graphical devices 
to measure the correlation among the observations of the data set of the time series. Such 
devices are the Auto-Correlation Function (ACF) [1] and the Partial Auto-Correlation 
Function (PACF) [1]. In the second step (estimation), the model coefficients are estimated, 
and finally, in the third step (diagnosis), Box & Jenkins [1] proposed some checking 
procedures to determine the statistical suitability of the chosen model in previous steps. 
Then, the model that fails in these procedures will be rejected. 

2.4 Nonlinear statistical models 
As mentioned in the previous section, the ARIMA model [1] is one of the most common 
choices for the time series prediction. However, since the ARIMA models are linear and 
most real world applications involve nonlinear problems, this can introduce a limitation in 
the accuracy of the predictions generated, that is, this model assumes that the time series are 
stationary or generated by a linear process. However, it is not correct to generalize the 
linearity assumption of the time series due to the nonlinear nature of a given real-world 
phenomena, where nonlinear structures are found in historical time series data. 
n this way, a time series can be modeled by 

 (14)

where rt represents a random component, or noisy term. Terms p and q represent integer 
indexes that define the time windows of past terms of the time series and noise, respectively. 
The term h(·) denotes a nonlinear transference function, which build the mapping among 
the past and future values of the time series. 
Therefore, to overcome the linear statistical models limitations, several nonlinear statistical 
models have been proposed in the literature, such as the bilinear models [2], the exponential 
auto-regressive models [4], the threshold autoregressive models [3], and the general state 
dependent models [5], amongst other. 
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The general state dependent models (GSD) [5] of (p, q) order is defined as an expansion and 
a local linearization of Equation 14 in Taylor series around a fixed time point, which can be 
defined by 

 
(15)

where yt = (rt-q+1,…, rt, Xt-q+1,.., Xt)’ is defined as a state vector, and the symbol “"”denotes a 
transposition operator. 
A special class of such models, known as bilinear models [2], may be seen as a natural 
nonlinear extension of the ARMA model, making μ(x) and φi(x) constants and 

 the coefficients to be adjusted). The 
general form of bilinear models of (p, q, P, Q) order is defined by 

 
(16)

According to Ferreira [15], it is verified that Equation 16 is linear in terms Xt and rt and 
nonlinear regarding the cross term of Z and r. Thus, a bilinear model of first order can be 
built from the Equation 16 is given by 

 (17)

where α, β and γ are the constant parameters to be determined. 

Another particular class of such models, known as Exponential Auto-Regressive  
(EAR) models [4], of p order, is given by using a constant term 

 in Equation 15, and is formally 
defined by 

 
(18)

where γ denotes the time series scale factor. 
Another class of nonlinear models which are used in time series predictions are the 
Threshold Auto-Regressive (TAR) models [3], where its parameters depend only on past 
values of its own process, and represent a finite set of possible AR models that a particular 
process could obey at any time point [15]. However, if the switch on of such models is 
determined by the data values location regarding thresholds, in this way the TAR model is 
known as Self-Excited Threshold Auto-regressive (SETAR) model [45].  
A first-order TAR model is defined by 

 
(19)

where the constant d is defined as the threshold. 
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The SETAR model can be defined μ(x) = φ0(j), θj(x) = 0(∀x) and φi(yt-1) = Ái(j) if Xt-d ∈ R(j) (i = 
1, 2,…, p; j = 1, 2,…, l), being d a positive integer and R(j) is a subset of real numbers (the 
threshold). Thus, Equation 15 can be rewritten in these terms, defining a SETAR model by 

 
(20)

where such equation represents a SETAR model of kind (l, p,…, p). Term  denotes a 
white noise, being  independent of , with j ≠j ’. 
There are several other nonlinear models for time series prediction in literature, such as 
auto-regressive smooth models [46], auto-regressive models with time-dependent 
coefficients [46], auto-regressive conditional heteroscedastic models (ARCH) [47], amongst 
other. However, even with a wide number of nonlinear models proposed in the literature, 
De Gooijer and Kumar [46] do not find clear evidences, in terms of prediction performance, 
of nonlinear models when compared with the linear models. Clements et al. [45, 48] also 
argues that the prediction performance of such nonlinear models is more inferior than 
expected, and this problem still remains open. 
According to Ferreira [15], a general accepted concept is that the environment of a given 
temporal phenomenon is nonlinear, and the fact that the nonlinear models do not achieve 
the expected results is due to inability of such models to describe the time series 
phenomenon more accurately than simple linear approximations. In particular, it is verified 
that the models applied in real world stock market and finance are highly nonlinear [48]. 
However, the problem of financial time series prediction is still considered a very di±cult 
problem due to several complex characteristics that often are present in these time series 
(irregularities, volatility, trend and noise). 
Due to the complexity of the structures of relationships among time series data, there are 
several limitations of the nonlinear models when applied in real situations. One of these 
limitations is a high mathematical complexity, a factor that limits the nonlinear models to a 
performance similar to linear models, as well as the need, in most cases, of a problem 
specialist to validate the predictions generated by the model [6]. These factors suggest that 
new approaches must be developed in order to improve the prediction performance. 
Consequently, it is not surprising the great interest on the development of nonlinear models 
for time series prediction using new approaches and paradigms applied to the problem 
previously exposed. 

2.5 Neural network models 
The Artificial Neural Networks (ANN) are models that simulate biological neural systems 
behavior, particularly the human brain. The ANNs represent a parallel and distributed 
system composed of simple processing units, such as neurons, which calculate non linear 
mathematical functions. 
The neurons are contained in a spatial arrangement generally composed of one or more layers 
interconnected by a wide number of connections. Generally, in most models, such connections 
are associated with weights, which are responsible for the storage of knowledge represented in 
the model, used as weights for the signals to be processed by neurons in the network. 
Each ANN unit is conditioned to receive a signal, weighted by their respective input unit 
processing connections (ANN weights), which is processed by a mathematical function, 
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known as activation function or transfer function, and producing a new output signal which 
is propagated over the network. 
In this way, making an analogy to the human brain, an ANN has the ability to learn through 
examples, as well as perform interpolations and extrapolations of the learned information. 
In the ANN learning process the main task is to determine the intensity of connections 
among neurons, which are adjusted and adapted by learning algorithms, which aims to 
make a fine tuned adjustment of connection weights, in order to better generalize the 
information contained in the pattern examples. 
Therefore, a wide number of ANNs have been proposed in literature, which is worth 
mentioning, 
- MultiLayers Perceptron (MLP) Neural Networks [49]; 
- Recursive Networks [49]; 
- Kohonen Networks [50, 51]; 
- Hopfield Networks [52]; 
Among the several kinds of ANNs, the MLPs are undoubtedly the most popular due to 
convenience, flexibility and efficiency, and can be applied to a wide range of problems [9, 
49, 53]. 

