
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

4

Learning by Experience and by Imitation in
Multi-Robot Systems

Dennis Barrios-Aranibar, Luiz M. G. Gonçalves and Pablo Javier Alsina
Universidade Federal do Rio Grande do Norte

Brazil

1. Introduction

With the increasing number of robots in industrial environments, scientists/technologists
were often faced with issues on cooperation, coordination and collaboration among different
robots and their self governance in the work space. This has led to the development of
systems with several cooperative robotic agents. (Kim et al., 1997b). Generally, a system
with several robotic agents (multi-robot system) is composed by two or more robots
executing a task in a cooperative way (Arai and Ota, 1992).
Coordination, collaboration and cooperation are three terms used without distinction when
working with multi-agent and multi-robot systems. In this work, we adopt a definition
proposed by Noreils (Noreils, 1993) in which cooperation occurs when several agents (or
robots) are gathered together so as to perform a global task. Coordination and collaboration
are two forms of cooperation (Botelho and Alami, 2000). Coordination occurs when an entity
coordinates its activity with another, or it synchronizes its action with respect to the other
entity, by exchanging information, signals, etc. And, collaboration occurs when two or more
agents decompose a global task in subtasks to be performed by each specific agent.
Generally, the solution for problems using multi-agent and multi-robot systems is divided
into stages. When talking about autonomous robots, two of these stages are the task
allocation stage and the task execution stage. Task allocation should be done so that all
components (agents or robots) in the system are used and the problem is completely solved.
The task execution stage itself should be performed so that the agents do not interfere to
each other (coordination and/or collaboration) when solving the problem. Traditionally,
both stages are carried out independently. In the task allocation stage, it is defined if the
agents will collaborate to each other or if they will coordinate their activities. In the task
execution stage, collaboration and/or coordination are effectively done.
In the literature, each stage is implemented using different techniques. The task allocation
stage can be implemented using centralized or decentralized approaches (Le Pape, 1990).
Centralized approaches can be implemented as an optimization problem. Decentralized
approaches generally use marked based approaches like the contract-net protocol (CNP)
(Ulam et al., 2007) or other approaches derived from it (Botelho and Alami, 1999).
The task execution stage can be implemented in many ways. It depends of the nature of
interactions between agents (Collaboration or coordination) and if agents can modify or not
their strategies (Static and dynamic strategies). For example it can be implemented using

Source: Frontiers in Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education
and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

Frontiers in Evolutionary Robotics

62

probabilistic methods (Bruce et al., 2003), fussy logic (Wu and Lee, 2004; Chen and Liu,
2002), reinforcement learning (Salustowicz et al., 1998; Wiering et al., 1999), evolutionary
algorithms (Zhang and Mackworth, 2002), neural networks (Kim et al. 1997a) and others.
A static strategy is defined during the design of the robotic system and after that, it is
applied to the robots by choosing roles and actions of each robot depending of the a priori
defined situation. A disadvantage of this kind of strategy is that it doesn’t adapt
automatically to changes in requirements and can lead to a low performance of the system if
situations not envisaged by the designers occur.
On the other hand, a dynamic strategy adapts itself to the environment. This kind of strategy is
generally implemented with artificial intelligence techniques. Dynamic strategies can be
divided in two stages: the learning and the using stage. In the learning stage, the overall system
is exposed to simulated environments, where, if necessary, opponents are programmed using
static strategies. In the using stage, the system does not modify the strategy parameters. Both
stages can be executed one after another during all useful life of the system.
This traditional way of implementing dynamic strategies requires a predefined set of
possible situations and actions. Thus, because robots already know the kind of situations
they can find in the environment and also they know what actions they can execute, we
denominate these traditional approaches as “learning by experience”.
We conjecture that, in real world and not in minimal applications, the robots can not
completely know what kind of situations they can find and also what are all the actions that
they can perform, in this case, consider an action as a set of consecutive low level signals to
the actuators of the robots. In this sense, we propose to combine the imitation learning
approach with learning by experience in order to construct robots that really adapt to
environment changes and also evolve during their useful life. Imitation learning can help
the robots to know new actions and situations where it can be applied and learning by
experience can help robots to test the new actions in order to establish if they really work for
the whole team.
It is important to note that the concepts, algorithms, and techniques proposed and evaluated
in this work are focused in the task execution stage, specifically in dynamical strategies.
Also, all the concepts are valid for multi-robot and multi-agent systems. The algorithms
traditionally used for implementing learning by experience approaches are explained in
section 2. Between them, we choose reinforcement learning algorithms for testing our
model. In section 3 we explain our approach for implementing imitation learning and in
section 4 we explain how the overall process of learning is implemented. Because there are
several ways or paradigms for applying reinforcement learning to multi-robot systems , we
compare them in section 5. Also, results obtained when the overall process was applied to a
robot soccer problem are discussed in section 6. Finally conclusions of this work are
explained in section 7.

2. Learning by Experience

The idea of using agents that can learn to solve problems became popular in the area of
Artificial Intelligence, specifically in applications for machine learning techniques. When
working with multi-agent or multi-robot systems, learning can be implemented in the two
stages, as explained in the previous section. Thus, by developing agents that learn task
allocation for the first stage and agents that learn to solve their task in the second stage, we
are contributing significantly to this field.

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

63

We implement dynamic strategies, using machine learning techniques. These strategies
require a predefined set of possible situations and actions. Thus, because robots already
know the kind of situations they can find in the environment and also know what actions
they can execute, we name those traditional approaches as learning by experience
approaches. Learning by experience occurs when a robot or agent modifies the parameters
used for choosing actions, from a set of them, to be executed in a set of known situations.
Thus, in learning by experience, robots only modify the strategy using a set of actions prior
defined by the system designer.
Almost all works found in the literature deal with robots learning by experience (Bruce et
al., 2003; Wu and Lee, 2004; Chen and Liu, 2002; Wiering et al., 1999; Salustowicz et al., 1998;
Zhang and Mackworth, 2002; Kim et al., 1997a).
Interactions in multi-agent and multi-robot systems can be collaborative, competitive or
mixed. At this point, concepts of artificial intelligence and game theory come together to be
able to explain those interactions and find ways to optimize them. In game theory,
interactions between agents or robots are modeled as stochastic games. When the system is
composed by a unique agent, the stochastic game is a Markov Decision Process. When the
system is composed by several agents but with a unique state, it is a Repetitive Game.
(Shoham et al., 2007). Stochastic games are also known as markov games and are classified
in zero sum games, where agents are fully competitive, and in general sum games, where
agents cooperate and/or compete to each other (Filar and Vrieze, 1997). Here, we address
only those learning algorithms applied to general sum stochastic games.

2.1 Common Algorithms

Several machine learning algorithms are applied to learning in multi-agent and multi-robot
cooperative systems (general sum stochastic games). In machine learning, the three most
common paradigms for learning are supervised learning, unsupervised learning and the
reward based learning (Panait and Luke, 2005). It is well known that these models are not
easily applied for learning when using multi-agent and multi-robot systems mainly because
of the complexity of these systems.

2.1.1 Supervised Learning

Supervised learning algorithms work with the assumption that it is possible to indicate the
best response directly to the agent. But, when working with multi-agent and multi-robot
systems, it is very difficult to indicate the best response for each agent or robot. This occurs
because interactions are dynamic and there is a possibility that the teammates and/or
opponents change their behavior during execution. In despite, we find some works that
apply this kind of algorithm directly to multi-agent systems (Goldman and Rosenschein,
1996; Wang and Gasser, 2002; Ŝniezyński and Koźlak, 2006). Some hybrid systems that fuse
this kind of algorithms with other machine learning algorithms can also be found. For
example, Jolly et al. (2007) combine evolutionary algorithms and neural networks for
decision making in multi-robot soccer systems.

