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1. Introduction 

In an optical CATV system, the signal was directly or externally modulated with lightwave 

before communicates. Directly modulating signal with LD is an economic method, but the 

transmission distance and performance are significantly limited by laser chirping issues. In 

another hand, the externally modulation schemes have been proofed to provide better 

outcomes by eliminating the laser chirping issue. Nevertheless, an expensive externally 

modulated transmitter is required causing an increased capital expenditures. In order to 

provide an economic structure with advanced transmission performance as in external 

modulation system, direct modulation method is often combined with other techniques or 

components to compose higher performance and lower cost CATV system. The split-band 

techniques for example have been proofed as a powerful assistant for direct modulation 

CATV systems. In this structure, the full channel loading is shared by additional LDs 

causing a wider optical linewidth to eliminate the SBS degradation. In addition, by 

increasing the wavelength numbers, major parts of CSO distortions from each transmission 

band are automatically removed from each channel. These outstanding techniques and 

impressive outcomes are consequently analyzed and discussed as parts of this chapter.  

In parallel with the effective of the SBS degradation, the CNR is in direct proportion to the 
optical power, as well as the second-order harmonic distortion-to-carrier ratio (HD2/C) and 
the third-order inter-modulation distortion-to-carrier ratio (IMD3/C) values are in inverse 
proportion to the laser resonance frequency. Improving the utilized LD characteristic is 
therefore another useful methodology to upgrade the optical CATV system. External light-
injection and optoelectronic feedback techniques in particularly have been experimentally 
proofed as efficient methods to enhance laser output power and laser resonance frequency 
(Lee et al., 2007; Lu et al., 2008). As a result, the CNR value will be proportionally increased 
with the enhanced LD intensity, as well as the HD2/C and IMD3/C will be proportionally 
reduced with the improved laser resonance frequency. The reduced HD2/C and IMD3/C 
values are subsequently leading to an improvement in CSO/CTB values.  
Following with the modifications of modulation schemes and lightwave characteristics, 
compensating fiber dispersions is another research direction to promote fiber optical CATV 
systems. Numbers of compensation methodologies such as eliminating parts of optical 
dispersion by optical filter and cascading systems with negative dispersion fibers are 
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demonstrated as useful techniques to upgrade system performance. Since there is no 
modulating information in the optical carrier, putting an optical filter to eliminate the 
redundant spectra not only can increase spectra efficiency by reducing the spectral 
linewidth but also can ameliorate the CSO/CTB performance by reducing frequency 
dispersion. Similarly, cascading a section of negative dispersion fiber with CATV systems is 
also an efficient method to eliminate the fiber chromatic dispersion. By combining a 
negative dispersion fiber with single mode fiber (SMF), the total fiber dispersion is able to be 
removed to improve the system performance. Consequently, the relative fiber dispersion 
compensation techniques as well as the possible extensions and the future directions of the 
CATV systems are also discussed in this chapter. 

