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1. Introduction 

Scientific progress has been very important in the last two centuries, from the invention of 
the steam machine until the electronic age.  Robots design has also suffered an important 
progress in the last decades and many approaches deal with this issue. Our approach carries 
out an optimal design of planar 1 DoF mechanisms which are used for robot hands or 
grippers. These kinds of mechanisms are amply used because of their simplicity and they 
only need one motor to move them, so many robots use this kind of mechanism as grippers. 
We studied a new technique to carry out an optimal design of a gripper in this work. A 
searching procedure is developed, which applies genetic algorithms based on an 
evolutionary approach. The new method has proved to solve synthesis problems of planar 
mechanisms and has been used for testing a hand robot mechanism, showing that the 
solutions are accurate and valid for all cases.  
Different techniques have been used for mechanism synthesis. In graphical techniques the 
use of the coupler curve atlas (Hrones & Nelson, 1951) who developed the four-bar 
mechanisms atlas with almost 10,000 curves is especially remarkable. The solution by 
(Zhang et al., 1984) focused on five-bar geared linkages. These methods are easy and fast to 
use but at a low precision rate. The first reference addressing analytical methods was made 
by (Sandor, 1959), followed by (Erdman, 1981), (Kaufman, 1978) and (Loerch et al.,1975). 
References about the subject by (Freudenstein, 1954), (Beyer, 1963), (Hartenberg & Denavit, 
1964) also exist, solving the synthesis problem using precision points to be reached by the 
coupler point of the mechanism, but these methods restrict the number of precision points in 
order to allow the solution of the mathematical system to be closed and show problems 
caused by wrong sequence of the precision points followed. The great increase in computer 
power has permitted the recent development of routines that apply numerical methods to 
the minimization of a goal function. One of the first authors who studied these methods was 
(Han, 1966), whose work was later improved by (Kramer & Sandor, 1975), (Sohoni & Haug, 
1982). They optimized one of the most common goal functions: the error between the points 
tracked by the coupler and its desired trajectory. 
The approach to mechanism synthesis presented in this work deals with evolutionary 
algorithms based on a differential evolution technique. These kinds of algorithms were first 
introduced by (Holland, 1973,1975), whose work is included in Goldberg’s book (Goldberg, 
1989), and they have been extensively and successfully applied to different optimization 
problems. These methods define a starting population that is improved by approximations 
to the goal function making use of natural selection mechanisms and natural genetic laws. 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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The main advantages of these methods are their simplicity in implementing the algorithms 
and their low computational cost. In addition, there is no need for extensive knowledge of 
the searching space, as it is continuous, presents local minimums or shows other 
mathematical characteristics demanded by traditional searching algorithms. Many 
researches use this technique for optimum mechanisms synthesis, but they apply a single 
goal function to carry out the optimization problem. The main difference in our approach is 
that we use several goal functions and constraints, so the optimization problem is more 
complex and useful for designing hand robots. Multiobjective techniques are used by (Rao 
& Kaplan, 1986), (Krishnamurty & Turcic, 1992). (Kunjur & Krishnamurty, 1997) use a 
multiple criteria optimization approach that obtains Pareto-optimal design solution sets. 
They apply this method to a mechanism dimensional synthesis with two objective functions 
and three constraints. (Haulin & Vinet, 2003) develop a multiobjective optimization of hand 
prosthesis four-bar mechanisms. They use the Matlab optimization toolbox and a goal 
attainment method for the optimization. All of these need a high power calculus and can fail 
because they might find the solution in a local minimum ending the search without reaching 
the true optimal solution.  
In this work we have developed an evolutionary approach based on Differential Evolution 
technique (Storn & Price, 1997). Other authors, like (Cabrera et al., 2002) use this technique 
for the optimum synthesis of four-bar mechanism. (Shiakolas et al., 2005) also uses 
Differential Evolution for the optimum synthesis of six-bar linkages, but they apply a single 
goal function to carry out the optimization problem. We use several goal functions and 
constrains in our approach, so the optimization problem is more complex and useful in a 
great variety of problems. We apply our algorithm to hand mechanism synthesis in one-
DOF robot, but it is possible to use it in different problems, only changing the goal functions 
and constraints. 

