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An Evolutionary MAP Filter for Mobile Robot 
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1 Robotic's Laboratory, Universidad Carlos III, Madrid 

      2 Facultad de Informática, Universidad Politécnica, Madrid 
Spain 

1. Introduction   

This chapter presents a new evolutionary algorithm for Mobile Robot Global Localization. 
The Evolutive Localization Filter (ELF) presented in this paper is a non linear filter 
algorithm which is able to solve the global localization problem in a robust and efficient 
way. The proposed algorithm searches along the configurations space for the best robot 
pose estimate. The elements of each generation are the set of pose solutions and represent 
the areas with more probability according to the perception and motion information up to 
date. The population evolves according to the observation and the motion error derived 
from the comparison between observed and predicted data obtained from the probabilistic 
perception and motion model. The algorithm has been tested using a mobile robot with a 
laser range finder to demonstrate the effectiveness, robustness and computational efficiency 
of the proposed approach.  
Mobile robot localization finds out a robot’s coordinates relatives to its environment, 
assuming that one is provided with a map of the environment. Localization is a key 
component in navigation and required to execute successfully a trajectory. We can 
distinguish two different cases: the re-localization case and the global localization case. Re-
localization or tracking problem tries to keep track of mobile robot´s pose, where the robot 
knows its initial position (at least approximately) and therefore has to maintain localized the 
robot along the given mission. The global localization problem does not assume any 
knowledge about the robot’s initial position and therefore has to globally localize itself.  
The two most important aspects that have to be dealt with when designing a localization 
system is how to represent uncertain information of the environment and the robot’s pose. 
Among the many ways to represent the knowledge about an environment, this article deals 
with geometrical localization methods and assumes that the environment is modelled 
geometrically as an occupancy grid map.  
In the robot’s pose uncertainty representation and estimation techniques, the vast majority 
of existing algorithms address only the position tracking problem. In this case the small 
incremental errors produced along the robot motion and the initial knowledge of the robot’s 
pose makes classical approaches such as Kalman filters or Scan Matching techniques 
applicable. If we consider the robot’s pose estimation as a Bayesian recursive problem, 
Kalman filters estimate posterior distribution of robot’s poses conditioned on sensor data. 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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Based on the Gaussian noise assumption and the Gaussian-distributed initial uncertainty 
this method represents posteriors distributions by Gaussians. Kalman filter constitutes an 
efficient solution for re-localization problems. However, the assumption’s nature of the 
uncertainty representation makes Kalman filters not robust in global localization problems. 
Scan Matching techniques are also an iterative local minimization technique and can not be 
used for global localization. 
Different families of algorithms can solve the global localization problem, some frequently 
used are: multi-hypothesis Kalman filters, grid-based probabilistic filters and Monte Carlo 
localization methods. Those methods can be included in a wider scope group of Bayesian 
estimation methods. Multi-hypothesis Kalman filters (Arras et al., 2002, Austin & Jensfelt, 
2000, Jensfelt & Kristensen, 1999, Cox & Leonard, 1994, Roumeliotis et. al, 2000)  represent 
distributions using mixtures of Gaussians, enabling them to keep track of multiple 
hypothesis, each of which is represented by a separate Gaussian. This solution presents 
some initialization problems: one of them is the determination of the initial hypotheses (the 
number can be very high and it is not bounded), this leads the algorithm to a high 
computational cost at initial stages. Besides, the Kalman filter is essentially a gradient based 
method and consequently poorly robust if the initial hypothesis is bad or noise assumptions 
fails. Grid-based localization algorithms (Fox et al., 1999, Burgard et al., 1996, Reuter, 2000) 
represent distributions by a discrete set of point probabilities distributed over the space of 
all possible poses. This group of algorithms are capable of representing multi-modal 
probabilities distributions. A third group is the Monte Carlo localization algorithms (Jensfelt 
et al., 2000, Thrun et al., 2001, Dellaert et al., 1999). These algorithms represent the 
probability distribution by means of a set of samples drawn according to the posterior 
distribution over robot’s poses. These algorithms can manage arbitrary noise distributions 
and non-linearities in the system and observation models. These methods present a high 
computational cost due to its probabilistic nature requires a high number of samples to 
draw properly the posterior probability density function. The main advantage is its 
statistical robustness.  
This article presents a localization algorithm based on a non-linear filter called Evolutionary 
Localization Filter (ELF). ELF solves the global localization robot problem in a robust and 
efficient way. The algorithm can deal with arbitrary noise distributions and non-linear space 
state systems. The key idea of ELF is to represent the uncertainty about the robot’s pose by a 
set of possible pose estimates weighted by a fitness function. The state is recursively 
estimated using set of solutions selected according on the weight associated to each possible 
solution included in the set. The set of solutions evolve in time to integrate the sensor 
information and the robot motion information. The adaptation engine of the ELF method is 
based on an evolutive adaptation mechanism which combines a stochastical gradient search 
together with probabilistic search to find the most promising pose’s candidates.  