2.1.2 Unsupervised Learning

Unsupervised learning algorithms try to cluster similar data, thus, they are widely used for
pattern recognition and data visualisation. However, it is difficult to imagine how they can
be applied to solve task allocation and execution in multi-robot, cooperative systems. In

www.intechopen.com

Frontiers in Evolutionary Robotics

64

despite, it is possible to find a few works that use this kind of learning, as the one of Li and
Parker (2007) that uses the Fuzzy C-Means (FCM) clustering algorithm for detecting faults in
a team of robots.

2.1.3 Reward Based Learning

The basic idea of reward based algorithms is not to indicate what the best response is, but
the expected result. Thus, the robot or agent has to discover the best strategy in order to
obtain the desired results. The most representative algorithms of this type are the
evolutionary algorithms and the reinforcement learning algorithms. Evolutionary
algorithms search the solution space in order to find the best results. This could also be done
by assessing a fitness function. On the other hand, reinforcement learning algorithms
estimate a value function for states or state-action pairs. This is done for defining the best
policy that take advantage of these values. In this work, we focus specifically in
reinforcement learning algorithms.

2.2 Requirements for Learning by Experience

In order to get a solution when using the learn by experience model in a single agent or
robot we need to define: a set of pre defined states or situations where the agent can act; a
set of possible actions that the agent can perform; a way of modifying parameters of action
selection while actions reveal as good or bad for certain situations.
The same set is necessary, and enough, when using multi-agent or multi-robot systems. It is
important to note that, although agents need a pre defined set of states or situations,
abstraction is made in a way that any real situation in the environment is mapped into any
pre defined state. Generally, all actions are tested in all situations during the training
process in order to verify if it is good to use the action set or not.

2.3 Paradigms for Applying Reinforcement Learning Algorithms in Multi-Robot
Systems

Reinforcement learning algorithms were first introduced for learning of single agents. They
can also be applied in multi-agent and multi-robot systems there existing several ways of
doing it. A first one is by modeling all agents or robots as a single agent. This is known as
the team learning paradigm. A second model is by applying the algorithms without any
modification to each agent or robot that compose the team. This is known as independent
learning. The third and last traditional paradigm is by learning joint actions. It means that
each agent learns how to execute an action, thinking to combining it with actions that other
agents will execute.
We introduce here a new paradigm, called influence value learning, besides the three
traditional paradigms explained above. In our new model, the agents learn independently,
but, at the same time, each agent is influenced by the opinions that other agents have about
its actions. This new approach and the three traditional ones are better explained in the
following.

2.3.1 Team Learning

The paradigm of multi-agent and multi-robot systems where agents learn as a team is based
in the idea of modeling the team as a single agent. The great advantage of this paradigm is
that the algorithms do not need to be modified. But, in robotics applications, it can be

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

65

difficult to implement it because we need to have a centralized learning process and sensor
information processing.
An example of this paradigm using reinforcement learning is the work of Kok and Vlasis
(2004) that model the problem of collaboration in multi-agent systems as a Markov Decision
Process. The main problem in their work and other similar works is that the applicability
becomes impossible when the number of players increases because the number of states and
actions increases exponentially.
The use of genetic algorithms is not much affected by the exponential growth of the number
of states and actions (Sen and Sekaran, 1996; Salustowicz et al., 1998; Iba, 1999). However,
the need of centralized processing and information, what is still a problem impossible to be
solved in this paradigm, is one of its disadvantages.

2.3.2 Independent Learning

The problems reported in learning as a team can be solved by implementing the learning
algorithms independently in each agent. Several papers show promising results when
applying this paradigm (Sen et al., 1994; Kapetanakis and Kudenko, 2002; Tumer et al.,
2002). However, Claus and Boutilier (1998) explored the use of independent learners in
repetitive games, empirically showing that the proposal is able to achieve only sub-optimal
results. The above results are important when analyzed regarding the nature of the used
algorithms. It may be noted that the reinforcement learning algorithms aim to take the agent
to perform a set of actions that will provide the greatest utility (greater rewards). Below that,
in problems involving several agents, it is possible that the combination of optimal
individual strategies not necessarily represents an optimal team strategy. In an attempt to
solve this problem, many studies have been developed. An example is the one of
Kapetanakis and Kudenko (2002) which proposes a new heuristic for computing the reward
values for actions based on the frequency that each action has maximum reward. They have
shown empirically that their approach converges to an optimal strategy in repetitive games
of two agents. Also, they test it in repetitive games with four agents, where, only one agent
uses the proposed heuristic, showing that the probability of convergence to optimal
strategies increases but is not guaranteed (2004). Another study (Tumer et al., 2002) explores
modifications for choosing rewards. The problem of giving correct rewards in independent
learning is studied. The proposed algorithm uses collective intelligence concepts for
obtaining better results than by applying algorithms without any modification and learning
as a team. Even achieving good results in simple problems such as repetitive games or
stochastic games with few agents, another problem in this paradigm, which occurs as the
number of agents increase, is that traditional algorithms are designed for problems where
the environment does not change, that is, the reward is static. However, in multi-agents
systems, the rewards may change over time, as the actions of other agents will influence
them.
In the current work, this paradigm is analyzed in comparison with joint action learning and
with our approach, the influence value learning. Q-Learning is known to be the best
reinforcement learning algorithm (Sutton and Barto, 1998), so, the algorithms are going to be
based on it. The Q-Learning algorithm for Independent Learning (IQ-Learning) is defined
by equation 1.

)),(),(max(),(),(11 ttt

a
ttttt asQaSQrasQasQ −++← ++ γα

(1)

www.intechopen.com

Frontiers in Evolutionary Robotics

66

where Q(st,at) is the value of the action at in the state st, α is the learning rate (0≤α≤1),γ is the

discount rate (0≤γ≤1), st+1 is the resultant state after executing the action at. And, rt+1 is the
instantaneous reward obtained by executing the action at.

2.3.3 Joint Action Learning

One way for solving the problem of the independent learning model is learn the best
response to the actions of other agents. In this context, the joint action learning paradigm
appears. Each agent should learn what the value of executing their actions in combination
with the actions of others (joint action) is. By intuits a model for other agents, it must
calculate the best action for actions supposed to be executed by colleagues and/or
adversaries (Kapetanakis et al., 2003; Guo et al., 2007). Claus and Bouitilier explored the use
of this paradigm in repetitive games (Claus and Boutilier, 1998) showing that the basic form
of this paradigm does not guarantee convergence to optimal solutions. However, the
authors indicate that, unlike the independent learning algorithms, this paradigm can be
improved if models of other agents are improved.
Other examples include the work of Suematsu and Hayashi that guarantee convergence to
optimal solutions (Suematsu and Hayashi, 2002). The work of Banerjee and Sen (Banerjee
and Sen, 2007) that proposes a conditional algorithm for learning joint actions, where agents
learn the conditional probability of an action be executed by an opponent be optimal. Then,
agents use these probabilities for choosing their future actions. The main problem with this
paradigm is the number of combinations of states and actions that grows exponentially as
the number of states, actions and/or agents grows.
As said before, in the current work, algorithms will be based on Q-Learning. A modified
version of the traditional Q-Learning, for joint action learning, the so called JAQ-Learning
algorithm, is defined by the equation 2:

)),...,1,(),...,1,(max(

),...,1,(),...,1,(

1
,...,1

1 tttiti
aNa

t

tttittti

aNasQaNasQr

aNasQaNasQ

−+

+←

++ γα

(2)

where ait is the action performed by the agent i at time t; N is number of agents,
Qi(st,a1t,...,aNt) is the value of the joint action (a1t,...,aNt) for agent i in the state st. rt+1 is the
reward obtained by agent i as it executes action ait and as other agents execute actions

a1t,...,ai-1t,ai+1t,...,aNt respectively, α is the learning rate (0≤α≤1), γ is the discount rate

(0≤γ≤1).
An agent has to decide between its actions and not between joint actions. For this decision, it
uses the expected value of its actions. The expected value includes information about the
joint actions and the current beliefs about other agent that is given by (Equation 3):

∑ ∏
−− ∈ ≠

−− ∪←
ii Aa ij

ititt jaaiasQaisEV)(Pr*),(),(

(3)

where ai is an action of agent i, EV(st,ai) is the expected value of action ai in state st, a-i is a
joint action formed only by actions of other agents, A-i is the set of joint actions of other

agents excluding agent i, Q(st,a-i∪ai) is the value of a joint action formed by the union of the
joint action a-i of all agents excluding i with action ai of agent i in state st and Prt(a-ij) is the
probability of agent j performs action aj that is part of joint action a-i in state st.

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

67

2.3.4 Influence Value Learning

The learning by influence value paradigm that we propose (Barrios-Aranibar and Gonçalves,
2007a; Barrios-Aranibar and Gonçalves, 2007b) is based on the idea of influencing the
behaviour of each agent according to the opinion of others. Since this proposal is developed in
the context of learning through rewards, then the value of the proposed solutions will be the
reward of each agent and the opinion that the other players have on the solution that the agent
gave individually. This opinion should be a function of reward obtained by the agents. That is,
if an agent affects the other players pushing their reward below than the previously received,
they have a negative opinion for the actions done by the first agent.
From the theoretical point of view, the model proposed does not have the problems related
to the paradigms of team learning and joint action learning about the number of actors,
actions and states. Finally, when talking about possible changes of rewards during the
learning process and that the agent must be aware that the rewards may change because of
the existence of other agents, authors conjecture that this does not represent a problem for
this paradigm, based on experiments conducted until now.
This paradigm is based on social interactions of people. Some theories about the social
interaction can be seen in theoretical work in the area of education and psychology, such as
the work of Levi Vygotsky (Oliveira and Bazzan, 2006; Jars et al., 2004).
Based on these preliminary studies on the influence of social interactions in learning, we
conjecture that when people interact, they communicate each other what they think about
the actions of the other, either through direct criticism or praise. This means that if person A
does not like the action executed by the person B, then A will protest against B. If the person
B continue to perform the same action, then A can become angry and protest angrily. We
abstract this phenomenon and determined that the strength of protests may be proportional
to the number of times the bad action is repeated.
Moreover, if person A likes the action executed by the person B, then A must praise B. Even
if the action performed is considered as very good, then A must praise B vehemently. But if
B continues to perform the same action, then A will get accustomed, and over time it will
cease to praise B. The former can be abstracted by making the power of praise to be
inversely proportional to the number of times the good action is repeated.
More importantly, we observe that protests and praises of others can influence the behavior
of a person. Therefore, when other people protest, a person tries to avoid actions that caused
these protests and when other people praise, a person tries to repeat actions more times.
Inspired in this fact, in this paradigm, agents estimate the values of their actions based on
the reward obtained and a numerical value called influence value. The influence value for
an agent i in a group of N agents is defined by equation 4.

∑
≠∈

←
ijNj

jii iOPjIV
),:1(

)(*)(β

(4)

Where βi(j) is the influence rate of agent j over agent i, OPj(i) is the opinion of agent j about
the action executed by agent i.

The influence rate β determine whether or not an agent will be influenced by opinions of other
agents. OP is a numerical value which is calculated on the basis of the rewards that an agent
has been received. Because in reinforcement learning the value of states or state-action pairs is
directly related to rewards obtained in the past, then the opinion of an agent will be calculated
according to this value and reward obtained at the time of evaluation (Equation 5).

www.intechopen.com

Frontiers in Evolutionary Robotics

68

 ⎩
⎨
⎧

−

≤
←

caseotherIntatsPeRV

RVIftatsPeRV
iOP

ij

jij

j)))(),((1(*

0))(),((*
)(

(5)

Where

))(),(()),1((max tatsQatsQrRV jj
Aa

jj
jj

−++←
∈

(6)

For the case to be learning the values of state-action pairs. Pe(s(t),ai(t)) is the occurrence
index (times action ai is executed by agent i in state s(t) over times agent i have been in state
s(t)). Q(s(t),aj(t)) is the value of the state-action pair of the agent j at time t. And, Aj is the set
of all actions agent j can execute. Thus, in the IVQ-learning algorithm based on Q-Learning,
the state-action pair value for an agent i is modified using the equation 7.

)))(),(()),1((max

)1(())(),(())(),((

iii
Aa

ii

IVtatsQatsQ

trtatsQtatsQ

ii

+−+

+++←

∈
γ

α

(7)

where Q(s(t),ai(t)) is the value of action ai(t) executed by agent i, α is the learning rate (0≤α≤1), γ

is the discount rate (0≤γ≤1).And, r(t+1) is the instantaneous reward obtained by agent i.

2.4 Robotics and Reinforcement Learning

For the implementation of reinforcement learning, it is important to define the model of the
environment, the reward function, the action selection policy and the learning algorithm to
be used. When applying reinforcement learning algorithms to robotics, developers have to
consider that the state space and the action space are infinite.
There are several proposals to implement reinforcement learning in this kind of problem.
These proposals may involve a state abstraction, function approximation and hierarchical
decomposition (Morales and Sammut, 2004). In the current paper, we use state abstraction
for modeling the robot soccer application where this approach was tested.
Another problem is that reinforcement learning algorithms require every action to be tested
in all states. And, in robotics not all actions can be used in all states. Eventually there can
exist an action that must not be used in some states. Also, if it is implemented in multi-robot
systems, it is important to note that eventually some states into the model of the
environment are impossible to exist in real applications. We propose a solution that can be
implemented by modifying reinforcement learning algorithms in order to test actions only
in certain states (for example, states pre-defined by designers or where some specialist
robotic system used before)
Another problem when applying reinforcement learning to robotics is that learning
algorithms require so much computational time in comparison with sampling rates needed
in robotics. For solving this problem, authors propose to use off-line algorithms. The last
means that algorithms will be executed during the rest time of the team of robots (e.g. After
finishing to execute some tasks).

3. Learning by Imitation

Learning by imitation is considered a method to acquire complex behaviors and a way of
providing seeds for future learning (Kuniyoshi and Inoue, 1993; Miyamoto and Kawato,

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

69

1998; Schaal, 1999). This kind of learning was applied in several problems like learning in
humanoid robots, air hockey and marble maze games, and in robot soccer, where was
implemented using a Hidden Markov Model and by teaching the robots with a Q-Learning
algorithm. (Barrios-Aranibar and Alsina, 2007).

3.1 Benefits of Using Imitation with Reinforcement Learning Algorithms

Benefits of using imitation learning with any algorithm of learning by experience are
directly related to the requirements exposed in section 2.2. And, in the specific case of
reinforcement learning, with the problems related in section 2.4. Thus, the principal benefits
of using imitation learning could be:
1. Avoid the necessity of test every action in every state. For that, agents or robots have to

test action only where other agents or robots previously done.
2. Diminishes the computational time needed of convergence. Because, the search space

decrease as robots only use actions in states where they previously observe that actions
were used.