2. Modulation promotion methods: split-band techniques 

Long-distance transmission of fiber AM-VSB 80-channel CATV systems has been widely 
spread throughout the cable industry. Nevertheless, the maximum transmission distance of 
such systems is still limited by RF parameters and it is difficult to obtain good CNR, CSO, 
and CTB performances due to full channel loading (Lu & Lee, 1998). In order to provide an 
economic structure with advanced transmission performance as in external modulation 
system, direct modulation method is often combined with other techniques or components 
to compose higher performance and lower cost CATV system. The split-band techniques for 
example have been proofed as a powerful assistant for direct modulation CATV systems. In 
this structure, the full channel loading is shared by additional LDs causing a wider optical 
linewidth to eliminate the SBS degradation (Lee et al., 2007). In addition, by increasing the 
wavelength numbers, major parts of CSO distortions from each communication band are 
automatically removed from each communication channel.  
Fig. 1 shows two AM-VSB 80-channel fiber optical CATV systems with two cascaded 
EDFA’s (Lu & Lee, 1998). Fig. 1 (a) (referred to as system I) shows the conventional 80-
channel fully loaded externally modulated system. Fig. 1 (b) (referred to as system II) shows 
a half-split-band directly modulated WDM system with 40 channels per transmitter.  
In system I, channel 5~78 (77.25–547.25 MHz) are fed into an external modulator as the 
modulation signal through an RF predistortion circuit. The interaction of the 1550 nm DFB 
laser light and the RF-generated electric fields leads to a phase modulation via the 
electrooptical effect. The phase modulation was then converted to intensity modulation 
within the external modulator. During this converting process, the linewidth is broadening 
by the phase modulation causing a reduced SBS effect. While in system II, channel 5~40 
(77.25–319.25 MHz; low bands) are fed into the first directly modulated transmitter, and 
channel 41~78 (325.25–547.25 MHz; high bands) are fed into the second one. Channel (55.25–
67.25 MHz) are removed from system II to obtain best CSO value.  
Fig. 2 (a)–(c) shows the measured CNR, CSO and CTB values under NTSC channel number 
for both system I and II respectively. Comparing with the system I, the CNR and CTB values 
in the system II are relatively degraded about 2 and 0.2 dB. Nevertheless, the CSO 
performance in the system II is much better than in system I especially at the high bands 
region. 
This improvement, resulted from the use of half-split-band and WDM techniques, is caused 
by the reduction of fiber nonlinear and dispersion effects. For example, when the carrier 
frequency for CH7 and CH13 is 175.25 and 211.25 MHz respectively, there will be a CSO 
distortion at: 
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Fig. 1. (a) Fully loading externally modulated transmitter system and (b) directly modulated 
transmitters using half-split-band techniques (Lu & Lee, 1998). 
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Fig. 2. (a) Measured CNR, (b) CSO and (c) CTB values for systems I and II. (Lu & Lee, 1998). 
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 175.25MHz (CH7) + 211.25MHz (CH13) = 386.25 MHz.  (1)  

Similarly, the CSO distortion caused by CH78 and CH50 is located at:  

 547.25MHz (CH78) – 379.25 MHz (CH50) = 168MHz.  (2) 

The above results present that the CSO distortions induced by low bands (CH5 ~ CH40) are 
located at high bands, and CSO distortions induced by high bands (CH41 ~ CH78) are located 
at low bands. The half-split-band technique is therefore can remove major part of CSO 
distortions in system II to improve the transmission performance. 

3. Lightwave enhancement schemes: light-injection techniques 

In contrast to transform the modulation techniques, boosting up LD performance is another 

valuable technique to be recoded in here. External light-injection techniques and 

optoelectronic feedback techniques in particularly have been experimentally proofed as 

efficient methods to improve optical fiber CATV systems (Lee et al., 2007). By externally 

injecting a master light source into a slave laser, the output power and laser resonance 

frequency of the injection-locked slave laser can be greatly enhanced (Kazubowska et al., 

2002; Lee et al., 2006). The CNR value is consequently proportionally increased with the 

enhanced LD intensity, as well as the HD2/C and the IMD3/C are proportion reduced with 

the laser resonance frequency. The reduced HD2/C and IMD3/C values in the light-injection 

optical CATV systems will lead to an improvement in CSO/CTB performance. As a result, 

the light-injection techniques can notably improve the lightwave features to transmit CATV 

programs. 

3.1 Local light-injection techniques 

Fig. 3 shows a directly modulated transport system employing external light injection 
technique to improve the overall system performance (Lu et al., 2003). The central 

wavelengths of the two DFB laser diodes are 1550.5(λ1) and 1555.7(λ2) nm respectively.  
In the system, the frequency response of the DFB laser diode with and without external light 

injection is very different. In the free running case, the laser resonance frequency is ~5 GHz; 

with 3 dBm light injection, the laser resonance frequency is increased to ~15 GHz; and with 

4.8 dBm light injection, the laser resonance frequency is further increased up to ~18.5 GHz. 

The 370% improvement in the laser resonance frequency has significantly demonstrated the 

advancement of the external light injection techniques to assist the fiber optical CATV 

systems.  

Fig. 4 (a) shows the measured CNR values under NTSC channel number with and without 
external light injection respectively. It can be seen that the CNR values are boosted up with 
the increasing of the injected power level. For long-haul lightwave transmission systems, the 
CNR values are dominated mainly from signal-spontaneous beat noise (Way, 1998):  

 1

2 2
1

8 1
(1 )

sp
sig sp

in

n hv
CNR

Gm c P

−
− = −  (3) 

where CNRsig-sp is associated with the EDFA, nsp is the population inversion factor, hν is the 

photon energy, m is the optical modulation index, c1 is the input coupling loss to the EDFA,  
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Fig. 3. Directly modulated transport system employing external light-injection technique (Lu 
et al., 2003) 
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Fig. 4. (a) Measured CNR values with and without light injection. (b) The theoretical derived 
and experimental measured CSO and (c) CTB values.(Lu et al., 2003) 
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Pin is the EDFA optical input power, and G is the saturated gain of the EDFA. From the 

above equation, it is clear that the CNRsig-sp value depends critically on the optical input 

power Pin. When the injection power is increased, the power launched into the EDFA-I is 

enlarged. This is attributed by a fact that the external light injection will reduce the laser 

diode threshold current and then increase the optical output power of the laser diode 

(Kazubowska et al., 2002). As a result, the CNR performance is upgraded by the techniques. 