2.6 MultiLayer perceptron neural networks 
The MLP neural networks are typically composed of several neuron layers. The first layer is 
known as the input layer, where information is passed to the network. The last layer is 
called the output layer, where the model responses of a given information is then produced. 
Among input and output layers, there are one or more layers, which are referred to as 
intermediate layers. 
Each layer is interconnected with the adjacent layer. If each neuron of a layer is connected to 
all neurons of the next layer, then it haas a fully connected MLP network (illustrated in 
Figure 2). 
 

 
Fig. 2. Fully connected three layer MLP neural network. 

An MLP is able to mapp past observations (network input) in their future values (network 
output). However, before having the capability to perform a given task, it is necessary that 
the network passes through a training or learning process. The MLP is typically trained by a 
supervised process and an external supervisor presents the input patterns and adjusts the 
weights of the network, according to the ANN success degree. For each pair of input-output, 

www.intechopen.com



Morphological-Rank-Linear Models for Financial Time Series Forecasting  

 

47 

the network will be adjusted to make the mapping between input patterns and desired 
output (output pattern). 
The ANN training is usually a very complex process, and according to a given problem, it 
requires a large number of input patterns. Each pattern of these vectors is presented to a 
neuron of the network input layer. In the time series prediction problem, the number of 
processing units in the ANN input layer is determined by the number of time lags of a given 
time series. 
The set of patterns (or historical data) are usually divided into three sets according to 
Prechelt [54]: training set (50% of the points), validation set (25% of the points) and test set 
(25% of the points). Thus, the ANN training uses these three sets. Initially, the set of training 
examples are presented to the network, then the information passed between the input, 
hidden and output layers, the response is calculated, then a training algorithm is perfomed 
to minimize the global error achieved by the network, calculating new values for the 
weights of the network, taking the difference between the desired output and the output 
obtained by the network, as in Sum of Squared Errors (SSE), given by 

 
(21)

where targeti is the real value of the i-th pattern, outputi is the response obtained by the 
network to the i-th pattern, and the factor  is just a term for the simplification derived from 
the expressions in Equation 21, often calculated in training algorithms such as 
BackPropagation in [49]. 

2.7 Genetic algorithms 
Evolutionary Algorithms (EAs) are a powerful class of stochastic optimization algorithms 
and have been widely used to solve complex problems which cannot be solved analytically. 
The most popular EA is the Genetic Algorithm (GA) [55, 56]. The GAs were developed by 
Holland [55] motivated by Charles Darwin's Evolution Theory [57], where its main goal was 
to find ways in which the mechanisms of natural adaptation might be integrated into 
computer systems. The GAs are used successfully in several kind of real-world applications 
due to their high search power in state spaces, being widely applied to optimization and 
learning machine problems. The GAs work with a set of attempt solutions (initial states) for 
the problem. This set, referred to as population, is evolved towards a sub-optimal or optimal 
solution to a given problem by performing a search in the multiple trajectory 
simultaneously. 
Standard Genetic Algorithm. In this section, a brief description of Standard Genetic 
Algorithm (SGA) procedure is presented, which is illustrated in Figure 3. More details will 
be supplied as follows. For further details see [56, 58-60]. 
According to Figure 3, the SGA procedure starts with the creation of an individuals' 
population, or more specifically, the solutions set. Then, each individual is evaluated by a 
fitness function (or cost function), which is a heuristic function that guides the search for an 
optimal solution in state space. After evaluating the SGA population, it is necessary to use 
some procedures to select the individual parent pairs, which will be used to perform the 
genetic operators (crossover and mutation). There are some procedures to perform this 
selection, and is worth mentioning the rank-based selection, elitist strategies, steady-state  
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Fig. 3. Standard genetic algorithm procedure. 

election and tournament selection [16], amongst others. The next step is responsible for 
performing the crossover genetic operator. Usually, the crossover operator mixes the parent 
genes for exchanging genetic information from both, obtaining its individual offspring. 
There are some procedures to perform the crossover operator such as one-point, two-point 
or multi-point crossover, arithmetic crossover, heuristic crossover [16], amongst others. 
After crossover operator, all offspring individuals will be the new population, which 
contains relevant characteristics of all individual parent pairs obtained in the selection 
process. The next step is to mutate the new population. The mutation operator is responsible 
for the individual genes aleatory modification, allowing the population diversification and 
enabling SGA to escape from the local minima (or maxima) of the surface of the cost 
function (fitness). After that, the new mutated population is evaluated. This procedure is 
repeated until a stop condition has been reached. 
Modified Genetic Algorithm. The Modified Genetic Algorithm (MGA) used here is based 
on the work of Leung et al. [16]. The MGA is a second version of the Standard Genetic 
Algorithm (SGA) [56, 58, 59] that was modified to improve search convergence. The SGA 
was first studied, and, then, was modified to accelerate its convergence through the use of 
modified crossover and mutation operators (described later). The algorithm is described in 
Figure 4. 
According to Figure 4, the MGA procedure consists of selecting a parent pair of 
chromosomes and then performing crossover and mutation operators (generating the 
offspring chromosomes – the new population) until the termination condition is reached; 
then the best individual in the population is selected as a solution to the problem. 
The crossover operator is used for exchanging information from two parents (vectors 1 and 

2) obtained in the selection process by a roulette wheel approach [16]. The recombination 
process to generate the offsprings (vectors C1,C2,C3 and C4) is done by four crossover 
operators, which are defined by the following equations [16]:  

 
(22)

 (23)

 (24)

 
(25)
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Fig. 4. The modified genetic algorithm procedure. 

where w ∈[0, 1] denotes the crossover weight (the closer w is to 1, the greater is the direct 
contribution from parents), max( 1, 2) and min( 1, 2) denotes the vector whose elements 
are the maximum and the minimum, respectively, between the gene values of 1 and 2. The 
terms  and  denote a vector with the maximum and minimum possible gene 
values, respectively. After offspring generation by crossover operators, the offspring with 
the best evaluation (greater fitness value) will be chosen as the offspring generated by the 
crossover process and will be denoted by  . 
After the crossover operator,  is selected to have a mutation process, where three new 
mutated offsprings are generated and defined by the following equation [16]: 

 (26)

where γi can only take the values 0 or 1, ΔMi are randomly generated numbers such that 
 pmax and NG denotes the number of genes in the chromosome. 