3. Diminishes the number of state-action pairs values to storage. Thus, it means that the
number of real state-action pairs will be less than the possible ones.

4. Finally, reinforcement learning algorithms will not need to have the states and actions
defined a priori.

Also, it is important to note that the exposed benefits will be obtained independent of the
paradigm used for implementing reinforcement learning in a multi-robot system.
3.2 Implementing Imitation Learning

For implementing the imitation learning, we propose to do it by observing other teams
playing soccer for recognizing complex behaviors (Barrios-Aranibar and Alsina, 2007). First.
all robots have to recognize what actions robots they are trying to imitate are performing.
After that those actions have to be grouped into behaviors. And, finally by defining in which
states observed robots used them, the recognized behaviors have to be included into the
data base of learning robots. This approach is explained below.

3.2.1 Recognizing Actions of Other Robots

To understand this approach of learning by imitation, concepts like role, situation, action
and behavior must be defined. A role is defined as the function a robot implements during
it’s useful life in a problem or in part of it. Each role is composed of a set of behaviors. Also,
a behavior is a sequence of consecutive actions. And, an action is a basic interaction between
a robot (actor) and an element in the environment, including other robots in the team.
Finally, a situation is an observer description of a basic interaction between a robot and an
element in the environment, including other robots in the team. This means that a situation
is the abstraction that an observer makes about something other robot does.
For recognizing action of other robots, the learners have to really analyze and recognize
situations. We propose to do this analysis over games previously saved. Because the
application used for testing the overall approach is the robot soccer, in current work, the
saved game must include positions and orientations of the robots of both teams, the ball
position and scores at every sampling time.
The analysis of saved games is made with a fuzzy inference machine. Here, situations
involving each robot in the analyzed team must be made. The fuzzy inference machine
includes five fuzzy variables: Distance between two objects, orientation of an object with

www.intechopen.com

Frontiers in Evolutionary Robotics

70

respect to the orientation of another object, orientation of an object with respect to another
object, playing time and velocity of an object with respect to the velocity of another object.
For defining these fuzzy variables, values of time (sampling times), position, orientation,
distance, velocity and direction were used. Figure 1 shows possible fuzzy values for each
variable.

(a)

(b)

(c)

(d)

(e)

Figure 1. Fuzzy variables for recognizing situations: (a) Distance Between two Objects. (b)
Orientation of an Object with Respect to Orientation of Another Object. (c) Orientation of an
Object with Respect to Another Object. (d) Playing Time. (e) Velocity of an Object with
Respect to the Velocity of Another Object

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

71

Distance between two objects fuzzy variable is based in the Euclidian distance between the
objects positions. Orientation of an object with respect to orientation of another object fuzzy
variable is based on the absolute value of the difference between the orientation angles of
two objects. Orientation of an object with respect to another object fuzzy variable is based on
the angular distance between two objects. Which is defined as the difference between the
current orientation of the first object and the orientation needed to point to the second
object. Playing time fuzzy variable is based on the sampled times of a game or a part of it.
And, velocity of an object with respect to the velocity of another object fuzzy variable is
based on the value of the difference between the velocity of two objects.

Code Situation Name Priority

001 Robot with the ball 1
011 Robot guides the ball 2
021 Robot kicks the ball 3
022 Robot loses the ball 4
023 Robot yields the ball 4
033 Robot leaves the ball 5
034 Robot moves away from the ball 10
044 Robot reaches the ball 6
045 Robot receives the ball 7
046 Robot approaches the ball 9
047 Ball hits the robot 8
057 Robot orients to the ball 11
067 Robot goes ball’s X direction 12
068 Robot goes ball’s Y direction 13
078 Robot orients to it’s own goal 14
088 Robot approaches it’s own goal 15
098 Robot moves away from it’s own goal 16
108 Robot orients to adversary’s goal 17
118 Robot approaches the adversary’s goal 18
128 Robot moves away from adversary’s goal 19
138 Robot approaches goalkeeper adversary 21
139 Robot approaches midfield adversary 21
140 Robot approaches striker adversary 21
150 Robot moves away from goalkeeper adversary 24
151 Robot moves away from midfield adversary 24
152 Robot moves away from striker adversary 24
162 Robot approaches role +1 teammate 23
163 Robot approaches role +2 teammate 23
173 Robot moves away from role+1 teammate 22
174 Robot moves away from role+2 teammate 22
184 Robot does not move 20
194 Robot moves randomly

Table 1. Situations Defined in the Fuzzy Inference Machine

Thirty situations with fuzzy rules were defined. An additional situation called “Robot
moving randomly” was defined to be used when there is a time interval that does not fulfill

www.intechopen.com

Frontiers in Evolutionary Robotics

72

restrictions of any situation. The situations are listed in table 1. Three roles were defined for
the robots: Goalkeeper, midfield and striker, all of them depend on the robot position at
each sampling time. Almost all situations are independent of the robot’s role. The situations
with codes 162, 163, 173 and 174 depend on the robot role when a situation starts. For that
purpose, roles are arranged in a circular list (e.g. Goalkeeper, midfield, striker).
The recognition of a situation passes through two stages: Verification of possibility and
verification of occurrence. The verification of possibility is made with a fuzzy rule called
“Initial Condition”. If at any time the game this rule is satisfied then the situation is marked
as possible to happen. This means that in the future the rule for verification of occurrence
should be evaluated (“Final Condition”). If the situation is scheduled as possible to happen,
in every sampling time, in the future, the fuzzy rule “Final Condition” will be checked. The
system has certain amount of time to verify this condition. If past the time limit this
condition is not fulfilled, then the mark of possible to happen is deleted for that situation.
As shown in table 1, each situation has a priority for recognition on the fuzzy inference
machine. Situations with priority 1 has the highest priority and situations with priority 24
have less priority.

3.2.2 Recognizing Behaviors of Other Robots

After recognizing all the situations for each of the robots of the analyzed time, the codes of
these situations will be passed by self-organized maps (SOM), proposed by Kohonem. Both,
the recognition of situations and the recognition of patterns of behaviours are done offline
and after each training game.
At the beginning of the process, four groups of successive events are generated. They are
considered all possible combinations of successive grouping of situations without changing
their order, which means that each situation may be part of up to 4 groups (e.g. where it can
be the first, second, third or fourth member of the group).
The groups formed are used to train a SOM neural network. After finishing the process of
training, the neurons that were activated by at least 10% of the number of recognized
situations are selected. Then, the groups who have activated the previously selected neurons
are selected to form part of the knowledge base. To be part of knowledge base, each group
or behavior pattern must have a value greater than a threshold.
The value of each group is calculated based on the final result obtained by the analyzed
team. Final results could be: a goal of the analyzed team, goal of the opponent team, or end
of the game. All situations recognized before a goal of the analyzed team receive a positive

value αt where 0<α<1 and t is the number of discrete times between the start of the situation
and the final result. Each situation recognized before a goal of the opponent team, receives a

negative value -αt. Finally, each situation recognized before the end of the game get the
value of zero. The value of each group of situations is calculated using the arithmetic mean
of the values of the situations.
After recognize the patterns of behaviours formed by four situations, groups of three
situations are formed. The groups are formed with those situations that were not considered
before (those that do not form part of any of the new behaviors entered in the knowledge
base). It is important to form groups only with consecutive situations. It can not be formed
groups of situations separated by some other situation. The process conducted for groups of
four situations is then repeated, but this time will be considered the neurons that were
activated by at least 8% of the number of recognized situations. After that, The process is

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

73

repeated again for groups of two and considering the neurons activated for at least the 6% of
the number of recognized situations. Finally, those situations that were not considered in the
three previous cases, form individually a behavior pattern. Again, the process is repeated
considering the neurons activated for at least the 4% of the number of recognized situations.
Since, to improve the learned by imitation strategy, each new behavior inserted in the
knowledge base has to be tested by the learner. Each of these behaviors receive an optimistic
value (e.g. The greatest value of behaviors that can be used in the state).