2. Optimization method 

Evolutionary algorithms (EAs) are different from more normal optimization and search 
procedures in four ways: 

• Evolutionary algorithms work with a coding of the parameter set, not the parameters 
themselves. 

• Evolutionary algorithms search with a population of points, not with a single point. 

• Evolutionary algorithms use evaluations of goal functions, not derivatives or other 
auxiliary knowledge. 

• Evolutionary algorithms use probabilistic transition rules, not deterministic rules. 
Altogether, these four differences contribute to an evolutionary algorithm’s robustness and 
turn out to be an advantage over other more commonly used techniques. 
Definition.-The optimization problem is given by: 
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Where fi are the goal functions, i.e. a set of functions where each one expresses a feature or 
objective to be optimized, and where each individual, X, obtains a value, its fitness. 
Furthermore gj(.) are the constraints defining the searching space.  
The strategy of evolutionary methods for optimization problems begins with the generation 
of a starting population. Each individual (chromosome) of the population is a possible 
solution to the problem and it is formed by parameters (genes) that set the variables of the 
problem. Genes can be schematized in several ways. In the first approach by (Holland, 1973, 
1975) they are binary chains, so each xi gene is expressed by a binary code of size n. Another 
way to express the genes, as done in this work, is directly as real values. All genes are 
grouped in a vector that represents a chromosome, (Storn & Price, 1997) , (Wright, 1990): 

 = ∀ ∈ℜ⎡ ⎤⎣ ⎦1 2 . . kX x x x x  (2) 

Next the starting population has to evolve to populations where individuals are a better 
solution. This task can be reached by natural selection, reproduction, mutation or other 
genetic operators. In this work, selection and reproduction are carried out sequentially and 
mutation is used as an independent process.Now, we will define some basic concepts that 
are very common in multiobjective optimization. 
Definition.-Pareto dominance: 

A vector, ∈ Ω*X , is said to dominate ∈ Ω*Y , denoted p* *X Y , if and only if *( )if X  is 

partially less than *( )if Y , i.e.: 

{ }∀ ∈ 1,....,i n : ( ) ( ){ } { } ( ) ( ){ }≤ ∧ ∃ ∈ <* * * *1,.., :i i i if X f Y i n f X f Y  

Definition.- Non-dominated or Pareto-optimal solution: 

A vector, ∈ Ω*X , is said to be non-dominated if and only if there is no vector which 

dominates *X , i.e., ¬∃ ∈Ω p* * *:Y Y X  

Definition.- Pareto-optimal set: 

A set, ⊂ ΩP , is said to be Pareto-optimal if and only if: ∀ ∈ ¬∃ ∈Ω p* * * *: :X P Y Y X  

Now we are qualified to explain the evolutionary algorithms that we propose. This 
algorithm is based on the Differential Evolution algorithm proposed by (Storn & Price, 
1997), but we introduce a set of new features: 

• The original Differential Evolution algorithm was used in optimization problems with 
one goal function. We use it with multiobjective problems. 

• We use a Pareto-based approach to sort the population and this one is divided into non-
dominated and dominated population. The ‘best’ individuals are chosen to run the 
Differential Evolution strategy from the non-dominated sub-population. 

• We use a genetic operator called mutation, which is not used in the original algorithm. 
This operator is of great significance in certain problems to prevent stagnation 
(Lampinen & Zelinka, 2000). 

• We use a function to control the number of non-dominated individuals in the 
population. 