The first mutated offspring (M1) is obtained according to (26) using only one term γi set to 1 
(i is randomly selected within the range [1,NG]) and the remaining terms γi are set to 0. The 
second mutated offspring (M2) is obtained according to (26) using some γi, randomly 
chosen, set to 1 and the remaining terms γi are set to 0. The third mutated offspring (M3) is 
obtained according to (26) using all γi set to 1. 
It is worth mentioning that the GA is not directly used for modeling and predicting time 
series, but it is applied to support other methods and techniques in the search for the 
optimal or sub-optimal parameters of the predictive model [15]. 

2.8 Intelligent hybrid models 
Humans can be considered a good example of machines that have hybrid information. Their 
attitudes and actions are governed by a combination of genetic information and information 
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acquired through learning. In genetic information, known as genotype, the information that 
come with the individual in the form of genetic coding, are the features inherited from your 
parents. The phenotype is the combination of features given by genotype combined with the 
environmental influences. The information in our genes ensures the success of our survival, 
which has been proven and tested over millions of years of evolution. Human learning 
consists of a variety of complex processes that use information acquired from environmental 
interactions. It is the combination of these different types of methods of processing 
information that enables humans to succeed in their survival in dynamic environments that 
change all the time. 
This kind of hybrid information processing has been replicated on adaptive machines 
generation, where in their main unit processing there are intelligent computing systems and 
some mechanisms inspired by nature. It is possible to find some examples: neural networks 
[49, 61], genetic algorithms [56, 58, 59], fuzzy systems [62], artificial immune systems [63], 
expert systems [64] and induction rules [65]. The IA techniques have produced encouraging 
results in some particular tasks, but some complex problems, such as time series prediction, 
can not be successfully solved by a single intelligent technique. Each of these techniques 
have strengths and weaknesses, which make them suitable for some and not other 
problems. These limitations have been the main motivation for the study of Hybrid 
Intelligent Systems (HIS) where two or more AI techniques are combined in order to 
overcome the particular limitations of an individual technique. Hybrid Intelligent systems 
are also important when considering a wide range of real world applications. Many areas 
have many complex components of different problems, each of them may require a different 
type of processing. Moreover, the HIS being can be combined with different techniques, 
including conventional computing systems. The reasons for the HIS built are numerous, but 
can be summarized in three [66]: 
1. Intensification Techniques: the integration of at least two different techniques, with the 

purpose of offsetting the weakness of a technique with the strength of the other; 
2. Multiplicity of Applications in Tasks: A HIS is built, with the purpose of a single 

technique not being applied to many sub-problems that some application might have; 
3. Implementation of Multiple Feature: the HIS build exhibits the capacity for multiple 

processing information within an architecture. Functionally, these systems emulate or 
mimic different processing techniques. 

There are many possible combinations of the various techniques of artificial intelligence for 
hybrid intelligent systems built, however the discussion outlined here will be limited to a 
combination of techniques such as artificial neural networks and genetic algorithms. 
TAEF Model. The Time-delay Added Evolutionary Forecasting (TAEF) method [15] tries to 
reconstruct the phase space of a given time series by carrying out a search for the minimum 
dimensionality necessary to reproduce the generator phenomenon of the time series. The 
TAEF method is an intelligent hybrid system based on Artificial Neural Networks (ANNs) 
architectures trained and adjusted by a Modified Genetic Algorithm (MGA) which not only 
searches for the ANN parameters but also for the adequate embedded dimension 
represented in the time lags. 
The scheme describing the TAEF algorithm is based on the iterative definition of the four 
main elements: (i) the underlying information necessary to predict the series (the minimum 
number of lags), (ii) the structure of the model capable of representing such underlying 
information for the purpose of prediction (the number of units in the ANN structure), (iii) 
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the appropriate algorithm for training the model, and (iv) a behavior test to adjust time 
phase distortions that appear in some time series. 
Following this principle, the important parameters defined by the algorithm are: 
1. The number of time lags to represent the series; 
2. The number of units in the ANN hidden layer; 
3. The training algorithm for the ANN. 
The TAEF method starts with the user defining a minimum initial fitness value (MinFit) 
which should be reached by at least one individual of the population in a given MGA 
round. The fitness function is defined as 

 
(27)

where MSE is the Mean Squared Error of the ANN and will be formally defined in Section 5. 
In each MGA round, a population of M individuals are generated, each of them being 
represented by a chromosome (in Ferreira's works [15] M = 10 was used). Each individual is 
in fact a three-layer ANN where the first layer is defined by the number of time lags, the 
second layer is composed of a number of hidden processing units (sigmoidal units) and the 
third layer is composed by one processing unit (prediction horizon of one step ahead). 
The stopping criteria for each one of the individuals are the number of epochs (NEpochs), 
the increase in the validation error (Gl) and the decrease in the training error (Pt). 
The best repetition (the smallest validation error) is chosen to represent the best individual. 
Following this procedure, the MGA evolves towards an optimal or close to optimal fitness 
solution (which may not be the best solution yet), according to the stopping criteria: number 
of generations created (NGen) and fitness evolution of the best individual (BestFit). 
After this point, when the MGA reaches a solution, the algorithm checks if the fitness of the 
best individual paired or overcame the initial value specified for the variable MinFit 
(minimum fitness requirement). If this is not the case, the value of MaxLags (maximum 
number of lags) is increased by one and the MGA procedure is repeated to search for a 
better solution. 
However, if the fitness reached was satisfactory, then the algorithm checks the number of 
lags chosen for the best individual, places this value as MaxLags, sets MinFit with the fitness 
value reached by this individual, and repeats the whole MGA procedure. In this case, the 
fitness achieved by the best individual was better than the fitness previously set and, 
therefore, the model can possibly generate a solution of higher accuracy with the lags of the 
best individual (and with the MinFit reached by the best individual as the new target). If, 
however, the new value of MinFit is, again, not reached in the next round, MaxLags gets the 
same value defined for it, just before the round that found the best individual, increased by 
one (the maximum number of lags is increased by one). The state space for the lag search is 
then increased by one to allow a wider search for the definition of the lag set. This 
procedure goes on until the stop condition is reached. After that, the TAEF method chooses 
the best model found among all the candidates. 
After the best model is chosen, when the training process is finished, a statistical test (t-test) 
is employed to check if the network representation has reached an “in-phase” matching 
(without a one step shift – the shape of the time series and the shape of the generated 
prediction has a time matching) or “out-of-phase” matching (with a one step shift { the 
shape of the time series and the shape of the generated prediction do not have a time 
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matching). If this test accepts the “in-phase” matching hypothesis, the elected model is 
ready for practical use. Otherwise, the method carries out a new procedure to adjust the 
relative phase between the prediction and the actual time series. The validation patterns are 
presented to the ANN and the output of these patterns are re-arranged to create new inputs 
that are both presented to the same ANN and set as the output (prediction) target. 
It is worth mentioning that the variable cont just represents the current iteration of the TAEF 
method. The maximum of ten iterations of the TAEF method (given by expression not cont > 
10), was chosen empirically according to previous experiments in order to generate an 
optimal prediction model. 