4. The Overall Learning Process

The process of learning becomes first by a stage of imitation for after try and see if the
learned actions are valid for the robot is learning. Therefore, it is important to define the
structure of the state and also what are the instant rewards in the application chosen (robot
soccer). As said before, the number of states in robotic problems are infinite. To implement
reinforcement learning authors opted up by state abstraction. The purpose of this
abstraction is to get a set of finite states.
The state of a robot soccer game is constituted by the positions, orientations and velocities of
the robots; the position, direction and velocity of the ball as well as scores of the game. The
positions of the robots and the ball were abstracted in discrete variables of distance and
position with reference to certain elements of the game. Orientations of the robots were
abstracted in discrete variables of direction. Direction of the ball was abstracted in a discrete
direction variable. The same was done with the velocity and scores. Finally, to recognize the
terminal states of the game, there was set a final element in the state that is the situation of
the game. Table 2 shows the configuration of a state.

Element Quantity

Distance of robot to ball 6 (6 robots x 1 ball)
Distance of ball to goal 2 (1 ball x 2 goals)
Orientation of robot to ball 6 (6 robots x 1 ball)
Orientation of robot to goal 12 (6 robots x 2 goals)
Robot/ball position in relation to own goal 6 (6 robots)
Ball direction 1 (1 ball)
Ball velocity 1 (1 ball)
Game score 1 (1 game)
Game situation 1 (1 game)

TOTAL 36

Table 2. Abstraction of a state in a robot soccer game

To abstract the position of the robots, we consider that the important in the position of a
robot is whether he is too close, near or far the ball and whether the ball is close, very close
to or far from the goals. It is also important to know if the robot is before or after the ball.
With these three discrete variables you can identify the position of the robot and its location
within the soccer field in relation to all elements (the ball, goals and robots)
Besides recognize the location of the robot in relation to the ball, the goal and the other
robots, it is important to know where he is oriented, so we can know whether he is ready to
shoot the ball or go towards the own goal. Then, the orientation of the robot was abstracted
in two discrete variables called orientation to the ball and orientation to the goal.

www.intechopen.com

Frontiers in Evolutionary Robotics

74

In the case of the direction of the ball, their speed and scores, there was defined discrete
variables for each considering the characteristics of the soccer game. In the case of the ball
direction, 8 discrete levels were defined (each level grouping 45O). Also, there were defined
3 speed levels. In the case of the scores, important is whether the team is winning, losing or
drawing. Finally the situation of the game may be normal (not terminal state), fault or goal
(terminal states).

Figure 2. Training process of a team of robots learning by experience and by imitation

Considering all the possibilities of each element of the state we calculate that a robot soccer
game would have 80621568 states. If we consider that the states where the situation of the
game is fault or goal are only to aid in the implementation of algorithms, then we would
have that the number of states decreases to 26873856. The previous value is the value of the
theoretical maximum number of states in a robot soccer game. This theoretical value will be
hardly achieved since not all combinations of the values of the components of the state will
exist. An example of how the number of states will be reduced in practice is the case of
states of the goalkeeper role. The goalkeeper role is attributed to the robot that is closest to
its own goal. For states where the goalkeeper is after ball, it will be almost impossible for the
other robots to be before it. Then the number of states is virtually reduced by two thirds.

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

75

Thus, considering only this case we see that the number of states for the goalkeeper reduced
to 8957952.
In the case of actions in reinforcement learning, each behavior learned during imitation is
considered an action in the model of reinforcement learning. Since learning by imitation is
the seed for reinforcement learning, we have that reinforcement learning acts only on states
and behaviors learned by the robot in previous games.
Figure 2 shows the simplified procedure of the overall training process of the control and
coordination system for a robot soccer team.
Since learning of new formations, behaviors and actions, as well as the best choice for them
at a particular moment, is defined by the quality of opponents teams, it is proposed that the
training process is done through the interaction with human controlled teams of robots. The
main advantages of this training are given by the ability of humans to learn and also by the
large number of solutions that a team composed by humans could give to a particular
situation.

5. What is the best Paradigm of Reinforcement Learning for Multi-Robot
systems

Before assessing the paradigms of reinforcement learning for multi-robot or multi-agent
systems, it is important to know that when talking about cooperative agents or robots, it is
necessary that agents cooperate on equality and that all agents receive equitable rewards for
solving the task. Is in this context that a different concept from the games theory appears in
multi-agent systems. This is the concept of the Nash equilibrium.

Let be a multi-agent system formed by N agents. σ*i is defined as the strategy chosen by the

agent i, σi as any strategy of the agent i, and Σi as the set of all possible strategies of i. It is

said that the strategies σ*i,..., σ*N constitute a Nash equilibrium, if inequality 8 is true for all

σi ∈Σi and for all agents i.

),...,,,,...,(),...,,,,...,(**

1

**

1

*

1

**

1

*

1

*

1 NiiiiNiiii rr σσσσσσσσσσ +−+− ≤
 (8)

Where ri is the reward obtained by agent i.
The idea of Nash equilibrium, is that the strategy of each agent is the best response to the
strategies of their colleagues and/or opponents (Kononen, 2004). Then, it is expected that
learning algorithms can converge to a Nash equilibrium, and it is desired that can converge
to the optimal Nash equilibrium, that is the one where the reward for all agents is the best.
We test and compare all paradigms using two repetitive games (The penalty problem and
the climbing problem) and one stochastic game for two agents. The penalty problem, in
which IQ-Learning, JAQ-Learning and IVQ-Learning can converge to the optimal
equilibrium over certain conditions, is used for testing capability of those algorithms to
converge to optimal equilibrium. And, the climbing problem, in which IQ-Learning, JAQ-
Learning can not converge to optimal equilibrium was used to test if IVQ-Learning can do
it. Also, a game called the grid world game was created for testing coordination between
two agents. Here, both agents have to coordinate their actions in order to obtain positive
rewards. Lack of coordination causes penalties. Figure 3 shows the three games used here.
In penalty game, k < 0 is a penalty. In this game, there exist three Nash equilibriums
((a0,b0), (a1,b1) and (a2,b2)), but only two of them are optimal Nash equilibrums ((a0, b0)

www.intechopen.com

Frontiers in Evolutionary Robotics

76

and (a3, b3)). When k = 0 (no penalty for any action in the game), the three algorithms (IQ-
Learning, JAQ-Learning and IVQ-Learning) converge to the optimal equilibrium with
probability one. However, as k decrease, this probability also decrease.

 a0 a1 a2

b0 10 0 k
b1 0 2 0
b2 k 0 10

(a)

 a0 a1 a2

b0 11 -30 0
b1 -30 7 6
b2 0 0 5

(b)

(c)

Figure 3. Games used for testing performance of paradigms for applying reinforcement
learning in multi-agent systems: (a) Penalty game, (b) Climbing game, (c) Grid world game