• We introduce a procedure for handling the constraints. This procedure is based on the 
work proposed by (Lampinen, 2002), but applied to multiobjective problems. 
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Definition.- Selection of a couple for reproduction: 
For selection, two individuals are randomly chosen from the population and they form a 
couple for reproduction. The selection can be based on different probability distributions, 
such as a uniform distribution or a random selection from a population where the weight of 
each individual depends on its fitness, so that the best individual has the greatest 
probability to be chosen. In this paper, an individual randomly selected from the Pareto-
optimal set of the population and two individuals randomly selected from the complete 
population with uniform distribution are chosen for reproduction and they make up a 
disturbing vector, V. The scheme, (Storn and Price, 1997), known as Differential Evolution 
yields: 

 
[ ]{ }

( )

ζ ζ

≡ ∈

⊂ ∈

= + ⋅ −

1

1 2 3

: 1,

:

i

r

r r r

P X i NP

P Y

V Y F Y Y

 (3) 

where Yr1 is an individual chosen randomly from the Pareto-optimal setζ of population P, 

which is obtained as defined previously, Yr2 and Yr3 are two individuals randomly selected 
from population P among NP individuals, and F is a real value that controls the disturbance 
of the Pareto-optimal individual. This disturbing vector V and individual i of the population 
form the couple for reproduction. This way to obtain parent V, it maintains the philosophy 
of the original Differential Evolution algorithms, where the best individual of the population 
and two individuals chosen randomly are used to obtain the disturbing vector V. In some 
ways Yr1 are the ‘best’ individuals in the actual population, because they are chosen from the 
Pareto-optimal set. 
Definition.- Reproduction: 
Next, for reproduction, V is crossed with individual i of the current population to generate 
individual i of the next population. This operator is named crossover. 
In natural reproduction, parents' genes are exchanged to form the genes of their descendant 
or descendants. As shown in Figure 1, reproduction is approached by a discrete multipoint 
crossover that can be used to generate XiN: parent XiG provides its descendant with a set of 
genes randomly chosen from its entire chromosome and parent V provides the rest. 

Crossover is carried out with a probability defined as CP∈[0, 1]. 
Definition.- Selection of new descendents: 
The following steps are performed to choose which individual XiN or XiG passes to the next 
population: 

• If the new XiN descendent fulfills more constraint than parent XiG, then the new 
descendent is chosen for the next population, i.e., 

• if ξ∃ ≤ → =: ( ) 0 ( ) 1N N
k i k ik g X X , then: 

• { } ξ ξ +∀ ∈ > → =∑ ∑ 11,.., : ( ) ( )N G G N
k i k i i ik m X X X X  

• If parent XiN fulfills more constraints than the new XiG descendent, then the parent is 

chosen for the next population, i.e, { } ξ ξ +∀ ∈ ≤ → =∑ ∑ 11,.., : ( ) ( )N G G G
k i k i i ik m X X X X  

• If both individuals XiN and XiG fulfill all constraints or do not fulfill some of them, then 
the individual which dominates is chosen for the next population, i.e.: 
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{ }{ }
{ }

{ } +

⎧ ⎫∀ ∈ ≤ ∧ ≤⎪ ⎪
⎨ ⎬

∨ ∃ > ∧ >⎪ ⎪⎩ ⎭
∧ → =p 1

1,.., : ( ) 0 ( ) 0

: ( ) 0 ( ) 0

N G
k i k i

N G
k i k i

N G G N
i i i i

k m g X g X

k g X g X

X X X X

 

{ }{ }
{ }

{ } +

⎧ ⎫∀ ∈ ≤ ∧ ≤⎪ ⎪
⎨ ⎬

∨ ∃ > ∧ >⎪ ⎪⎩ ⎭
∧ → =p 1

1,.., : ( ) 0 ( ) 0

: ( ) 0 ( ) 0

N G
k i k i

N G
k i k i

G N G G
i i i i

k m g X g X

k g X g X

X X X X

 

Therefore the population neither increases nor decreases. 