In parallel with the CNR values, the CSO and CTB values can also be improved by using 

half-split-band and external light injection techniques. According to the analysis in (Lu & 

Lee, 1998), the CSO and CTB distortions can be expressed as: 

 CSO  =  HD2  +  10⋅log NCSO  +  6 (dB)  (4) 

 CTB = IMD3 + 10⋅logNCTB +  6 (dB)  (5) 

 

where HD2 is the second order harmonic distortion, IMD3 is the third order intermodulation 

distortion, NCSO and NCTB are the product counts of CSO and CTB respectively. Smaller NCSO 

and NCTB can be obtained from the smaller channel number. Therefore, the CSO and CTB 

values presenting in Fig. 4 (b) and (c) can satisfy the fiber optical CATV systems’ 

requirements (>65/60 dB) (Lu & Lee, 1998). 

In addition, it also can be observed that CSO and CTB improvements of ~2 and ~3 dB have 

been achieved with 3 and 4.8 dBm light injection respectively. This means that the external 

light injection technique not only can increase the laser resonance frequency, but also can 

reduce the HD2/C and IMD3/C. The HD2/C and IMD3/C can be expressed as (Helms, 

1991):  

 

2
4 2

1 1
3 2

0 0

/
2

f f
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f f
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 (6)                  

 ( )
4

22 1
2 1

0

2  
f

HD C m FR f
f

⎛ ⎞
= ⋅ ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
  (7) 

 

where FR(f) is the small-signal frequency response, f1 is the modulation frequency, f0 is the 

laser resonance frequency, S0 is the photon density, τn is the recombination lifetime of 

carriers, τp is the photon lifetime, and ε is the gain compression parameter with respect to 

photon density. It is clear from Eq. 6 and 7 that both HD2/C and IMD3/C can become very 

small when f1 << f0. The use of external light injection technique lets the laser resonance 

frequency increased, and results in system with lower HD2/C and IMD3/C. Furthermore, it 

can be obviously seen from Eq. 4 and 5 that to reduce HD2/IMD3 will lead to CSO/CTB 

performance improvement. To show a more direct association among Eq. 6, 7 and the 

experimental results, the electrical spectra of the received signals with and without external 

injection are given in Fig. 5 (a) and (b). We can see that the flatness of the system with 4.8 

dBm external injection is superior to that without external injection resulting in better CSO 

and CTB performances.  
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Fig. 5. (a) The electrical spectrum of the received signals with 4.8 dBm external injection and 
(b) without external injection into the laser (Lu et al., 2003). 

3.2 Remote light-injection techniques 

In this section, remote light injection technique is discussed. As presented in Fig. 6 (Lee et 
al., 2007), a total of 77 random phase continuous wave carriers from a multiple signal 
generator were used to simulate analog CATV channels (CH2-78; 6 MHz/CH), and fed into 
two DFB LDs. The optical power was coupled into a 50-km SMF through an optical coupler. 

As to the remote light injection part, 1532.76 nm (λ’1) and 1535.94 nm (λ’2) lightwaves with 8 
dBm power level are accurately chosen to inject through 3-port optical circulators (OCs). At 
the receiver end, the power levels of two DFB LDs in the free-running case are decreased 
obviously due to fiber transmission loss. However, these two power levels are able to be 
significantly increased by 8 dBm remote light injection and the optical spectra are slightly 
shifted toward longer wavelengths. This is because that the optimal injection locking 

condition is found when the detuning between λ1 (λ2) and the λ’1 (λ’2) is 0.12 nm, and the 

chaotic phenomenon is found when the detuning between λ1 (λ2) and the λ’1 (λ’2) is larger 
than 0.26 nm. 
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Fig. 6. Remote light-injection direct modulation fiber optical CATV transport systems (Lee et 
al., 2007). 
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The measured CNR, CSO and CTB values in the free running case and with 8 dBm remote 
light injection are presented in Fig. 7 (a), (b) and (c) respectively. It is obvious that the CNR 

value (≥ 50 dB) is increased largely as 8 dBm optical power is remotely injected. The CNR 
value depends critically on the received optical power level:  