Figure 4 compiles results obtained by these three algorithms, all of them was executed with
the same conditions: A Boltzman action selection strategy with initial temperature T = 16, λ
= 0.1 and in the case of IVQ-Learning β = 0.05. Also, a varying decaying rate for T was
defined and each algorithm was executed 100 times for each decaying rate.
In this problem JAQ-Learning has the best perform. But, it is important to note also that for
values of k near to zero, IVQ-Learning and IQ-Learning performs better than the JAQ-
Learning, and for those values the IVQ-Learning algorithm has the best probability to
converge to the optimal equilibrium.
The climbing game problem is specially difficult for reinforcement learning algorithms
because action a2 has the maximum total reward for agent A and action b1 has the
maximum total reward for agent B. Independent learning approaches and joint action
learning was showed to converge in the best case only to the (a1, b1) action pair (Claus and
Boutilier, 1998). Again, each algorithm was executed 100 times in the same conditions: A
Boltzman action selection strategy with initial temperature T = 16, λ = 0.1 and in the case of
IVQ-Learning β = 0.1 and a varying temperature decaying rate.
In relation to the IQ-Learning and the JAQ-Learning, obtained results confirm that these two
algorithms can not converge to optimal equilibrium. IVQ-Learning is the unique algorithm
that has a probability different to zero for converging to the optimal Nash equilibrium, but
this probability depends on the temperature decaying rate of the Boltzman action selection
strategy (figure 5). In experiments, the best temperature decaying rate founded was 0.9997
on which probability to convergence to optimal equilibrium (a0, b0) is near to 0.7.
The grid world game starts with the agent one (A1) in position (5; 1) and agent two (A2) in
position (5; 5). The idea is to reach positions (1; 3) and (3; 3) at the same time in order to
finish the game. If they reach these final positions at the same time, they obtain a positive
reward (5 and 10 points respectively). However, if only one of them reaches the position (3;
3) they are punished with a penalty value k. In the other hand, if only one of them reaches
position (1; 3) they are not punished.
This game has several Nash equilibrium solutions, the policies that lead agents to obtain 5
points and 10 points, however, optimal Nash equilibrium solutions are those that lead
agents to obtain 10 points in four steps.
The first tested algorithm (Independent Learning A) considers that the state for each agent is
the position of the agent, thus, the state space does not consider the position of the other
agent. The second version of this algorithm (Independent Learning B) considers that the

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

77

state space is the position of both agents. The third one is the JAQ-Learning algorithm and
the last one is the IVQ-Learning.

 (a)

(b)

(c)

Figure 4. Probability of convergence to optimal equilibrium in the penalty game for λ = 0.1,
β = 0.05 and (a) T = 0.998t * 16, (b) T = 0.999t * 16, and (c) T = 0.9999t * 16

Figure 5. Probability of Convergence in Climbing Game with λ = 0.1, β = 0.1 and Variable
Temperature Decaying Rate

In the tests, each learning algorithm was executed three times for each value of penalty k
(0≤k≤15) and using five different decreasing rates of temperature T for the softmax policy

www.intechopen.com

Frontiers in Evolutionary Robotics

78

(0:99t; 0:995t; 0:999t; 0:9995t; 0:9999t). Each resulting policy (960 policies, 3 for each
algorithm with penalty k and a certain decreasing rate of T) was tested 1000 of times.

Figure 6 shows the probability of reaching the position (3; 3) with α=1, λ=0.1, β=0:1 and T =
0:99t. In this figure, was observed that in this problem the joint action learning algorithm has
the smaller probability of convergence to the (3; 3) position. This behavior is repeated for the
other temperature decreasing rates. From the experiments, we note that the Independent
Learning B and our approach have had almost the same behavior. But, when the exploration
rate increases, the probability of convergence to the optimal equilibrium decreases for the
Independent Learners and increase for our paradigm.

(a)

(b)

Figure 6. Probability of reaching (3,3) position for (a) T = 0.99t and (b) T = 0.9999t

(a)

(b)

Figure 7. Size of path for reaching (3,3) position for (a) T = 0.99t and (b) T = 0.9999t

As shown in figure 7, as more exploratory the action selection policy is, smaller is the size of
the path for reaching (3; 3) position. Then, it can concluded that when exploration increases,
the probability of the algorithms to reach the optimal equilibrium increases too. It is
important to note that our paradigm has the best probability of convergence to the optimal
equilibrium. It can be concluded by joining the probability of convergence to the position (3;
3) and the mean size of the path for reaching this position.

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

79

6. How Performs the Proposed Learning Process

For testing the overall proposed approach, a basic reinforcement learning mechanism was
chosen. This mechanism (eligibility traces) is considered as a bridge between Monte Carlo
and temporal differences algorithms. Then, because the best algorithm that uses eligibility

traces is the Sarsa(λ), it was used in the current work. Also, because the simplest paradigm
for applying reinforcement learning to multi-robot systems is the independent learning,
then, it was used for testing the overall approach. Finally, we conjecture that results
obtained here validate this approach and also by using better techniques, like influence
value reinforcement learning, results could be also improved.
A robot soccer simulator constructed by Adelardo Medeiros was used for training and
testing our approach. Also, the system was trained in successive games of approximately
eight minutes against a team of robots controlled by joystick by humans, and against a team
using the static strategy developed by Yamamoto (Yamamoto, 2005).
An analysis of the amount of new actions executed in each game was conducted. Both
training process (games against humans and games against the strategy of Yamamoto) were
analyzed. Table 3 shows results of this analysis.
As can be seen in this table, the team that played against humans had a positive and
continue evolution in the number of new actions executed during the first ten games, after
these games the progress was slower, but with a tendency to increase the amount of not
random actions. But the team that played against the static strategy developed by
Yamamoto failed to evolve in the first ten games. This team only began to evolve from the
game number eleven, where the initial state of the game was changed to a one with very
positive scores (e.g. The apprentice team started winning).
Results shown in this table represent an advantage of the training against a team controlled
by humans over the training against a team controlled with a static strategy. Moreover, it is
important to note that both teams have a low rate of use of new actions during the game,
this is due to the fact that initially, all the new states have the action “moving randomly”.
Also, exists a possibility that the apprentice is also learning random actions. Finally, it is
important to note that this learning approach is very slow due to robots will have to test
many times each action, including the random action. In this approach the knowledge base
of each of the three roles starts empty and robots start using the action “moves randomly”,
then it is important to know how many new states and actions robots will learn after each
game.
Figure 8 shows the number of states for each one of the three roles defined in this game. It
compares both learning processes (against humans and against Yamamoto’s strategy). Also,
figure 9 shows the number of actions of each role. It is important to note that number of
states increases during playing and during training. And, number of actions increases only
during training.
As could be observed in these figures, the number of states and actions of the team trained
against Yamamoto’s strategy is greater than the other one. Also, it is important to note that
despite this condition, the number of new actions executed by the team trained against
humans is greater and increase over time.
In a soccer game, goals could be effect of: direct action of a player, indirect action, or error of
the adversary team. An analysis of effectively made goals was conducted for knowing if
learner teams really learn how to make goals (the main goal of playing soccer). For this

www.intechopen.com

Frontiers in Evolutionary Robotics

80

propose, a program developed for commenting games was used (Barrios-Aranibar and
Alsina, 2007).