3. Mathematical morphology 

The Mathematical Morphology (MM) is based on two basic operations, the sum and 
substraction of Minkowski [67], which are respectively given by [68] 

 
(28)

 
(29)

where Xb = {x + b : x ∈ X} represents the input signal and Br = {–b : b ∈ B} is the reflected 
structuring element B. 
All of MM transformations are based on combinations of four basic operations, which are 
defined by [68] 

 (30)

 (31)

 (32)

 (33)

where Brc = {–b : b ∉B} represents the reflected complement of structuring element B. 
According to Sousa [68], an operator of kind Ψ: P(E) → P(E), where P(E) represents all 
subsets of E = RN, may be a translation invariant (Equation 34), increasing (Equation 35), 
decreasing (Equation 36) or window (Equation 37). 

 (34)

where Xh = {x + h : x ∈ X} represents the translation of X ∈ P(E) by vector h ∈ E. 

 (35)

 (36)
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 (37)

where Lx is the translation of L ∈ E finite. 

3.1 Morphological-Rank-Linear (MRL) filter preliminaries 

Definition 1 – Rank Function: the r-th rank function of the vector t = (t1, t2,…, tn) ∈ Rn
 is the r-

th element of the vector t sorted in decreasing order (t(1) ≥ t(2) ≥ … ≥t(n)). It is denoted by [31] 

 (38)

For example, given the vector t = (3, 0, 5, 7, 2, 1, 3), its 4-th rank function is  
Definition 2 – Unit Sample Function: the unit sample function is given by [31] 

 
(39)

where v ∈ R. 
Applying the unit sample function to a vector v = (v1, v2,…, vn) ∈ Rn, yields a vector unit 
sample function (Q(v)), given by [31] 

 (40)

Definition 3 – Rank Indicator Vector: the r-th rank indicator vector c of t is given by [31] 

 
(41)

where  “·” represents scalar product and the symbol T denotes 
transposition. 
For example, given the vector t = (3, 0, 5, 7, 2, 1, 3), its 4-th rank indicator function is c(t, 4) 
=  (1, 0, 0, 0, 0, 0, 1). 
Definition 4 – Smoothed Rank Function: the smoothed r-th rank function is given by [31] 

 (42)

with 

 
(43)

where cσ is an approximation for the rank function c and  
is a smoothed impulse function (where (v) is like sech2(v/σ)) (where sech is the hyperbolic 
secant), σ ≥ 0 is a scale parameter and “·” represents the scalar product. 
Thus,  is an approximation for the rank indicator vector v. Using ideas from the fuzzy set 
theory,  can also be interpreted as a membership function vector [31]. For example, if the 
vector t = (3, 0, 5, 7, 2, 1, 3),  then its smoothed 4-th rank 
indicator function is 
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where   

3.2 MRL filter definition 
The MRL filter [31] is a linear combination between a Morphological-Rank (MR) filter [29, 
30] and a linear Finite Impulse Response (FIR) filter [31]. 
Definition 5 – MRL Filter [31]: Let x = (x1, x2,…, xn) ∈ Rn represent the input signal inside an 
n-point moving window and let y be the output from the filter. Then, the MRL filter is 
defined as the shift-invariant system whose local signal transformation rule x → y is given 
by [31] 

 (44)

with 

 (45)

and 

 (46)

where λ ∈ R, a and b ∈ Rn. Terms a = (a1, a2,…, an) and b = (b1, b2,…, bn) represent the 
coefficients of the MR filter and the coefficients of the linear FIR filter, respectively. Term a 
is usually referred to “structuring element” because for r = 1 or r = n the rank filter becomes 
the morphological dilation and erosion by a structuring function equal to ±a within its 
support [31]. The structure of the MRL filter is illustrated in Figure 5. 
 

 
Fig. 5. Structure of the MRL filter. 

3.3 MRL filter training algorithm 
Pessoa and Maragos [31] presented an adaptive design of MRL filters based on the LMS 
algorithm [29, 30], the “rank indicator vector"” [31] and “smoothed impulses” [31] for 
overcoming the problem of nondifferentiability of rank operations. 
Pessoa and Maragos [31] have shown that the main goal of the MRL filter is to specify a set 
of parameters (a, b, r, λ) according to some design requirements. However, instead of using 
the integer rank parameter r directly in the MRL filter definition equations (44-46), they 
argued that it is possible to work with a real variable ρ implicitly defined through the 
following rescaling [31] 
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(47)

where ρ ∈ R, n is the dimension of the input signal vector x inside the moving window and 
round(·) denotes the usual symmetrical rounding operation. In this way, the weight vector 
to be used in the filter design task is defined by [31] 

 (48)

The framework of the MRL filter adaptive design is viewed as a learning process where the 
filter parameters are iteratively adjusted. The usual approach to adaptively adjust the vector 
w, and therefore design the filter, is to define a cost function J(w), estimate its gradient 
∇J(w), and update the vector w by the iterative formula 

 (49)

where µ0 > 0 (usually called step size) and i ∈ {1, 2, …}. The term µ0 is responsible for 
regulating the tradeoff between stability and speed of convergence of the iterative 
procedure. The iteration of Equation 49 starts with an initial guess w(0) and stops when 
some desired condition is reached. This approach is known as the method of gradient 
steepest descent [31]. 
The cost function J must reflect the solution quality achieved by the parameters 
configuration of the system. A cost function J, for example, can be any error function, such as 

 
(50)

where M ∈ {1, 2,…} is a memory parameter and e(k) is the instantaneous error, given by 

 (51)

where d(k) and y(k) are the desired output signal and the actual filter output for the training 
sample k, respectively. The memory parameter M controls the smoothness of the updating 
process. If we are processing noiseless signals, M = 1 is recommended [31]. However, when 
we use M > 1, the updating process tends to reduce the noise influence of noisy signals 
during the training [31].  
Hence, the resulting adaptation algorithm is given by [31] 

 
(52)

where µ = 2µ0 and i ∈ {1, 2,…}. From Equations (44), (45), (46) and (48), term  [31] may 

be calculated as 

 
(53)
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with 

 
(54)

 
(55)

 
(56)

 
(57)

where 

 
(58)

 
(59)

where n is the dimension of x and . 
It is important to mention that the unit sample function Q is frequently replaced by 
smoothed impulses , in which case an appropriate smoothing parameter σ should be 
selected (which will affect only the gradient estimation step in the design procedure [31]). 