 
Figure  1. Reproduction scheme based on discrete multipoint crossover 

Definition.-Mutation 
A new mutation procedure of the parameters to be optimized is developed in this work. 
Mutation is an operator consisting of random change of a gene during reproduction. We 
have verified that this procedure is fundamental to obtain the optimum when the parameter 
range values are very different. The mutation procedure changes only some of these 
parameters allowing to find the correct optimum and not to stop in a local minimum. This 
problem was called stagnation in the work performed by (Lampinen & Zelinka, 2000) and it 
is shown in Figure 2. 
The whole procedure to obtain a new descendent is shown in Figure 2a. In this case, there 
are two different parameters (genes) and the optimum has a very different value for these 
two parameters. And we suppose that the individuals of the population are situated around 
a local minimum due to the evolution of the population. The fundamental idea of this 
discussion consists of the step length adaptability along the evolutionary process. At the 
beginning of the generations the step length is large, because individuals are far away each 
from other. As evolution goes on, the population converges and the step length becomes 
smaller and smaller. For this reason if the mutation procedure does not work properly, it is 
possible to drop in a local minimum. In Figure 2a and 2b the differences between both 
strategies with and without mutation procedure are shown. 
The way to obtain a new descendent of the next population without mutation procedure is 
shown in Figure 2a. In this case the V and XiG couple generates the XiN descendent, but this new 
chromosome may not reach the global minimum due to the fact that the absolute values of the 
genes that compose it are very different, and the selection plus reproduction operations are not 
able to make the new descendent by themselves to overcome the valley of the local minimum. 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

114 

 

Figure  2. a) Differential Evolution without mutation procedure. b) Differential Evolution 
with mutation procedure 

With the mutation procedure it is possible to solve the problem explained before. The 
generation of a new descendant using the mutation procedure is schemed in Figure 2b. 
Here, the value of one or several of the genes of the V and XiG couple is changed in a range 
defined by the user, when the reproduction is taking place. This fact yields a new 
descendent, XiN, which has a different fitness from the XiN descendent studied in the 
previous case. This allows the algorithm to look for individuals with better fitness in the 
next generation. 
In this work, mutation is defined as follows: when gene xi mutates, the operator randomly 
chooses a value within the interval of real values (xi, xi±range), which is added or subtracted 
from xi, depending on the direction of the mutation. 

Mutation is carried out with a probability defined as MP∈[0, 1], much lower than CP. Once 
the genetic operators are described, the optimization algorithm will be explained. 

3. POEMA algorithm 

The proposed algorithm, which is defined as Pareto Optimum Evolutionary Multiobjective 
Algorithm (POEMA), has the following steps: 
1. The algorithm starts with the random generation of a starting population with NP 

individuals. 
2. Next, the algorithm calculates the Pareto-optimal set of the total population and obtains 

its size, Npr. To preserve diversity, the number of non-dominated individuals is 
maintained along iterations according to the following function: 

{ }∀ ∈ ≤ + ⋅ Δ01,.., itermax : prk N N k N  

Where itermax is the number of iterations in the algorithm, N0 is the number of allowed 

initial individuals in the Pareto-optimal set and ΔN is a parameter to increase the 

allowed initial individuals with the iterations. So a maximum number of non-
dominated individuals are allowed. If this maximum is exceeded, the nearest neighbor 
distance function is adopted (Abbass, 2002). 

3. To create the new population, the selection of couple, reproduction and mutation 
operator are used according to definitions described above. 

4. If the algorithm reaches the maximum number of iterations, it finishes; otherwise return 
to step 2. 
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Figure 3. Scheme algorithm 

A scheme of the proposed algorithm is shown in figure 3. First, we generate a parent for 
reproduction according to the Differential-Evolution scheme, which was defined above. Hence 
the couple for reproduction is the actual population, XG, and the disturbing vector population 
is V. As the reproduction and mutation operator are carried out, a new population is obtained, 
XN. This one is compared with the actual population, XG, to obtain the new population, XG+1. 
At this point, we obtain the Pareto-optimal set of the new population according to what we 
explained above and we run a new cycle in the algorithm. As we can observe, the new 
population maintains the same number of individuals as the previous one, so this algorithm 
does not increase the number of individuals in the population. 

