
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

An Adaptive Penalty Method for Genetic
Algorithms

in Constrained Optimization Problems

Helio J. C. Barbosa and Afonso C. C. Lemonge
Laboratório Nacional de Computação Científica, LNCC/MCT

Universidade Federal de Juiz de Fora, UFJF
Brazil

1. Introduction

Inspired by the Darwinian principles of evolution, genetic algorithms (GAs) (Holland, 1975,
Goldberg, 1989) are widely used in optimization. GAs encode all the variables corresponding
to a candidate solution (the phenotype) in a data structure (the genotype) and maintain a
population of genotypes which is evolved mimicking Nature's evolutionary process.
Individuals are selected for reproduction in a way that better performing solutions have a
higher probability of being selected. The genetic material contained in the chromosome of such
"parent" individuals is then recombined and mutated, by means of crossover and mutation
operators, giving rise to offspring which will form a new generation of individuals. The
process is repeated for a given number of generations or until some stopping criteria are met.
GAs are search algorithms which can be directly applied to unconstrained optimization

problems, UOP),(Sf , where one seeks for an element x belonging to the search space

S , which minimizes (or maximizes) the real-valued objective function f . In this case, the

GA usually employs a fitness function closely related to f . However, practical

optimization problems often involve several types of constraints and one is led to a

constrained optimization problem, COP),,(bSf , where an Sx∈ that minimizes (or

maximizes) f in S is sought with the additional requirement that the boolean function

)(xb (which includes all constraints of the problem) is evaluated as true. Elements in S

satisfying all constraints are called feasible.
The straightforward application of GAs to COPs is not possible due to the additional
requirement that a set of constraints must be satisfied. Difficulties may arise as the objective
function may be undefined for some (or all) infeasible elements, and an informative measure
of the degree of infeasibility of a given candidate solution may not be easily defined. Finally,
for some real-world problems, the check for feasibility can be more expensive than the
computation of the objective function itself.
As a result, several techniques have been proposed and compared in the literature in order
to enable a GA to tackle COPs. Those techniques can be classified either as direct (feasible or

Source: Frontiers in Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education
and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

Frontiers in Evolutionary Robotics

10

interior), when only feasible elements in S are considered, or as indirect (exterior), when

both feasible and infeasible elements are used during the search process.
Direct techniques include: a) the design of special closed genetic operators, b) the use of
special decoders, c) repair techniques, and d) "death penalty".
In special situations, closed genetic operators (in the sense that when applied to feasible
parents they produce feasible offspring) can be designed if enough domain knowledge is
available (Shoenauer & Michalewicz, 1996). Special decoders (Koziel & Michalewicz, 1999) -
that always generate feasible individuals from any given genotype have been devised, but
no applications considering non-linear implicit constraints have been published.
Repair methods (Liepins & Potter, 1996, Orvosh & Davis, 1994) use domain knowledge in
order to move an infeasible offspring into the feasible set. However, there are situations
when it is very expensive, or even impossible, to construct such a repair operator, drastically
reducing the range of applicability of repair methods. The design of efficient repair methods
constitutes a formidable challenge, specially when non-linear implicit constraints are
present.
Discarding any infeasible element generated during the search process ("death penalty") is
common practice in non-populational optimization methods. Although problem
independent, no consideration is made for the potential information content of any
infeasible individual.
Summarizing, direct techniques are problem dependent (with the exception of the "death
penalty") and actually of extremely reduced practical applicability.
Indirect techniques include: a) the use of Lagrange multipliers (Adeli & Cheng, 1994), which
may also lead to the introduction of a population of multipliers and to the use of the concept
of coevolution (Barbosa, 1999), b) the use of fitness as well as constraint violation values in a
multi-objective optimization setting (Surry & Radcliffe, 1997), c) the use of special selection
techniques (Runarsson & Yao, 2000), and d) "lethalization": any infeasible offspring is just
assigned a given, very low, fitness value (Kampen et al., 1996).
For other methods proposed in the evolutionary computation literature see (Shoenauer &
Michalewicz, 1996, Michalewicz & Shoenauer, 1996, Hinterding & Michalewicz, 1998, Koziel
& Michalewicz, 1998, Kim & Myung, 1997), references therein, and the repository
http://www.cs.cinvestav.mx/constraint/, maintained by C.A.C. Coello.
Methods to tackle COPs which require the knowledge of constraints in explicit form have
thus limited practical applicability. This fact, together with simplicity of implementation are
perhaps the main reasons why penalty techniques, in spite of their shortcomings, are the
most popular ones.
Penalty techniques, originating in the mathematical programming community, range from
simple schemes (like "lethalization") to penalty schemes involving from one to several
parameters. Those parameters can remain constant (the most common case) or be dynamically
varied along the evolutionary process according to an exogenous schedule or an adaptive
procedure. Penalty methods, although quite general, require considerable domain knowledge
and experimentation in each particular application in order to be effective.
In previous work (Barbosa & Lemonge, 2002, Lemonge & Barbosa, 2004), the authors
developed a general penalty method for GAs which (i) handles inequality as well as equality
constraints, (ii) does not require the knowledge of the explicit form of the constraints as a
function of the decision/design variables, (iii) is free of parameters to be set by the user, (iv)
can be easily implemented within an existing GA code and (v) is robust.