4. The proposed morphological-rank-linear time-lag added forecasting 
(MRLTAEF) model 

The approach model in this work, referred to as Morphological-Rank-Linear Time-lag 
Added Evolutionary Forecasting (MRLTAEF) model, uses an evolutionary search 
mechanism in order to train and adjust the Morphological-Rank-Liner (MRL) filter applied 
to financial time series prediction. It is based on the definition of the four main elements 
necessary for building an accurate forecasting system [15]: 
- The underlying information necessary to predict the time series; 
- The structure of the model capable of representing such underlying information for the 

purpose of prediction; 
- The appropriate algorithm for training the model 
- The behavior statistical test to adjust time phase distortions 
It is important to consider the minimum possible number of time lags in the representation 
of the series because the model must to be as parsimonious as possible, avoiding the 
overfitting problem and decreasing the computacional cost. 
Based on that definition, the proposed method consists of a hybrid intelligent 
morphological-rank-linear model composed of a MRL filter [31] with a MGA [16], which 
searches for: 
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1. The minimum number of time lags to represent the series: initially, a maximum number 
of time lags (MaxLags) is pre-defined and then the MGA will search for the number of 
time lags in the range [1,MaxLags] for each individual of the population; 

2. The initial (sub-optimal) parameters of the MRL filter (mixing parameter (λ), rank (r), 
linear Finite Impulse Response (FIR) filter (b) and the Morphological-Rank (MR) filter 
(a) coefficients. 

Then, each element of the MGA population is trained via LMS algorithm [31] to further 
improve the parameters supplied by the MGA, that is, the LMS is used, for each individual 
candidate, to perform a local search around the initial parameters supplied by MGA. The 
main idea used here is to conjugate a local search method (LMS) to a global search method 
(MGA). While the MGA makes it possible to test of varied solutions in different areas of the 
solution space, the LMS acts on the initial solution to produce a fine-tuned forecasting 
model. The proposed method is described in Figure 6. 
 

 
Fig. 6. The proposed method. 
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Such a process is able to seek the most compact MRL filter, reducing computational cost and 
probability of model overfitting. Each MGA individual represents a MRL filter, where its 
input is defined by the number of time lags and its output represents the prediction horizon 
of one step ahead. 
Most works found in the literature have the fitness function (or objective function) based on 
just one performance measure, like Mean Square Error (MSE). However, Clements et al. [69], 
since 1993 has shown that the MSE measure has some limitations of availability and 
comparing the prediction model performance. Information about the prediction, as the 
absolute percentage error, the accuracy in the future direction prediction and the relative 
gain regarding naive prediction models (like random walk models and mean prediction) are 
not described using MSE measure. 
In order to provide a more robust forecasting model, a multi-objective evaluation function is 
defined, which is a combination of five well-known performance measures: Prediction Of 
Change In Direction (POCID), Mean Square Error (MSE), Mean Absolute Percentage Error 
(MAPE), Normalized Mean Square Error (NMSE) or U of Theil Statistic (THEIL) and 
Average Relative Variance (ARV), where all these measures will be formally defined in 
Section 5. The multi-objective evaluation function used here is given by 

 
(60)

Whereas there are linear and nonlinear metrics in the such evaluation function and each one 
of these metrics can contribute to different forms for the evolution process, the Equation 60 
was built from empirical form to have all information necessary to describe as well as allow 
the time series generator phenomenon. 
After MRL filter adjusting and training, the proposed method uses the phase fix procedure 
presented by Ferreira [15], where a two step procedure is introduced to adjust time phase 
distortions observed (“out-of-phase” matching) in financial time series. Ferreira [15] has 
shown that the representations of some time series (natural phenomena) were developed by 
the model with a very close approximation between the actual and the predicted time series 
(referred to as “in-phase” matching), whereas the predictions of other time series (mostly 
financial time series) were always presented with a one step delay regarding the original 
data (referred to as “out-of-phase” matching). 
The proposed method uses the statistical test (t-test) to check if the MRL filter model 
representation has reached an in-phase or out-of-phase matching (in the same way of TAEF 
method [15]). This is conducted by comparing the outputs of the prediction model with the 
actual series, making use only of the validation data set. This comparison is a simple 
hypothesis test, where the null hypothesis is that the prediction corresponds to in-phase 
matching and the alternative hypothesis is that the prediction does not correspond to in-
phase matching (or corresponds to out-of-phase matching). 
If this test accepts the in-phase matching hypothesis, the elected model is ready for practical 
use. Otherwise, the proposed method performs a new procedure to adjust the relative phase 
between the prediction and the actual time series. The phase fix procedure has two steps 
(described in Figure 7): (i) the validation patterns are presented to the MRL filter and the 
output of these patterns are re-arranged to create new inputs patterns (reconstructed 
patterns), and (ii) these reconstructed patterns are represented to the same MRL filter and 
the output set as the prediction target. This procedure of phase adjustment considers that 
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the MRL filter is not a random walk model, it just shows a behavior characteristic of a 
random walk model: the t + 1 prediction is taken as the t value (Random Walk Dilemma). 
If the MRL filter was like a random walk model, the phase adjust procedure would not 
work. Such phase fix was originally proposed by Ferreira [15], where he observed the fact 
that when Artificial Neural Network (ANN – Multilayer Perceptron like) is correctly 
adjusted (TAEF method), the one step shift distortion in the prediction can be softened. 
 

 
Fig. 7. Phase fix procedure. 

The termination conditions for the MGA are: 
1. Minimum value of fitness function: fitness ≥ 40, where this value mean the accuracy to 

predict direction around 80% (POCID 2 80%) and the sum of the other errors around 
one (MSE +MAPE + THEIL + ARV  1); 

2. The increase in the validation error or generalization loss (Gl) [54]: Gl > 5%; 
3. The decrease in the training error process training (Pt) [54]: Pt ≤ 10-6. 
Each individual of the MGA population is a MRL filter represented by the data structure 
with the following components (MRL filter parameters): 
- a: MR filter coefficients; 
- b: linear FIR filter coefficients; 
- ρ: variable used to determine the rank r; 
- λ: mixing parameter; 
- NLags: a vector, where each position has a real-valued codification, which is used to 

determine if a specific time lag will be used (NLagsi > 0) or not (NLagsi  ≤ 0). 