4. Goal function and constraint formulation in the two proposed problems  

Once we have described the POEMA algorithm, we will develop the goal functions for the 
problem of a robot hand mechanism in this section. The advantage of using a multiobjective 
evolutionary algorithm is that we can include either kind of goal function that other works 
have resolved individually. When a mechanism is designed, several kinds of features are 
kept in mind: 

• Geometric features: a link has to measure a specific length, etc. 
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• Kinematical features: a point in the mechanism has to follow a specific trajectory, 
velocity or acceleration law during its movements. 

• Mechanical advantage: amount of power that can be transmitted by the mechanism for 
one complete cycle. 

First problem.- In this problem we dealt with a robot hand mechanism (Figure 4). The goal 
functions for this problem were: 
1.- A grasping index (GI) that is similar to the mechanical advantage concept, (Ceccarelli, 
1999), which is obtained by means of the method of virtual work applied between the input 
slider (point F) and the output link (point E), obtaining: 

 ( ) ψ
ψ ψ

ψ

⋅ ⋅
− ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⇒ = =

+ ⋅

2 cos
2 cos sin

tan

F
yF E E

y x y E E
x y

vF
P v F v F v GI

P v v
 (4) 

As we can see in the previous equation, the GI grasping index must be maximized. 
However, we will convert this objective in a minimizing function, so the first goal function 
is: 

 
ψ⎛ ⎞+ ⋅
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⎝ ⎠

1

tan
min

E E
x y

F
y

v v
f

v
 (5) 

2.- The second objective is to minimize the acceleration in the E contact point to avoid a big 
impact on the object. So the second goal function is: 

 ( )=2 min E
xf a  (6) 

3.-Another objective is to reduce the weight of the mechanism. If we consider all the links 
with the same thickness, this objective will be: 

 ( )
=

= ∑ 2
3

1

min
n

i
i

f x  (7) 

Where 
i
x  is the length of the i link in the mechanism. 

4.- The last objective is to standardize the link length in the mechanism to avoid a great 
difference between the length of the different links. So the fourth goal function is: 
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( )

= =

=

−

=
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1 1
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i j
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 (8) 

The constraints for this problem are: 

 ≡ >1 0E
xg v  (9) 

 ≡ =2 mecg EJ D  (10) 
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Figure 4. a) Hand robot mechanism for problem 1 and 2. b)  Real robot manipulator 

The first constraint says that the velocity of the E contact point must go in the same direction 
as the grasping. And the second constraint says that the distance between the two contact 

points, EJ , must be object size mecD . Hence the whole optimization problem is shown in the 

next equation: 

 

{ }

≤ ≤

1 2 3 4

1

2

min max

min ( ), ( ), ( ), ( )

:

( )

( )

f X f X f X f X

subject to

g X

g X

l X l

 (11) 

Where, the X  vectors are the design variables. We also introduce a boundary constraint of 
the design variables. To find the design variables, it is necessary to do a kinematic analysis 
of the mechanism. We use the Raven method to determine the position, velocity and 

acceleration of the E contact point, because these variables are in 1f  and 2f  goal functions 

in the first problem and in 1f , 2f  and 3f  goal functions in the second problem. The rest of 

the goal functions in both problems only need the link lengths of the mechanism. Hence, we 
establish the following scheme according to Figure 5: 

 = + + +
r r r r r

1 1 6 6x yE r r r g  (12) 

Then to obtain the position of the contact point E: 

 ( )θ θ δ= − + ⋅ + ⋅ +1 6 6 6 5cos cosX xE r r g  (13) 

 ( )θ θ δ= + ⋅ + ⋅ +1 6 6 6 5sin siny yE r r g  (14) 

 ( )ψ θ δ= 5 6 5, , ,f g r  (15) 
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To obtain the velocity of the contact point E: 

 ( )ω θ ω θ δ= − ⋅ ⋅ − ⋅ ⋅ +6 6 6 6 5 5sin sinE
xv r g  (16) 