2. Differential evolutionary filter 

The evolutive optimization techniques constitute a series of probabilistic search methods 
that avoid derivatives or probability density estimations to estimate the best solution to a 
localization problem. In the method proposed here each individual in the evolutive 
algorithm will represent a possible solution to the localization problem and the value of the 
loss function represent the error to explain the perceptual and motion data. The search of 
this solution is done stochastically employing an evolutive search technique based on the 
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differential evolution method proposed by Storn and Price (Storn & Price, 2001) for global 
optimization problems over continuous spaces. The Evolutive Filter uses a a parallel direct 

search method which utilizes n dimensional parameter vectors 
1

( )
k k k T

i i i n
x x … x

, ,
= , , to point 

each candidate solution i to the optimization problem at iteration step k . This method 

utilizes N parameter vectors{ 0 1 }
k

i
x i … N; = , , , as a population for each generation t  of the 

optimization process. Each element of the population set represents a possible solution, but 
it hasn’t associated a probability value to each one (in the particle filter case, each element of 
the particle set has associated a probability value).  
The initial population is chosen randomly to cover the entire parameter space uniformly. In 
absence of a priori information the entire parameter space has the same probability of 
containing the optimum parameter vector, and a uniform probability distribution is 
assumed. The differential evolution filter generates new parameter vectors by adding the 
weighted difference vector between two population members to a third member. If the 
resulting vector yields a lower objective function value than a predetermined population 
member, the newly generated vector replaces the vector with which it was compared; 
otherwise, the old vector is retained. This basic idea is extended by perturbing an existing 
vector through the addition of one or more weighted difference vectors to it.  
The perturbation scheme generate a variation v  according to the following expression,  
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x is the parameter vector to be perturbed at iteration k , 
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vector of the population at iteration k , 
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stochastical gradient while 
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x x−  is a kind of random search.  

In order to increase the diversity of the new generation of parameter vectors, crossover is 

introduced. Denote by 
1 2
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= , , ,  the new parameter vector with  
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where
k

i j
p

,
 is a randomly chosen value from the interval [0 1],  for each parameter j  of the 

population member i  at step k  and δ  is the crossover probability and constitutes the 

crossover control variable. The random values 
k

i j
p

,
 are made anew for each trial vector i .  
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To decide whether or not vector 
k

i
u  should become a member of generation 1i + , the new 

vector is compared to
k

i
x . If vector 

k

i
u  yields a better value for the objective fitness function 

than
k

i
x , then is replaced by

1k

i
u

+
; otherwise, the old value 

k

i
x  is retained for the new 

generation. The general idea of the previous mechanism: mutation, crossover and selection 
are well known and can be found in literature (Goldberg 1989). 
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Figure 1. New population member generation 

A. Fitness function 
Due to we are trying to localize a mobile robot, the natural choice for fitness function is the 

sum of squared errors function. If the observation vector at time t  is 
1
( )

T

t t p t
z z … z

, ,
= , ,  

and the predicted observations according the estimated robots pose is 1( )ˆ ˆ ˆ
T

t t p t…z z z, ,= , ,  

then the penalty function can be stated as  

 ( ) ( ) ( )ˆ ˆ ˆ
T

t ttt t t
L x z zx z z− = − −    (3) 

In the global localization problem there exist some aspects that make this fitness function 
difficult to manage:  

• The range and accuracy of the sensor limits the possibility of discriminate between 
different poses, leading the fitness function to a high number of global maxima.  