  ( )( ) 1111 −−−− ++= shotthRIN CNRCNRCNRCNR   (8) 

where CNRRIN results from the LD RIN; CNRth (due to thermal noise) and CNRshot (due to 
shot noise) are associated with the optical receiver. The summation of CNRth and CNRshot 
with 8 dBm remote light injection is higher than that in the free running case. This is due to 
a factor that the optical power is promoted by remote light injection causing a better CNR 
performance in the receiver end.  
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Fig. 7. Measured (a) CNR (b) CSO and (c) CTB values under NTSC channel number (Lee et 
al., 2007) 

As to the CNR performance, the CSO/CTB values (≥65/63 dB) of system with 8 dBm remote 

light injection are improved considerably. It can be observed from the results that large CSO 

and CTB improvements of about 6 and 5 dB have been achieved. The improvements are 

resulted from the use of the half-split-band and remote light injection techniques. CSO and 

CTB distortions are given by (Way, 1998):  

 ( )
2 4 2 2 6

2

2

4
10log 16 10log 6

4

c c
CSO

mD Lf L f
CSO N

c c

λ λ πτ
⎡ ⎤
⎢ ⎥= Δ + + +
⎢ ⎥
⎣ ⎦

 (9) 
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c
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m D L f
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λ τ π
⎡ ⎤

= Δ + + +⎢ ⎥
⎢ ⎥⎣ ⎦

 (10) 

where m is the optical modulation index, D is the dispersion coefficient, cλ  is the optical 

carrier wavelength, L is the fiber length, f is the RF frequency, ( )D Lτ λΔ = ⋅ ⋅ Δ  is the fiber 

chromatic dispersion ( λΔ  is the spectral width), and NCSO/NCTB are the product counts of 

CSO/CTB. By using half-split-band technique, smaller NCSO/NCTB can be obtained from 
smaller channel number; thereby, part of the CSO/CTB distortion will be removed 
dramatically in each split-band region. Moreover, the use of remote light injection technique 
decreases the frequency chirp of LD, letting system with lower fiber chromatic dispersion, 
and leading to an improvement of CSO/CTB performances. 

3.3 Lower-frequency side-mode injection-locked techniques 

In the early stage of developing light-injection techniques, researchers are firstly focused 

their eyes on main mode injection-locked. Nevertheless, this phenomenon was changed by 

the publications of low-frequency side mode injection-locked techniques (Lee et al., 2006; 

Seo et al., 2002), because the new method illustrates a much better improvement than main 

mode injection technique. Table 1 presents the SMSR values under lower-frequency side 

mode injection-locked of DFB LD at different wavelength detuning. It can be seen that the 

SMSR values of 40~48 dB are achieved when the locking range is -0.07 ~ +0.32 nm. As 

optimal injection locking happens, with a detuning of +0.12 nm, the maximum SMSR value 

of 48 dB is obtained. The injection-locked range for slave laser under light injection can be 

expressed as (Mondal et al., 2007): 

 ( )1in in

m m

I I
k k

I I
α ω

⎛ ⎞
− + ≤ Δ ≤⎜ ⎟⎜ ⎟

⎝ ⎠
 (11) 

where k and  denote coupling coefficient between injected field and laser field; Iin and Im are 

injected field and laser mode field intensity, and ∆ω is the locking range. Within the locking 

range, the frequency of slave laser is locked nearly to that of the master laser. Furthermore, 

with light injection, because of the coherent summation of externally injecting and internally 

generated slave fields, the phase adds an additional dynamic variable. Consequently, a new 

resonant coupling between the field amplitude and phase appears and can dominate the 

laser resonance frequency.  