 ( )ω θ ω θ δ= ⋅ ⋅ + ⋅ ⋅ +6 6 6 6 5 5cos cosE
yv r g  (17) 
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Figure  5. Kinematic study of the mechanism 

And the acceleration: 

 ( ) ( )ω θ α θ ω θ δ α θ δ= − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ + − ⋅ ⋅ +2 2
6 6 6 6 6 6 6 5 5 6 5 5cos sin cos sinE

xa r r g g  (18) 

In the previous equations we have obtained all the variables that we need in the two 
problems proposed, but we also have to develop the following schemes: 

 + + =
r r r r

2 3
F F

y xr r r r  (19) 

 + + + =
r r r r r '
1 1 6 5 2x yr r r r r  (20) 

The first equation solves the slider-crank mechanism (2-3-4) and the second one solves the 
four-link mechanism (2-5-6), so the design variables for the proposed problems are: 

 { }α δ= '
2 3 1 1 2 5 6 6, , , , , , , , , , ,F F

x y x yX r r r r r r r r r g  (21) 

The design variables are the same for the two problems. The only difference is that in the 

second problem the variable F
xr , what it is the actuator position, has different positions to 

obtain different contact point positions. 
Second problem.- In this problem we will use the same hand robot mechanism (Figure 4), 
but in this case the mechanism will be able to grasp different objects with different sizes, i.e., 
the size of the object is within a determined range. Hence, in this problem the input slider 
has different positions that determine the different positions (precision points) of the output 
link. In this case the goal functions are: 
1.- As the mechanism is in movement and the output link has different positions, i.e., the E 
contact point follows several precision points to determine the range of the size of the object, 
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we will try to make the E contact point follow a determined trajectory as well, so the first 
goal function is: 

 ( ) ( )
=

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
∑

22

1 , , , ,
1

min
n

obj objmech mech
x i x i y i y i

i

f E E E E  (22) 

Where ,
obj
x iE  and ,

obj
y iE  are the x and y coordinates that the E contact point has to follow in each 

i position and ,
mech
x iE  and ,

mech
y iE  are the x and y coordinates of the E contact point of the 

designed mechanism in each i position. Hence, this goal function measures the error 
between the desired trajectory and the mechanism trajectory of the E point. 
2.-The second goal function minimizes the grasping index (GI) developed in the previous 
problem, but applied to each i position of the E contact point, i.e, we obtain an average 
grasping index. 
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In this case we obtain E
xv , E

yv , F
yv  and ψ i  in each i precision point. And n is the number of 

precision points. The following goal functions are the same as in the previous problem: 
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In this problem the constraints are related to the velocity of the E contact point. This 
velocity, as in the previous problem, must be greater than zero, but in this case we have 
different E contact point velocities, so we have as many constraints as precision points. 
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Once the problem has been defined, we can show it in the next equation: 

 

{ }

≤ ≤

M

1 2 3 4 4

1

2

min max

min ( ), ( ), ( ), ( ), ( )

:

( )

( )

( )n

f X f X f X f X f X

subject to

g X

g X

g X

l X l

 (28) 

As in the previous problem, the X vectors are the design variables. 

5. Results 

In the first place, we show the results of the first problem. In this case, the algorithm 
parameters are: (number of individuals in the population) NP=100, (maximum iteration 
number) itermax=5000, (disturbing factor) F=0.5, (crossover probability) CP=0.2, (mutation 
probability) MP=0, (initial number of non-dominated individuals) No=40, (non-dominated 

individual growth) ΔN=0.012, (size of the object) Dmec=100, (actuator velocity) F
yv =-1, 

(actuator acceleration) F
ya =1. 
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Figure  6. Average value evolution of the goal functions along iterations in the first problem 
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We show the average value evolution of the goal functions along iterations in Figure 6. The 
average values are obtained by the following equation: 

 ==
∑

1
,

( )
NP

iter
k i

i
k iter

f X

f
NP

 (29) 