• The number of sensors limits the possibility of discriminate between robot’s poses 
leading to multiple global maxima in the fitness function.  
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• The geometrical similarities in the environment due to the repetition of the space 
distribution originate the presence of a high number of possible robot’s pose solutions 
to the mean square loss function.  

The loss function defined in this way provides us with an optimization mechanism which 
obtain an unstable parameter solution and by extension an unstable filter. The instability of 
an evolutive filter based on this penalty function derives from the environment ambiguities. 
Due to that the evolutive filter can move from one local minimum to other, originating 
abrupt changes in the pose estimate. This problem comes from the fact we are not using all 
information we know about the system at the loss function. In fact, we only use the 
observation model to predict the sensor measurements at each position, and these predicted 
measurements together with the actual measurements are introduced in the loss function to 
evaluate the robot’s pose estimate. The instability originated by the existence of multiple 
solutions to the loss function, can not be solved by considering only the available sensor 
observations. One possibility consists of introducing in the loss function all the information 
available about the system.  
The solution proposed introduced all available information in two ways:  

• State space model information.  
State transition model and observation model are used to estimate the robot’s pose and 

robot’s observations next cycle. If we define 
i t
x

,
 as a possible robot’s pose solution i  

obtained in the last iteration of the algorithm at step t . According to the robot motion model 

the estimated position at step 1t +  according to the odometric information available will be  

 
1

( )
i t i t t
x g x u

, + ,
= ,   (4) 

This information is used for moving the poses of all population members { }
m

i t
x  obtained in 

the last iteration m  of the evolutive filter at step t . A faster approach, from a computational 

point of view, consist of estimating only the movement of the best estimate 1 ( )ˆ ˆt t t
g ux x+ = ,  

to estimate a displacement 1
ˆ ˆ ˆt tt x xd += −  and then to apply to all population member. The  

initial population at step 1t +  will be  

 
0

1
ˆ{ } { }

m

ti t i t
x x d+

= +  (5) 

In a similar form the observation model together with the state estimate let us predict the 

sensor observation values ( )ˆˆ t th xz = .  

• Probabilistic information.  
To eliminate the ambiguity, the statistical information available have to be considered. This 
information is included into the loss function. One possible choice is to include the distance 

between the estimated robot’s pose 1ˆ tx +  and each candidate solution 
k

i
x  at iteration k  at 

step ;  in the loss function together with the observation error between sensor prediction 

and sensor measurement.  
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1

1( ) ( ) ( )ˆ ˆ ˆ
k T

t tt i t t
L x z Q zx z z

−

+ − = − −  

 
1

1 1[( ) ( ) ]ˆ ˆ
k T k T

t ti i
x R xx x

−

+ ++ − −    (6) 

where Q  and R  are the covariance matrix of the observation and motion noises, and z  

the sensor data. This loss function includes two effects: the first term considers the 
observational error, that is the squared distances of sensor observation innovation, and the 
second term considers the motion innovation. The motion innovation considers the distance 
between the predicted robot position and the position for a particular solution weighted 
according a coefficient.  
 
B. The Evolutive Localization Filter algorithm 
According with the previous ideas algorithm has the following steps:  

• Step 1: Initialization.  
The initial set of solutions is calculated and the fitness value associated to each of the points 
in the state space is evaluated. In the most general case where no information about initial 
position is available, the initial set of robot’s pose solutions is obtained by drawing the 
robot’s poses according to a uniform probability distribution over the state space.  
The initial robot’s pose estimate is fixed to an initial value.  