5. Performance metrics 

Many performance evaluation criteria are found in literature. However, most of the existing 
literature on time series prediction frequently employ only one performance criterion for 
prediction evaluation. The most widely used performance criterion is the Mean Squared 
Error (MSE), given by 

 
(61)

where N is the number of patterns, targetj is the desired output for pattern j and outputj is 
the predicted value for pattern j. 
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The MSE measure may be used to drive the prediction model in the training process, but it 
cannot be considered alone as a conclusive measure for comparison of different prediction 
models [69]. For this reason, other performance criteria should be considered for allowing a 
more robust performance evaluation. 
A measure that presents accurately identifying model deviations is the Mean Absolute 
Percentage Error (MAPE), given by 

 

(62)

where xj is the time series value at point j. 
The random walk dilemma can be used as a naive predictor (Xt+1 = Xt), commonly applied 
to financial time series prediction. Thus, a way to evaluate the model regarding a random 
walk model is using the Normalized Mean Squared Error (NMSE) or U of Theil Statistic 
(THEIL) [70], which associates the model performance with a random walk model, and 
given by 

 

(63)

where, if the THEIL is equal to 1, the predictor has the same performance than a random 
model. If the THEIL is greater than 1, then the predictor has a performance worse than a 
random walk model, and if the THEIL is less than 1, the predictor is better than a random 
walk model. In the perfect model, the THEIL tend to zero. 
Another interesting measure maps the accuracy in the future direction prediction of the time 
series or, more specifically, the ability of the method to predict if the future series value 
(prediction target) will increase or decrease with respect to the previous value. This metric is 
known as the Prediction Of Change In Direction (POCID) [15], and is given by 

 
(64)

where 

 
(65)

The last measure used associates the model performance with the mean of the time series. 
The measure is the Average Relative Variance (ARV), and given by 

 

(66)
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where,  is the mean of the time series. If the ARV is equal to 1, the predictor has the 
same performance of the time series average prediction. If the ARV is greater than 1, then 
the predictor has a performance worse than the time series average prediction, and if the 
ARV is less than 1, the predictor is better than the time series average prediction. In the ideal 
model, ARV tend to zero. 

6. Simulations and experimental results 

A set of six real world financial time series (Dow Jones Industrial Average (DJIA) Index, 
National Association of Securities Dealers Automated Quotation (NASDAQ) Index, 
Standard & Poor 500 Stock (S&P500) Index and Petrobras Stock Prices, General Motors 
Corporation Stock Prices and Google Inc Stock Prices) were used as a test bed for evaluation 
of the proposed method. All time series investigated were normalized to lie within the range 
[0, 1] and divided into three sets according to Prechelt [54]: training set (50% of the points), 
validation set (25% of the points) and test set (25% of the points). 
For all the experiments, the following initialization system parameters were used: cont = 1, 
MinFit = 40 and MaxLags = 4. The MGA parameters used in the proposed MRLTAEF 
method are a maximum number of MGA generations, corresponding to 104, crossover 
weight w = 0.9 (used in the crossover operator), mutation probability equals to 0.1. The MR 
filter coefficients and the linear FIR filter coefficients (a and b, respectively) were normalized 
in the range [–0.5, 0.5]. The MRL filter parameters λ and ρ were in the range [0, 1] and  
[–MaxLags,MaxLags], respectively. 
Next, the simulation results involving the proposed model will be presented. In order to 
establish a performance study, results previously published in the literature with the TAEF 
Method [15] were examined in the same context and under the same experimental 
conditions. For each time series, ten experiments were done, where the experiment with the 
best validation fitness function is chosen to represent the prediction model. 
In order to establish a performance study, results previously published in the literature with 
the TAEF Method [15] on the same series and under the same conditions are employed for 
comparison of results. In addition, experiments with MultiLayer Perceptron (MLP) 
networks and Morphological-Rank-Linear (MRL) filters were used for comparison with the 
MRLTAEF method. The Levenberg-Marquardt Algorithm [71] and the LMS algorithm [31] 
were employed for training the MLP network and the MRL filter, respectively. In all of the 
experiments, ten random initializations for each architecture were carried out, where the 
experiment with the best validation fitness function is chosen to represent the prediction 
model. The statistical behavioral test, for phase fix procedure, was also applied to all the 
MLP, MRL and TAEF models in order to guarantee a fair comparison among the models. 
It is worth mentioning that the results with ARIMA models were not presented in our 
comparative analysis since Ferreira [15] has shown that MLP networks obtained results 
better than ARIMA models, for all financial time series used in this work. Therefore, only 
MLP networks were used in our comparative analysis. 
Furthermore, in order to analyze time lag relations in the studied time series, the graphical 
methodology proposed by [42, 72], referred to as lagplot [72] or phase portrait [42], was 
employed. This consists of dispersion graph constructions relating the different time lags of 
the time series (Xt vs Xt-1, Xt vs Xt-2, Xt vs Xt-3, …), and allow observations of possible 
relative strong relationships between any pair of time lags (when a structured appearance is 
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shown in the graph). Although such technique is very limited since it depends on human 
interpretation of the graphs. However, its simplicity is a strong argument for its utilization 
[15]. 

6.1 Dow Jones Industrial Average (DJIA) index series 
The Dow Jones Industrial Average (DJIA) Index series corresponds to daily records from 
January 1st 1998 to August 26th 2003, constituting a database of 1,420 points. Figure 8 shows 
the DJIA Index lagplot. 
 

 
Fig. 8. DJIA Index series lagplot. 

According to Figure 8, it is seen that for all the time lags of DJIA Index series there is a clear 
linear relationship among the lags. However, with the increase in the time lag degree, the 
appearance of the structure towards the graph center indicates a nonlinear relationship 
among the lags. 
For the DJIA Index series prediction (with one step ahead of prediction horizon), the 
proposed method automatically chose the lag 2 as the relevant time lag (n = 1), defined the 
parameters ρ = 1.6374 and λ = 0.0038, and classified the best model as the “out-of-phase” 
model. Table 1 shows the results (with respect to the test set) for all the performance 
measures for the MLP, MRL, TAEF and MRLTAEF models. 
 

 
Table 1. Results for the DJIA Index series. 
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Figure 9 shows the actual DJIA Index values (solid line) and the predicted values generated 
by the MRLTAEF out-of-phase model (dashed line) for the last 100 points of the test set. 
 

 
Fig. 9. Prediction results for the DJIA Index series (test set): actual values (solid line) and 
predicted values (dashed line). 

Another relevant aspect to notice is that the MRLTAEF model chose the parameter λ = 
0.0038, which indicates that it used 99.62% of the linear component of the MRL filter and 
0.38% of the nonlinear component of the MRL filter, supporting the assumption (through 
lagplot analysis) that the DJIA Index series has a strong linear component mixed with a 
nonlinear component. 