Where { }∈ 1,2,3,4k are the numbers of goal functions in the first problem and NP is the 

number of individuals in the population. 
We show the average value behavior of the goal functions in the previous figure. We can 
observe how the average values have decreased in every case. The average values are mean 
values of the goal functions of the all the individuals in the population and at the beginning 
of the iterations there are a few ‘good individuals’, i.e., non-dominated individuals, so those 
values are bad when the algorithm starts the iterations and they improve when the 
algorithm finishes. However, the algorithm does not always finish with the best average 
values as we can see in Figure 6a and 6d. This fact happens because the number of non-
dominated individuals is not the total number of individuals in the population and the 
average values can be worse in the final populations because the dominated individuals in 
the final populations make the average value worse. 
The non-dominated individuals’ behavior can be observed in Figure 7. We can see how non-
dominated individuals at the beginning of the iterations follow the established law, 
increasing the number of non-dominated individuals linearly with the iterations. At the end 
of the iterations, the number of non-dominated individuals is lower than the allowed non-
dominated individuals. Hence the non-dominated individuals in the final populations are 
not the whole number of individuals in the population. 
We also show the three ‘best’ mechanisms of the final population in the following figure. We 
draw the mechanisms that have the best value of one of the goal function values, but this 
does not mean that these mechanisms are the best mechanisms in the final population, as 
the final population has about eighty-four non-dominated mechanisms (see Figure 7). 

 

Figure  7. Evolution of non-dominated individuals along iterations 

The design variable values of these three mechanisms are shown in the following table: 
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F
xr  

[L] 

F
yr  

[L] 

2r  

[L] 

3r  

[L] 

1xr  

[L] 

1yr  

[L] 

'
2r  

[L] 

5r  

[L] 

6r  

[L] 

α  

[-] 
δ  

[-] 
6g  

[L] 

(a) 47.9 -15.3 34.2 42.7 -69.1 -17.4 81.8 63.4 124.6 1.3 1.38 134.4 

(b) 50.2 -1.42 32.1 37.6 -41.4 -2.77 87.7 39.2 109.9 0.8 1.23 54.41 

(c) 49.7 -10.9 33.9 35.1 -68.6 -20.6 80.5 55.7 93.21 1.2 0.84 117.8 

Table 1. Design variable values of the three selected mechanisms in the first problem 

And the values of every goal function for the three drawn mechanisms are shown in Table 2. 
The design variables and the goal function values of the three mechanisms correspond to the 
three mechanisms drawn in Figure 8. As we can see, mechanism (b) has the minimum value of 

the 1f  and 2f  functions, i.e., it has the minimum value of the contact point acceleration and 

the minimum value of its dimensions, but it has the worst value of grasping index 1f  and of 

link proportion 4f . Instead, mechanism (a) has the best grasping index and mechanism (c) has 

the best link proportion. Also, the contact point distances are shown in Figure 8. These 
distances are similar to the three cases and they are very close to our objective. 

 1f  [-] 2f  [L/T2] 3f  [L] 4f  [-] 

Mechanism (a) 0.4207 -0.1266 234.2706 0.4183 
Mechanism (b) 1.7828 -901.79 175.9284 0.7677 
Mechanism (c) 1.0479 -617.61 205.5393 0.3581 

Table 2. Goal function values from three selected mechanisms in the first problem 

 
Figure  8. Three mechanisms of the final population in the first problem 

We have to highlight that the three selected mechanisms are the ones with the best values of 
one of the goal function values, but this fact does not imply that these mechanisms are the 
best among the eighty-four non-dominated mechanisms. Hence, the designer will have to 
choose which mechanism among the non-dominated mechanisms is the best for him. 
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Now, we show the results of the second problem. In this case, the algorithm parameters are: 
(number of individuals in the population) NP=100, (maximum iteration number) 
itermax=5000, (disturbing factor) F=0.5, (crossover probability) CP=0.2, (mutation 
probability) MP=0, (initial number of non-dominated individuals) No=40, (non-dominated 

individual growth) ΔN=0.012, (actuator velocity) F
yv =-1, (actuator acceleration) F

ya =1. 