• Step 2: Evolutive search.  
(a) For each element of the set of robot’s pose solutions, and according to the map, the 
expected sensor observations are obtained. The expected observation, the sensor 
observations, the robot’s pose estimate and the robot’s pose element are used to evaluate the 
loss function for each pose element in the set of solutions.  
(b) A new generation of perturbed robot’s pose solutions are generated according to the 
perturbation method exposed previously. For each perturbed solution the expected 
observations are calculated and the loss function evaluated. If the perturbed solution results 
in a better loss function, this perturbed solution is selected for the following iteration, 
otherwise the original is maintained.  
(c) The crossover operator is applied to the resultant population.  
(d) The robot’s pose element of the set with lower value of the loss function is marked as 
best robot’s pose estimate. Go to step 2b a given number of iterations.  

• Step 3: Updating. The best robot’s pose element of the population is used as the 
updated state estimate and then used in state transition model to predict the new 
state according to the odometry information.  

 1 ( )ˆ ˆt t t
f ux x+ = ,   (7) 

Then, the displacement is evaluated and the whole population is moved according to this 
displacement. Then go to step 2.  
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Figure 2. Convergence speed as a function of the iteration number 

3. Experimental results 

All experiments have been developed in an indoor environment - University laboratories, 
offices and corridors, and conducted on a B21-RWI mobile vehicle, equipped with laser 
range finder.  
A. Convergence of the algorithm 
One fundamental question about evolutionary algorithms is their convergence and their 
convergence rates: how quickly can the populations come to the individuals (robot’s pose 
solutions) with the highest fitness value?  
It has been considered that the algorithm converges to a solution, when all population size is 
located in a ball of given radius around the best estimate (0.5 meters). Fig. 2 shows the 
convergence speed of the Evolutive Filter with a set of 500 individuals as a function of the 
iteration number used for a given trajectory. . As figure 2 suggest, the algorithm proposed is 
highly efficient in terms of convergence speed. The algorithm behaviour is clearly 
asymptotical. The speed of convergence grows with the iteration number, but an excessively 
fast convergence can lead to a local minima. In the tests, the appropriate range of iterations 
is located between 10 and 30. In this range, the probability of converging to a local minimum 
is low and the computational effort is reasonable.  
Fig. 2 shows a typical convergence process of the Evolutive Localization Filter for a population 
set of 1000 individuals and 15 iterations of the evolutive filter in each cycle. The robot trajectory 
starts in the left office of the upper side of the map, goes to the corridor,  and continue along the 
central corridor toward the right side of the map (Fig. 2). It can be noticed that the population 
individuals tend to concentrate in highly similar areas at the initial pose. After some cycles the 
algorithm estimate (black circle) reaches the true robot’s pose (blue cross) and the population set 
converges to the true robot’s pose. The environment is modelled as an occupancy grid with a 

cell’s size of 12  centimetres. The map scales in figure 2 are expressed in cells.  
B. Accuracy and robustness 
One striking aspect is the low number of robot’s pose solutions required in the population. 
An appropriate population size for the environment under consideration is 300. The size of 
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this environment is approximately 865
2
m , and then less than 0.3 elements per square meter 