6.2 National association of securities dealers automated quotation (NASDAQ) index 
series 
The National Association of Securities Dealers Automated Quotation (NASDAQ) Index 
series corresponds to daily observations from February 2nd 1971 to June 18th 2004, 
constituting a database of 8428 points. Figure 10 shows the NASDAQ Index lagplot. 
According to Figure 10, it is seen that the time lags of NASDAQ Index series present a clear 
linear relationship among them, which, in theory, can contribute to a better forecasting 
result. 
For the NASDAQ Index series prediction (with one step ahead of prediction horizon), the 
proposed method automatically chose the lag 2 as the relevant time lag (n = 1), defined the 
parameters ρ = 1.5581 and λ = 0.0005, and classified the model as “out-of-phase” matching. 
Table 2 shows the results (of the test set) for all performance measures for MLP, MRL, TAEF 
and MRLTAEF models. 
Figure 11 shows the actual NASDAQ Index values (solid line) and the predicted values 
generated by the MRLTAEF out-of-phase model (dashed line) for the last 100 points of the 
test set. 
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Fig. 10. NASDAQ Index series lagplot. 

 
Table 2. Results for the NASDAQ Index series. 

 
Fig. 11. Prediction results for the NASDAQ Index series (test set): actual values (solid line) 
and predicted values (dashed line). 
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It is worth mention that, as the MRLTAEF model chose λ= 0.0005, it used 99.95% of the 
linear component of the MRL filter and 0.05% of the nonlinear component of the MRL filter. 
This result can indicate that there is a nonlinear relationship among the time lags, a fact 
which could not be detected by the lagplot analysis. 

6.3 Standard & Poor 500 (S&P500) index series 
The Standard & Poor 500 (S&P500) Index is a pondered index of market values of the most 
negotiated stocks in the New York Stock Exchange (NYSE), American Stock Exchange 
(AMEX) and Nasdaq National Market System. The S&P500 series used corresponds to the 
monthly records from January 1970 to August 2003, constituting a database of 369 points. 
Figure 12 shows the S&P500 Index lagplot. 
 

 
 

Fig. 12. S&P500 Index series lagplot. 

According to Figure 12, it is also seen that for all the time lags of S&P500 Index series there 
is a clear linear relationship among the lags. However, with the increase in the time lag 
degree, the appearance of the structure towards the upper corner on the right hand side of 
the graph indicates a nonlinear relationship among the lags. 
For the S&P500 Index series prediction (with one step ahead of prediction horizon), the 
proposed method automatically chose the lags 2, 3 and 10 as the relevant time lags (n = 3), 
defined the parameters ρ = 1.2508 and λ = 0.0091, and classified the best model as “out-of-
phase” matching. Table 3 shows the results (for the test set) for all the performance 
measures for the MLP, MRL, TAEF and MRLTAEF models. 
Figure 13 shows the actual S&P500 Index values (solid line) and the predicted values 
generated by the MRLTAEF out-of-phase model (dashed line) for the 90 points of the test 
set. 
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Table 3. Results for the S&P500 Index series. 

 
Fig. 13. Prediction results for the S&P500 Index series (test set): actual values (solid line) and 
predicted values (dashed line). 

The proposed MRLTAEF chose λ = 0.0091, implying that it used 99.01% of the linear 
component of the MRL filter and 0.91% of the nonlinear component of the MRL filter, 
confirming the assumption (through lagplot analysis) that the S&P500 Index series has a 
strong linear component mixed with a nonlinear component. 

6.4 Petrobras stock prices series 
The Petrobras Stock Prices series corresponds to the daily records of Brazilian Petroleum 
Company from January 1st 1995 to July 3rd 2003, constituting a database of 2,060 points. 
Figure 14 shows the Petrobras Stock Prices lagplot. 
According to Figure 14, it is seen that for all the time lags of the Petrobras Stock Prices series 
there is a clear linear relationship among the lags. However, with the increase in the time lag 
degree, the appearance of the structure towards the graph center indicates a nonlinear 
relationship among the lags. 
For the Petrobras Stock Prices series prediction (with one step ahead of prediction horizon), 
the proposed method chose the lag 3 as the relevant time lag (n = 1), defined the parameters 
ρ = 1.9010 and λ = 0.0070, and classified the best model as “out-of-phase" matching. Table 4 
shows the results (for the test set) of all the performance measures for the MLP, MRL, TAEF 
and MRLTAEF models. 
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Fig. 14. Petrobras Stock Prices series lagplot. 

 
Table 4. Results for the Petrobras Stock Prices series. 

 
Fig. 15. Prediction results for the Petrobras Stock Prices series (test set): actual values (solid 
line) and predicted values (dashed line). 
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Figure 15 shows the actual Petrobras Stock Prices (solid line) and the predicted values 
generated by the MRLTAEF model out-of-phase (dashed line) for the 100 points of the test 
set. 

For this series the proposed MRLTAEF chose λ = 0.0070, which means that it used 99.30% of 

the linear component of the MRL filter and 0.7% of the nonlinear component of the MRL 
filter, confirming the assumption (through lagplot analysis) that the Petrobras Stock Prices 
series has a strong linear component mixed with a nonlinear component. 

6.5 General motors corporation stock prices series 
The General Motors Corporation Stock Prices series corresponds to the daily records of 
General Motors Corporation from June 23th 2000 to June 22th 2007, constituting a database 
of 1,758 points. Figure 16 shows the General Motors Corporation Stock Prices lagplot. 
 

 
Fig. 16. General Motors Corporation Stock Prices series lagplot. 

According to Figure 16, it is virified that for all the time lags of the General Motors 
Corporation Stock Prices series there is a clear linear relationship among the lags. However, 
with the increase in the time lag degree, the appearance of the structure towards the upper 
corner on the right hand side of the graph indicates a nonlinear relationship among the lags. 
For the General Motors Corporation Stock Prices series prediction (with one step ahead of 
prediction horizon), the proposed method chose the lags 2, 4, 5 and 8 as the relevant time 
lags (n = 4), defined the parameters ρ = 0.0617 and λ = 0.0011, and classified the best model 
as “out-of-phase” matching. Table 5 shows the results (for the test set) of all the performance 
measures for the MLP, MRL, TAEF and MRLTAEF models. 
Figure 17 shows the actual General Motors Corporation Stock Prices (solid line) and the 
predicted values generated by the MRLTAEF model out-of-phase (dashed line) for the 100 
points of the test set. 
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Table 5. Results for the General Motors Corporation Stock Prices series. 

 
Fig. 17. Prediction results for the General Motors Corporation Stock Prices series (test set): 
actual values (solid line) and predicted values (dashed line). 

For this series the proposed MRLTAEF chose λ = 0.0011, which means that it used 99.89% of 
the linear component of the MRL filter and 0.11% of the nonlinear component of the MRL 
filter, confirming the assumption (through lagplot analysis) that the General Motors 
Corporation Stock Prices series has a strong linear component mixed with a nonlinear 
component. 