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

11

In this adaptive penalty method (APM), in contrast with approaches where a single penalty
parameter is used, an adaptive scheme automatically sizes the penalty parameter
corresponding to each constraint along the evolutionary process.
In the next section the penalty method and some of its traditional implementations within
genetic algorithms are presented. In Section 3 the APM is revisited and some variants are
proposed, Section 4 presents numerical experiments with several test-problems from the
literature and the paper closes with some conclusions.

2. Penalty Methods

A standard constrained optimization problem in
nR can be written as the minimization of a

given objective function)(xf , where
nRx∈ is the vector of design/decision variables,

subject to inequality constraints ppxg p ,1,2,= 0,)(K≥ as well as equality constraints

qqxhq ,1,2,= 0,=)(K . Additionally, the variables may be subject to bounds

U

ii

L

i xxx ≤≤ , but this type of constraint is trivially enforced in a GA.

Penalty techniques can be classified as multiplicative or additive. In the multiplicative case, a

positive penalty factor)),((Txvp is introduced in order to amplify (in a minimization

problem) the value of the fitness function of an infeasible individual. One would have

1=)),((Txvp for a feasible candidate solution x and 1>)),((Txvp otherwise. Also,

)),((Txvp increases with the “temperature” T and with constraint violation. An initial

value for the temperature is required as well as the definition of a schedule whereby T
grows with the generation number. This type of penalty has received much less attention in
the evolutionary computation community than the additive type. In the additive case, a
penalty functional is added to the objective function in order to define the fitness value of an
infeasible element. They can be further divided into: (a) interior techniques, when a barrier

functional)(xB -which grows rapidly as x approaches the boundary of the feasible

domain- is added to the objective function

)(
1

)(=)(xB
k

xfxFk +

and (b) exterior techniques, where a penalty functional is introduced

)()(=)(xkPxfxFk + (1)

 such that 0=)(xP , if x is feasible, and 0>)(xP otherwise (for minimization

problems). In both cases, as ∞→k , the sequence of minimizers of the UOP),(SFk

converges to the solution of the COP),,(bSf .

www.intechopen.com

Frontiers in Evolutionary Robotics

12

At this point, it is useful to define the amount of violation of the j -th constraint by the

candidate solution
nRx∈ as

⎩
⎨
⎧

− otherwise)}({0,max

,constraintequality an for |,)(|
=)(

xg

xh
xv

j

j

j

It is also common to design penalty functions that grow with the vector of violations
mRxv ∈)(where qpm += is the number of constraints to be penalized. The most

popular penalty function is given by

β))((=)(

1=

xvkxP j

m

j

∑ (2)

where k is the penalty parameter and 2=β . Although it is easy to obtain the

unconstrained problem, the definition of the penalty parameter k is usually a time-

consuming problem-dependent trial-and-error process.
Le Riche et al. (1995) present a GA based on two-level of penalties, where two fixed penalty

parameters 1k and 2k are used independently in two different populations. The idea is to

create two sets of candidate solutions where one of them is evaluated with the parameter 1k

and the other with the parameter 2k . With 21 kk ≠ , there are two different levels of

penalization and there is a higher chance of maintaining feasible as well as infeasible
individuals in the population and to get offspring near the boundary between the feasible

and infeasible regions. The strategy can be summarized as: (i) create pop×2 individuals

randomly (pop is the population size); (ii) evaluate each individual considering each

penalty parameter and create two ranks; (iii) combine the two ranks in a single one with size

pop ; (iv) apply genetic operators; (v) evaluate new offspring (pop×2), using both

penalty parameters and repeat the process.
Homaifar et al. (1994) proposed a penalty strategy with multiple coefficients for different
levels of violation of each constraint. The fitness function is written as

2

1=

))(()(=)(xvkxfxF jij

m

j

∑+

where i denotes one of the l levels of violation defined for the −j th constraint. This is an

attractive strategy because, at least in principle, it allows for a good control of the

penalization process. The weakness of this method is the large number, 1)(2 +lm , of

parameters that must be set by the user for each problem.