is required. In a similar test with Monte Carlo, for this environment are required 10000 
samples to localize reliably the mobile robot. Jensfelt tests with a Monte Carlo Localization 
method (Jensfelt, 2001) for a test environment of 900m2 required 10,000 samples. That is 11 
samples per square meter.  
Fig. 3 shows the performance of the ELF under different sensor noise levels. The ELF 
algorithm exhibit an relatively constant average error around 6 cm until a sensor noise level 
of 30%, but even with higher noise levels (50%) is able to localize the robot. This robustness 
to sensor noise is equivalent to Monte Carlo results shown in (Thrun & Fox, 2001).  
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Figure 3. EFL convergence process at cycles: 3, 5, 7 and 9 
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If we consider the effect of the population size on the accuracy of the algorithm, it can be 
noticed the minimum effect of the population size on the accuracy. This behaviour is 
consequence of the search nature of the ELF algorithm. This behaviour differs completely 
from Monte Carlo results. As noticed by several authors (Doucet, 1998, Liu & Chen, 1998), 
the basic Monte Carlo filter performs poorly if the proposal distribution, which is used to 
generate samples, place not enough samples in regions where the desired posterior is large. 
This problem has practical importance because of time limitations existing in on-line 
applications. 
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Figure 4. Error of ELF as a function of the sensor noise 
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Figure 5. Accuracy as a function of the population size 
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C. Complexity and computational cost 
A final issue addressed in our experiments concerns the running time of ELF algorithm. The 
absolute time depends on several factors: the computer platform, the observation prediction 
model and the sensor data, and the population and iterations number. This section 
illustrates the requirements of ELF. All results reported here were obtained in a PC with an 
Athlon XP 1800+ processor.  
Table 1 shows the time required for ELF to update the estimate value using 60 range laser 
data, 15 iterations and different population sizes. Table 2 shows the time required for ELF 
algorithm to update the robot’s pose estimate using a fixed population size and changing 
the iteration´s number. In both cases the behaviour of the algorithm is completely linear. In 
our experimental localization tests, in a test area of 865m2 the best results have been 
obtained with an initial population of 300 elements and 15 iterations. Once the population 
converge into a ball of 1 meter radius, the population required to keep the robot localized 
decrease considerably. In our experiments 50 elements are sufficient. This results shows that 
even in the initial steps of the ELF algorithm the computational cost is moderate.  

Population/Iterations Time(ms)  

1000/15  1703   

500/15  859   

400/15  704   

300/15  520   

200/15  359   

100/15  180   

75/15  141   

50/15  94   

Table 1. Computation time for a fixed number of iterations 

Population/Iter.Time(ms) 

500/5  328   

500/10  641   

500/15  859   

500/20  1125   

500/25  1407   

Table 2. Computation time for a fixed population of 500 elements 

A critical point in any global localization algorithm is the variation in the computational 
requirements with the environment dimensions. EFL algorithm requirements are 
proportional to the surface of the environment map. In the experiments done in our 
laboratory test site, to cope a 900m2 area the algorithms requires 300 samples and for an area 
of 1800m2 the samples required are 600. After the population convergence, the samples can 
be reduced to 30 elements.  
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4. Conclusions 

The proposed algorithm has a range of interesting characteristics:  
Evolutive filters can deal with non-linear state space dynamics and noise distributions.  
Due to the set of solutions does not try to approximate posterior density distributions, it 
does not requires any assumptions on the shape of the posterior density as parametric 
approaches do.  
Evolutive filter focus computational resources in the most relevant areas, by addressing the 
set of solutions to the most interesting areas according to the fitness function obtained.  
The number of tentative solutions required in the evolving set is much lower than those 
required in particle filters, and similarly to those filters the evolving set can be reduced 
when the algorithm has converged to a reduced area around the best estimate.  
The size of the minimum solution’s set required to guaranty the convergence of the 
evolutive filter to the true solution is low.  
Due to the stochastic nature of the algorithm search of the best robot’s pose estimate the 
algorithm is able to cope a high level of sensor noise with low degradation of the estimation 
results. 
The algorithm is easy to implement, and the computational cost makes it able to operate on 
line even in relatively big areas.  
The proposed method has been tested under real conditions in a B-21 mobile robot.  
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program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

L. Moreno, S. Garrido, M. L. Munoz and D. Blanco (2008). An Evolutionary MAP Filter for Mobile Robot Global

Localization, Frontiers in Evolutionary Robotics, Hitoshi Iba (Ed.), ISBN: 978-3-902613-19-6, InTech, Available

from:

http://www.intechopen.com/books/frontiers_in_evolutionary_robotics/an_evolutionary_map_filter_for_mobile_r

obot_global_localization

www.intechopen.com



Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