Against Humans Against Yamamoto’s Strategy
Game

Total Random Other % Total Random Other %

1 3017 3017 0 0.00 3748 3748 0 0.00

2 4151 4115 36 0.87 3667 3667 0 0.00

3 4212 4168 44 1.04 3132 3132 0 0.00

4 2972 2948 24 0.81 3480 3480 0 0.00

5 2997 2973 24 0.80 3465 3465 0 0.00

6 2728 2657 71 2.60 3529 3529 0 0.00

7 3234 3162 72 2.23 4145 4145 0 0.00

8 2662 2570 92 3.46 3430 3430 0 0.00

9 3058 2886 172 5.62 3969 3969 0 0.00

10 2576 2427 149 5.78 5230 5239 0 0.00

11 3035 2812 223 7.35 4295 4198 97 2.26

12 3448 3447 1 0.03 4212 4149 63 1.50

13 3619 3464 155 4.28 2953 2842 111 3.76

14 3687 3587 100 2.71 4021 3874 147 3.66

15 3157 3071 86 2.72 4025 3942 83 2.06

16 4427 4293 134 3.03 4351 4168 183 4.21

17 3835 3701 134 3.49 4468 4273 195 4.36

18 3615 3453 162 4.48 3741 3598 143 3.82

19 4624 4497 127 2.75 4379 4173 206 4.70

20 4441 4441 0 0.00 3765 3548 217 5.76

21 4587 4422 165 3.60 4171 4047 124 2.97

22 4115 4115 0 0.00 4484 4329 155 3.46

23 4369 4369 0 0.00 4289 4178 111 2.59

24 3920 3920 0 0.00 3819 3646 173 4.53

25 3601 3447 154 4.28 4074 4074 0 0.00

26 4269 4269 0 0.00 4125 4125 0 0.00

27 4517 4347 170 3.76 3967 3967 0 0.00

28 6445 6195 250 3.88 3899 3745 154 3.95

29 3437 3346 91 2.65 4280 4081 199 4.65

30 3819 3686 133 3.48 3756 3704 52 1.38

31 4779 4779 0 0.00 3446 3294 152 4.41

32 4710 4546 164 3.48 4557 4370 187 4.10

33 3439 3285 154 4.48 4413 4203 210 4.76

34 4085 3928 157 3.84 3909 3742 167 4.27

35 3537 3454 83 2.35 3953 3776 177 4.48

Table 3. Analysis of new actions executed by learner teams using the proposed approach

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

81

(a)

(b)

(c)

Figure 8. Number of states for roles (a) Goalkeeper, (b) Midfield, and (c) Striker

In figure 10 could be observed a comparison between the number of goals effectively made
by both learners. In general, the team trained against humans achieved greater quantity of
goals that the team trained against the Yamamoto’s static strategy.
Although the learning process of this approach is too slow, it is important to say that
learning by observation and analysis of visual information was (by our knowledge) first
explored and was feasible to be implemented in robot soccer matches of robots.

7. Conclusion

One way to learn to make decisions using artificial intelligence in robotics is by leaving the
learning for the rest time of the robotic system. This means, run the algorithms of learning in
batches. Also, when talking about reinforcement learning in multi-robot and multi-agent
systems, the paradigm proposed by authors showed better results than the traditional
paradigms on the problems chosen for testing. Since these results encourage to continue this
research using the model proposed in new problems and comparing it with previous
proposals.

www.intechopen.com

Frontiers in Evolutionary Robotics

82

(a)

(b)

(c)

Figure 9. Number of actions for roles (a) Goalkeeper, (b) Midfield, and (c) Striker

Figure 10. Number of goals effectively made by learners using this approach

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

83

During this work it was observed that learning by imitation is an appropriate technique to
assist learning of techniques used in artificial intelligence, such as reinforcement learning.
Thus, it is possible to overcome the limitations of these techniques when applied
independently in complex problems, such as robot soccer. Limitations could appear either
by the large number of states or by the large amount of available actions. Thus, learning by
imitation can be used as a basis to carry out reinforcement learning in this kind of problems.

8. References

Arai, T. and Ota, J. (1992). Motion planing of multiple mobile robots. In Proceedings of
the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems,
1992, volume 3, pages 1761-1768.

Banerjee, D. and Sen, S. (2007). Reaching pareto-optimality in prisoner’s dilemma using
conditional joint action learning. Autonomous Agents and Multi-Agent Systems
15(1), 91–108.

Barrios-Aranibar, D. and Alsina, P. J. (2007). Imitation learning: An application in a micro
robot soccer game. Studies in Computational Intelligence series, Mobile Robots:
The Evolutionary Approach. Volume 50, 2007, Pages 201-219 .

Barrios-Aranibar, D. and Gonçalves, L. M. G. (2007a). Learning Coordination in Multi-
Agent Systems using Influence Value Reinforcement Learning. In: 7th
International Conference on Intelligent Systems Design and Applications (ISDA
07), 2007, Rio de Janeiro. Pages: 471-478.

Barrios-Aranibar, D. and Gonçalves, L. M. G. (2007b). Learning to Reach Optimal
Equilibrium by Influence of Other Agents Opinion. In: Hybrid Intelligent
Systems, 2007. HIS 2007. 7th International Conference on, 2007, Kaiserslautern.
pp. 198-203.

Botelho, S. and Alami, R. (1999). M+: A scheme for multi-robot cooperation through
negotiated task allocation and achievement. In Proceedings of 1999 IEEE
International Conference on Robotics and Automation ICRA, pp. 1234–1239.

Botelho, S. and Alami, R. (2000). Robots that cooperatively enhance their plans, Proc. of
5th International Symposium on Distributed Autonomous Robotic Systems (DAR
2000). Lecture Notes in Computer Science, Springer Verlag.

Bruce, J., Bowling, M., Browning, B. and Veloso, M. (2003). Multi-robot team response to a
multi-robot opponent team. In IEEE International Conference on Robotics and
Automation, 2003. Proceedings. ICRA ’03, volume 2, pages 2281 – 2286, Taipei,
Taiwan.

Chen, K.-Y. and Liu, A. (2002). A design method for incorporating multidisciplinary
requirements for developing a robot soccer player. In Fourth international
Symposium on Multimedia Software Engineering, 2002. Proceedings, pages 25-
32, New-port Beach, California, USA.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative
multiagent systems. In Proceedings of the 15th National Conference on Artificial
Intelligence -AAAI-98. AAAI Press., Menlo Park, CA, pp. 746–752.

Filar, J. and Vrieze, K. (1997). Competitive Markov Decision Processes. Springer-Verlag
New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA.

www.intechopen.com

Frontiers in Evolutionary Robotics

84

Goldman, C. V. and Rosenschein, J. S. (1996). Mutually supervised learning in multiagent
systems. In G.Weiß and S.Sen, eds., Adaptation and Learning in Multi–Agent
Systems. Springer-Verlag: Heidelberg, Germany, Berlin, pp. 85–96.

Guo, R., Wu, M., Peng, J., Peng, J. and Cao, W. (2007). New q learning algorithm for multi-
agent systems, Zidonghua Xuebao/Acta Automatica Sinica, 33(4), 367–372.

Iba, H. (1999). Evolving multiple agents by genetic programming. In U.-M.L. Spector, W.
Langdom & P.Angeline, eds., Advances in Genetic Programming. Vol. 3, The MIT
Press, Cambridge, MA, pp. 447–466.

Jars, I., Kabachi, N. and Lamure, M. (2004). Proposal for a vygotsky’s theory based
approach for learning in MAS. In AOTP: The AAAI-04 Workshop on Agent
Organizations: Theory and Practice. San Jose, California.
http://www.cs.uu.nl/virginia/aotp/papers/ AOTP04IJars.Pdf.

Jolly, K. G., Ravindran, K. P., Vijayakumar, R. and Kumar, R. S. (2007). Intelligent decision
making in multi-agent robot soccer system through compounded artificial neural
networks. Robotics and Autonomous Systems. Volume 55, Issue 7, 31 July 2007,
Pages 589-596.