 

Wavelength Detuning (nm) / 
SMSR (dB) 

-0.07 
/40 

-0.04/ 
41.5 

-0.00/ 
43.1 

0.03/ 
44 

0.07/ 
45.6 

0.07/ 
45.6 

0.1/ 
46.8 

0.12/ 
48 

0.15/ 
46.4 

0.18/ 
45 

0.23/ 
43.4 

0.25/ 
42.5 

0.29/ 
41.4 

0.32/ 
40 

Table 1. The SMSR values under lower-frequency side mode injection-locked of DFB LD1 at 
different wavelength detuning (Lu et al., 2008). 

www.intechopen.com



 Frontiers in Guided Wave Optics and Optoelectronics 

 

656 

Fig. 8 (a), (b) and (c) show the measured CNR, CSO and CTB values under NTSC channel 

number for free-running, with 4.8 dBm main mode injection, and with 4.8 dBm lower-

frequency side mode injection, respectively. The CNR value depends critically on the optical 

input power, so that the increased values between the scenarios of 4.8 dBm main and side 

modes injection are similar. Nevertheless, the performances of the measured CSO and CTB 

values are very different. According to the Eq. 6 and 7, the use of lower-frequency side 

mode injection locking technique can further increase the resonance frequency of the slave 

laser resulting in smaller values of HD2/C and IMD3/C. Consequently, better CSO and CTB 

performances are obtained in 4.8 dBm lower-frequency side mode injection scenario. 
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Fig. 8. Measured (a) CNR, (b) CSO and (c) CTB values under NTSC channel number 

3.4 Hybrid local light-injection and optoelectronic feedback techniques 

In parallel with the light-injection techniques, optoelectronic feedback technique has been 

used in high-speed digital optical communication systems to improve bit error rate (BER) 

performance (Attygalle & Wen, 2006). This technique, which can greatly enhance the laser 

resonance frequency (Li et al., 1995), is therefore can be integrated with light-injection 

methods to assist the transmission of fiber optical CATV systems as presented in Fig. 9 (Lu 

et al., 2006).  

Experimentally, with the assisting of main mode injection and optoelectronic feedback, the 

laser resonance frequency is further improved to 25.2 GHz. The laser resonance frequency, 

f0, is given by:  

 2 0
0 24

g S
f

ρπ τ
=  (10) 
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Fig. 9. Local light-injection and optoelectronic feedback techniques enhanced 100-km split-
band directly modulated optical CATV system (Lu et al., 2006).  

where g0 is the gain coefficient, S is the photon density, and τp is the photon lifetime. Since 
2

0f  is direct proportion to photon density, the increased photon density by the light-

injection power will lead to a promotion of laser resonance frequency. Additionally, 
optoelectronic feedback techniques will further increase the stability of the laser, resulting in 
out-of-phase carrier re-injection. The re-injection can therefore assist the effect of the light-
injection techniques, leading to an improvement of laser resonance frequency, as a result, 
presenting in an improvement of CSO/CTB values. The optoelectronic feedback techniques 
are hence an efficient method to enhance the performance of directly modulated optical 
CATV systems by promoting RF parameters. 

4. Dispersions compensation schemes 

Following with the modifications of direct modulation schemes and lightwave enhancement 
methods in fiber optical CATV systems, fiber chromatic dispersion is still another bottleneck 
needed to be solved out. Cascading CATV system with optical filter or a section of negative 
dispersion fiber (Lu et al., 2007) for example have been developed to overcome this issue. 
Since there is no useful modulating information in the redundant spectra, adding an optical 
filter to eliminate parts of these spectra not only can increase spectra efficiency but also can 
ameliorate the CSO/CTB performance. Similarly, cascading a section of negative dispersion 
fiber with a long-haul CATV system can also promote the system by eliminating the fiber 
chromatic dispersion. Consequently, the relative fiber dispersion compensation techniques 
are recorded and discussed in the following sections. 
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4.1 Downgrading dispersions by optical filter 

Over a long-haul fiber transmission, fiber dispersion accumulates rapidly and leads to a 

worse system performance. To overcome this issue, utilizing optical filter to change the 

broad spectral linewidth into a narrow one has been demonstrated as a useful method in 

fiber optical transport systems (Lu et al., 2008). As presented in Fig. 10, the downstream 

optical signal was sent through a tunable optical band-pass filter (OBPF) and a Fabry-Perot 

(FP) etalon filter before received. The OBPF is applied to select the appropriate wavelength 

and the FP etalon filter is employed to narrow down the spectral linewidth as well as to 

compensate fiber dispersion.  
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Fig. 10. Employing split-band technique and Fabry-Perot etalon filter to improve directly 
modulated fiber optical CATV system (Lu et al., 2008). 