6.6 Google Inc Stock Prices series 
The Google Inc Stock Prices series corresponds to the daily records of Google Inc from 
August 19th 2004 to June 21th 2007, constituting a database of 715 points. Figure 18 shows 
the Google Inc Stock Prices lagplot. 
According to Figure 14, it is seen that for all the time lags of the Google Inc Stock Prices 
series there is a clear linear relationship among the lags. However, with the increase in the 
time lag degree, the appearance of the structure towards the graph center indicates a 
nonlinear relationship among the lags. 
For the Google Inc Stock Prices series prediction (with one step ahead of prediction 
horizon), the proposed method chose the lags 2, 3 and 10 as the relevant time lags (n = 3), 
defined the parameters ρ = –1.5108 and λ = 0.0192, and classified the best model as “out-of-
phase” matching. Table 6 shows the results (for the test set) of all the performance measures 
for the MLP, MRL, TAEF and MRLTAEF models. 
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Fig. 18. Google Inc Stock Prices series lagplot. 

 
Table 6. Results for the Google Inc Stock Prices series. 

 
Fig. 19. Prediction results for the Google Inc Stock Prices series (test set): actual values (solid 
line) and predicted values (dashed line). 
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Figure 19 shows the actual Google Inc Stock Prices (solid line) and the predicted values 
generated by the MRLTAEF model out-of-phase (dashed line) for the 100 points of the test 
set. 
For this series the proposed MRLTAEF chose λ = 0.0192, which means that it used 98.08% of 
the linear component of the MRL filter and 1.92% of the nonlinear component of the MRL 
filter, confirming the assumption (through lagplot analysis) that the Google Inc Stock Prices 
series has a strong linear component mixed with a nonlinear component. 
In general, all generated prediction models using the phase fix procedure to adjust time 
phase distortions shown forecasting performance much better than the MLP model and 
MRL model, and slightly better than the TAEF model. The proposed method was able to 
adjust the time phase distortions of all analyzed time series (the prediction generated by the 
out-of-phase matching hypothesis is not delayed with respect to the original data), while the 
MLP model and MRL model were not able to adjust the time phase. This corroborates with 
the assumption made by Ferreira [15], where he discusses that the success of the phase fix 
procedure is strongly dependent on an accurate adjustment of the prediction model 
parameters and on the model itself used for prediction. 

7. Conclusions 

This work presented a new approach, referred to as Morpological-Rank-Linear Time-lag 
Added Forecasting (MRLTAEF) model, to overcome the RW dilemma for financial time 
series forecasting, which performs an evolutionary search for the minimum dimension to 
determining the characteristic phase space that generates the financial time series 
phenomenon. It is inspired on Takens Theorem and consists of an intelligent hybrid model 
composed of a Morpological-Rank-Linear (MRL) filter combined with a Modified Genetic 
Algorithm (MGA), which searches for the minimum number of time lags for a correct time 
series representation and estimates the initial (sub-optimal) parameters of the MRL filter 

(mixing parameter (λ), rank (r), linear Finite Impulse Response (FIR) filter (b) and the 

Morphological-Rank (MR) filter (a) coefficients). Each individual of the MGA population is 
trained by the averaged Least Mean Squares (LMS) algorithm to further improve the MRL 
filter parameters supplied by the MGA. After adjusting the model, it performs a behavioral 
statistical test and a phase fix procedure to adjust time phase distortions observed in 
financial time series. 
Five different metrics were used to measure the performance of the proposed MRLTAEF 
method for financial time series forecasting. A fitness function was designed with these five 
well-known statistic error measures in order to improve the description of the time series 
phenomenon as much as possible. The five different evaluation measures used to compose 
this fitness function can have different contributions to the final prediction, where a more 
sophisticated analysis must be done to determine the optimal combination of such metrics. 
An experimental validation of the method was carried out on four real world financial time 
series, showing the robustness of the MRLTAEF method through a comparison, according 
to five performance measures, of previous results found in the literature (MLP, MRL and 
TAEF models). This experimental investigation indicates a better, more consistent global 
performance of the proposed MRLTAEF method. 
In general, all generated predictive models with the MRLTAEF method using the phase fix 
procedure (to adjust time phase distortions) showed forecasting performance much better 
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than the MLP model and MRL model, and slightly better than the TAEF model. The 
MRLTAEF method was able to adjust the time phase distortions of all analyzed time series, 
while the MLP model and MRL model were not able to adjust the time phase. This fact 
shows that the success of the phase fix procedure is strongly dependent on the accurate 
adjustment of parameters of the predictive model and on the model itself used for 
forecasting. It was also observed that the MRLTAEF model reached a much better 
performance when compared with a random walk like model, overcoming the random walk 
dilemma for the analyzed financial times series. 
The models generated by the MRLTAEF method are not random walk models. This 
affirmation is shown with the phase fix procedure. If the MRL filter models were random 
walk models, the phase fix procedure would generate the same result of the original 
prediction, since in the random walk model the t+1 value is always the t value. 
It is worth mentioning that the first time lag is never selected to predict any time series used 
in this work. However, a random walk structure is necessary for the phase fix procedure to 
work, since the key of this procedure is the two step prediction (described by the phase fix 
procedure) in order to adjust the one step time phase. 
Also, one of the main advantages of the MRLTAEF model (apart from its predictive 
performance when compared to all analyzed models) is that not only they have linear and 
nonlinear components, but they are quite attractive due to their simpler computational 
complexity when compared to other approaches such as [33, 34], other MLP-GA models [15] 
and other statistical models [2-5]. 
Furthermore, another assumption made by Ferreira [15] was confirmed through the 
analyzes of the MRL filter mixing parameter (λ). It was argued that through lagplot analysis 
it is possible to notice in financial time series indicative structures of some nonlinear 
relationship among the time lags even though they are super-imposed by a dominant linear 
component. In all the experiments, the MRLTAEF model set a strong linear component 
mixed with a weak nonlinear component (it uses ~99% of the linear component of MRL 
filter and ~1% of the nonlinear component of the MRL filter). Since the MRLTAEF method 
defines a MRL filter like model, which has the ability to select the percentage of use of the 
linear and nonlinear components, it is believed that it improves the prediction performance 
through a balanced estimation of the linear and nolinear relationships. 
Future works will consider the development of further studies in order to formalize 
properties of the proposed model using the phase fix procedure. Also, other financial time 
series with components such as trends, seasonalities, impulses, steps and other 
nonlinearities can be used for the efficiency confirmation of the proposed method, as well 
as, further studies, in terms of risk and financial return, can be developed in order to 
determine the additional economical benefits, for an investor, with the use of the proposed 
method. 
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