Kapetanakis, S. and Kudenko, D. (2002). Reinforcement learning of coordination in
cooperative multi-agent systems. In Proceedings of the National Conference on
Artificial Intelligence. pp. 326–331.

Kapetanakis, S. and Kudenko, D. (2004). Reinforcement learning of coordination in
heterogeneous cooperative multi-agent systems. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2004. Vol. 3, pp. 1258–1259.

Kapetanakis, S., Kudenko, D. and Strens, M. J. A. (2003). Reinforcement learning
approaches to coordination in cooperative multi-agent systems. Lecture Notes in
Artificial Intelligence (Subseries of Lecture Notes in Computer Science) 2636, 18–
32.

Kim, H.-S., Shim, H.-S., Jung, M.-J., and Kim, J.-H. (1997a). Action selection mechanism for
soccer robot. In IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 1997. CIRA’97., Proceedings, pages 390-395.

Kim, J.-H., Shim, H.-S., Kim, H.-S., Jung, M.-J., and Vadakkepat, P. (1997b). Action
selection and strategies in robot soccer systems. In Proceedings of the 40th
Midwest Symposium on Circuits and Systems, 1997, volume 1, pages 518-521.

Kok, J. R. and Vlassis, N. (2004). Sparse cooperative q-learning. In Proceedings of the
twenty-first international conference on Machine Learning. Banff, Alberta,
Canada, p. 61.

Kononen, V. (2004). Asymmetric multiagent reinforcement learning. Web Intelligence and
Agent System 2(2), 105 – 121.

Kuniyoshi, Y. and Inoue, H. (1993). Qualitative recognition of ongoing human action
sequences. In IJCAI93 Proceedings, Chambery, France, pages 1600–1609, 1993.

Le Pape, C. (1990). A combination of centralized and distributed methods for multi-agent
planning and scheduling. In Proceedings of 1990 IEEE International Conference
on Robotics and Automation ICRA, pp. 488–493.

Li, X. and Parker, L. E. (2007). Sensor Analysis for Fault Detection in Tightly-Coupled
Multi-Robot Team Tasks. In 2007 IEEE International Conference on Robotics and
Automation. Roma, Italy, 10-14 April 2007, pp. 3269-3276.

www.intechopen.com

Learning by Experience and by Imitation in Multi-Robot Systems

85

Miyamoto, H. and Kawato, M. (1998). A tennis serve and upswing learning robot based
on bidirectional theory. Neural Networks, 11:1331–1344, 1998.

Noreils, F. R. (1993). Toward a robot architecture integrating cooperation between mobile
robots: Application to indoor environment, The International Journal of Robotics
Research 12(2): 79-98.

Oliveira, D. De and Bazzan, A. L. C. (2006). Traffic lights control with adaptive group
formation based on swarm intelligence. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 4150 LNCS, 520–521.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems. 11(3), 387–434.

Salustowicz, R. P., Wiering , M. A. and Schmidhuber, J. (1998). Learning team strategies:
Soccer case studies. Machine Learning, 33(2): 263-282.

Schaal, S. (1999). Is imitation learning the route to humanoid robots?. Trends in Cognitive
Sciences, 3(6):233–242, 6 1999.

Sen, S. and Sekaran, M. (1996). Multiagent coordination with learning classifier systems.
In G.WeiB & S.Sen, eds., Proceedings of the IJCAI Workshop on Adaption and
Learning in Multi-Agent Systems. Vol. 1042, Springer Verlag, pp. 218–233.

Sen, S., Sekaran, M. and Hale, J. (1994). Learning to coordinate without sharing
information. In Proceedings of the National Conference on Artificial Intelligence.
Vol. 1, pp. 426–431.

Shoham, Y., Powers, R. and Grenager, T. (2007). If multi-agent learning is the answer,
what is the question?. Artificial Intelligence. 171(7), 365–377.

Ŝniezyński, B. and Koźlak, J. (2006). Learning in a multi-agent system as a mean for
effective resource management. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics. 3993 LNCS - III, 703–710.

Suematsu, N. and Hayashi, A. (2002), A multiagent reinforcement learning algorithm
using extended optimal response. In Proceedings of the International Conference
on Autonomous Agents. number 2, pp. 370–377.

Sutton, R. and Barto, A. (1998), Reinforcement learning: an introduction. MIT Press,
Cambridge, MA, 1998.

Tumer, K., Agogino, A. K. and Wolpert, D. H. (2002). Learning sequences of actions in
collectives of autonomous agents. In Proceedings of the International Conference
on Autonomous Agents. número 2, pp. 378–385.

Ulam, P., Endo, Y., Wagner, A. and Arkin, R. (2007). Integrated mission specification and
task allocation for robot teams - design and implementation. In 2007 IEEE
International Conference on Robotics and Automation. Roma, Italy, 10-14 April
2007, pages 4428-4435.

Wang, J. and Gasser, L. (2002). Mutual online concept learning for multiple agents. In
Proceedings of the International Conference on Autonomous Agents. (2), 362–
369.

Wiering, M., Salustowicz, R. and Schmidhuber, J. (1999). Reinforcement learning soccer
teams with incomplete world models. Autonomous Robots, 7(1): 77-88.

Wu, C.-J. and Lee, T.-L. (2004). A fuzzy mechanism for action selection of soccer robots.
Journal of Intelligent and Robotic Systems, 39(1): 57-70.

www.intechopen.com

Frontiers in Evolutionary Robotics

86

Yamamoto, M. M. (2005). Planejamento cooperativo de tarefas em um ambiente de futebol
de robôs. Master’s thesis in electrical engineering. Federal University of Rio
Grande do Norte. Brazil.

Zhang, Y. and Mackworth, A. K. (2002). A constraint-based robotic soccer team.
Constraints, 7(1): 7-28.

www.intechopen.com

Frontiers in Evolutionary Robotics

Edited by Hitoshi Iba

ISBN 978-3-902613-19-6

Hard cover, 596 pages

Publisher I-Tech Education and Publishing

Published online 01, April, 2008

Published in print edition April, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presented techniques and experimental results which have been pursued for the purpose of

evolutionary robotics. Evolutionary robotics is a new method for the automatic creation of autonomous robots.

When executing tasks by autonomous robots, we can make the robot learn what to do so as to complete the

task from interactions with its environment, but not manually pre-program for all situations. Many researchers

have been studying the techniques for evolutionary robotics by using Evolutionary Computation (EC), such as

Genetic Algorithms (GA) or Genetic Programming (GP). Their goal is to clarify the applicability of the

evolutionary approach to the real-robot learning, especially, in view of the adaptive robot behavior as well as

the robustness to noisy and dynamic environments. For this purpose, authors in this book explain a variety of

real robots in different fields. For instance, in a multi-robot system, several robots simultaneously work to

achieve a common goal via interaction; their behaviors can only emerge as a result of evolution and

interaction. How to learn such behaviors is a central issue of Distributed Artificial Intelligence (DAI), which has

recently attracted much attention. This book addresses the issue in the context of a multi-robot system, in

which multiple robots are evolved using EC to solve a cooperative task. Since directly using EC to generate a

program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dennis Barrios-Aranibar, Luiz M. G. Goncalves and Pablo Javier Alsina (2008). Learning by Experience and by

Imitation in Multi-Robot Systems, Frontiers in Evolutionary Robotics, Hitoshi Iba (Ed.), ISBN: 978-3-902613-19-

6, InTech, Available from:

http://www.intechopen.com/books/frontiers_in_evolutionary_robotics/learning_by_experience_and_by_imitatio

n_in_multi-robot_systems

www.intechopen.com

Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