By eliminating the redundant spectra of optical signal, the spectral efficiency is enhanced 

and the dispersion is ameliorated resulting in better CSO/CTB performance. This optical 

filter is then worth deployed due to excellent optical characteristics such as sharp cutoff in 

the transmission spectrum. However, the wavelength misalignment between the selected 

optical wavelength and the optical filter will change optical power level launched into the 

fiber and degrade system performances. To avoid the wavelength misaligned by thermal 

effect, the filter needs to be utilized in a thermal package.  

4.2 Dispersion compensated by special fiber 

Different with cascading an optical filter to cut off optical spectral linewidth, adding a span 
of negative dispersion fibers, such as photonic crystal fiber (PCF), chirp fiber grating (CFG) 
and dispersion compensation fiber (DCF), into an optical CATV systems is experimentally 
demonstrated as another efficient method to compensate fiber dispersion (Ni et al., 2004). 
Fig. 11 for example demonstrates a 100-km optically amplified AM-VSB transmission 
system cascading with a span (3.6-km) of PCF disperion compensation fiber.  
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Fig. 11. A 100-km optically amplified AM-VSB transmission system with a length of PCF 
disperion compensation fiber (Lu et al., 2007). 

In this system, the optical link with a transmission length of 100-km SMF has a total positive 
dispersion of 1700 ps/nm (17 ps/nm/km × 100 km). However, a length of 3.6-km PCF has a 
negative dispersion of -1710 ps/nm (-475 ps/nm/km × 3.6 km). By combining these two 
pieces together, the total dispersion is nearly eliminated (-10 ps/nm) leading to lower fiber-
induced distortion and better CSO/CTB performance. 

5. Extending applications of directly modulated fiber optical CATV systems 

Following with an assistance of numerous techniques, the CATV service providers are able 
to offer high quality of CATV programs by cost effective optical fiber connection. 
Nevertheless, the potential of optical fiber is not fully utilized yet. Integrating other services, 
such as Internet access, WiMAX services and HDTV programs, with CATV transport 
systems would be quite useful to share the cost of deploying and maintaining optical fiber 
(Ying et al., 2007). Recently, passive optical networks (PONs) are promising way to obtain 
low cost and high capacity optical Internet access. DWDM in combination with PON has 
received considerable attentions due to its large capacity, network security, easy 
management, and upgrade- ability (Choi et al., 2005; Hann et al., 2004; Khanal et al., 2005). 
In parallel with the PON systems, radio-over-fiber (ROF) transport systems also present a 
potential to offer significant network flexibility, large transmission capacity and economic 
advantage to satisfy the increasing demand in wireless broadband services such as WiMAX 
(Masella & Zhang, 2006). Due to low attenuation and broad bandwidth characteristics of 
optical fiber, combining ROF and Internet access with CATV systems has subsequently 
attracted much attention to fully utilize the potential of optical fiber and to provide triple 
play services for clients. Fig. 12 for example presents a bidirectional HDTV/Gigabit 
Ethernet/CATV over DWDM-PON system. Services with 129 HDTV channels, 1.25 Gb/s 
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Gigabit Ethernet connection, and 77 CATV channels were successfully demonstrated over 40 
km SMF links. Good performance of BER, CNR and CSO/CTB were achieved in this system. 
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Fig. 12. HDTV/Gigabit Ethernet/CATV over bidirectional hybrid DWDM-PON (Lu et al., 
2007). 

6. Conclusion 

Fiber optical CATV systems are recently enhanced by the introduction of 1550 nm 

technology. However the maximum transmission distance of the systems is still limited by 

RF parameters. Literarily, numbers of techniques such as split-band schemes, light-injection 

methods and dispersion compensation skills have been developed to extend the bottleneck 

in fiber optical CATV systems. Sharing full channel load from one LD to multiple LDs in 

split-band schemes has been demonstrated as an efficiency way to eliminate major part of 

CSO distortion from each optical band. Furthermore, improving laser resonance frequency 

and output power by light-injection techniques as well as compensating fiber dispersion by 

optical filters or by negative dispersion fiber are also presenting an advanced assistance in 

such systems. All of these techniques make a possibility to deploy a long-haul and cost-

effective CATV system by direct modulation scheme. The main problem is that such 

systems do not fully utilize the potential of optical fiber. There is still plenty of capacity in 

fiber link waiting for people to dig out. As a result, combining fiber optical CATV systems 

with other applications, such as Internet access and WiMAX services, are discussed 

popularly in literature. The applications and characteristics of the mentioned techniques as 

well as the future directions of directly modulated fiber optical CATV system are 

consequently analyzed and illustrated in this chapter.  
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