Again, we show the average value evolution of the goal functions along iterations in Figure 
9. The average values are obtained the same way as in the previous problem. 

 
Figure  9. Average value evolution of the goal functions along iterations in the second 
problem 
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In this case, the average values of the goal functions also decrease along with the iterations 

in every case. Only the 3f  and 5f  goal functions have a different behavior when the 

algorithm finishes and the average values are worse than in the previous iterations. Instead, 

the new 1f  goal function has a clear decreasing behavior and the average value in the final 

iterations is the best one. 
At the end we show three mechanisms of the final non-dominated population which have 
the best value of one of the goal functions (Figure 10). In this case, the mechanisms have to 
follow certain precision points: 

{ } { }= − =10,10,40 160,170,165Obj Obj
x yE E  

The coordinates of the previous precision points are measured from the 6O  fixed point in 

the mechanism. Hence the design variable values are: 

 
F

xr  

[L] 

F
yr  

[L] 

2r  

[L] 

3r  

[L] 

1xr  

[L] 

1yr  

[L] 

'
2r  

[L] 

5r  

[L] 

6r  

[L] 

α  

[-] 
δ  

[-] 
6g  

[L] 

-6.96 
3.04 (a) 22.5 

13.04

28.5 27.0 -57.6 -25.4 76.1 54.27 89.6 0.6 1.18 83.3 

-12.6 
-2.59 (b) 26.03 
7.41 

19.36 21.73 -45.2 -36.3 72.7 43.62 92.3 0.9 0.99 78.7 

-19.3 

-9.29 (c) 32.74 

0.71 

32.56 20.21 -20.9 -0.57 92.8 40.15 125.0 1.4 1.95 50.8 

Table 3. Design variable values of three selected mechanisms in the second problem 

The F
yr  value has three positions in the previous table because the E contact point is 

compared in these three positions of the input slider. 

 

Figure 10. Three mechanisms of the final population in the second problem 
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We also show the goals function values of these three mechanisms. 

Mechanism (a) has the best value of the 3f  and 5f  goal functions, i.e., this mechanism has the 

minimum value of E contact point acceleration and it has the best link proportion. Instead, 

mechanism (b) has the best 1f  and 4f  goal functions, so the E contact point path fits 

objective points more accurately and it also has the minimum value in its dimensions. 

Finally, mechanism (c) has best average 2f  grasping index. 

 1f  [L] 2f  [-] 3f  [L/T2] 4f [ L ] 5f [-] 

Mechanism (a) 3.86 1.33 -0.4051 172.38 0.4125 

Mechanism (b) 3.54 1.97 -0.1413 163.67 0.5620 

Mechanism (c) 3.66 0.1412 -0.0638 177.21 0.9785 

Table 4. Goal function values of three selected mechanisms in the second problem 

6. Conclusions 

In this paper, we showed a new algorithm (POEMA) based on the Differential Evolution 
strategy, but it has been extended to tackle multiobjective optimization problems. For this 
purpose, new features have been developed. This work uses the Pareto-based approach to 
classify the population into non-dominated and dominated individuals. 
The algorithm is used to optimize several goal functions in a hand robot mechanism, subject 
to different constraints. The same method can be applied to optimize any other goal 
functions in other different problems. 
One of the features of the used method is that there is not an unique solution to the problem, 
as the method finds several solutions which are called non-dominated solutions and every 
non-dominated solution is a good solution to the proposed problem. Hence, the designer 
must choose which is the best in every case, i.e., he must determine which characteristic or 
goal function is a priority and which is not. 
An individual evolution study has been made and the obtained results have been 
satisfactory. We have shown several final mechanisms to the two proposed problems and 
each one has a good value of one o more features or goal functions. 
Another advantage depicted by the method is its simplicity of implementation and that it is 
possible to use the method in other different mechanism problems by simply changing the 
goal function formulation for those problems. 
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