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

13

Joines & Houck (1994) proposed that the penalty parameters should vary dynamically along

the search according to an exogenous schedule. The fitness function)(xF was written as

in (1) and (2) with the penalty parameter, given by
α)(= tCk × , increasing with the

generation number t . They used both 2 ,1=β and suggested the values 0.5=C and

2=α .

Powell & Skolnick (1994), proposed a method of superiority of feasible points where each
candidate solution is evaluated by the following expression:

),()()(=)(
1=

xtxvrxfxF j

m

j

θ++ ∑

where r is a constant. The main assumption is that any feasible solution is better than any
infeasible solution. This assumption is enforced by a convenient definition of the function

),(xtθ . This scheme can be modified by the introduction of the tournament selection

proposed in (Deb, 2000), coupled with the fitness function:

⎪⎩

⎪
⎨
⎧

+∑ otherwise),(

feasible, is if),(

=)(

1=

xvf

xxf

xF
j

m

j

max

where maxf is the function value of the worst feasible solution. As observed in the

expression above, if a solution is infeasible the value of its objective function is not

considered in the computation of the fitness function, instead, maxf is used. However, Deb's

constraint handling scheme (Deb, 2000) -which also uses niching and a controlled mutation-
works very well for his real-coded GA, but not so well for his binary-coded GA.
Among the many suggestions in the literature (Powell & Skolnick, 1993, Michalewicz &
Shoenauer, 1996, Deb, 2000) some of them -more closely related to the work presented here-
will be briefly discussed in the following.

2.1 Adaptive penalties

A procedure where the penalty parameters change according to information gathered
during the evolution process was proposed by Bean & Hadj-Alouane (Bean & Alouane,
1992). The fitness function is again given by (1) and (2) but with the penalty parameter

)(= tk λ adapted at each generation by the following rules:

⎪
⎩

⎪
⎨

⎧

≤≤+−∈/

≤≤+−∈

+

otherwise)(

1 allfor if),(

1 allfor if),()(1

=1)(2

1

t

tigtFbt

tigtFbt

t i

i

λ

λβ

λβ

λ

www.intechopen.com

Frontiers in Evolutionary Robotics

14

 where
ib is the best element at generation i , F is the feasible region, 21 ββ ≠ and

1>, 21 ββ . In this method, the penalty parameter of the next generation 1)(+tλ

decreases when all best elements in the last g generations are feasible, increases if all best

elements are infeasible, and otherwise remains without change. The fitness function is
written as:

⎥
⎦

⎤
⎢
⎣

⎡
++ ∑∑ (x)h|(x)gλ(t)F(x)=f(x) j

p

j=

i

n

i= 1

2

1

Schoenauer & Xanthakis (1993), presented a strategy that handles constrained problems in
stages: (i) initially, a randomly generated population is evolved considering only the first
constraint until a certain percentage of the population is feasible with respect to that
constraint; (ii) the final population of the first stage of the process is used in order to
optimize with respect to the second constraint. During this stage, the elements that had
violated the previous constraint are removed from the population, (iii) the process is
repeated until all the constraints are processed. This strategy becomes less attractive as the
number of constraints grows and is potentially dependent on the order in which the
constraints are processed.
The method proposed by Coit et al. (1996), uses the fitness function:

α))()/(())()(()(=)(
1=

tvxvtFtFxfxF jj

m

j

allfeas ∑−+

where)(tFall corresponds to the best solution (without penalty), until the generation t ,

feasF corresponds to the best feasible solution, and α is a constant. The fitness function is

also written as:

α))()/(())()(()(=)(
1=

tNFTxvtFtFxfxF j

m

j

allfeas ∑−+

where NFT (Near Feasibility Threshold) defines the threshold distance, set by the user,
between the feasible and infeasible regions of the search space.
A variation of the method proposed by Coit et al. (1996) is presented in (Gen & Gheng,
1996a), where the fitness function is defined as:

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
− ∑

i

i
n

i b

xb

n
xfxF

)(1
1)(=)(

1=

and []iii bxgxb −Δ)(0,max=)(refers to the constraint violation. Based upon the same

idea, Gen and Cheng (1996b), proposed an adaptive penalty scheme where the fitness
function is written as:

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

15

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ
− ∑ max

i

i
n

i b

xb

n
xfxF

)(1
1)(=)(

1=

where [])(,max= xbb i

max

i ΔΔ ε is the maximum violation of the constraint i and ε is a

small positive value to avoid dividing by zero.
Hamida & Schoenauer (2000), proposed an adaptive scheme using: (i) a function of the
proportion of feasible individuals in the population, (ii) a seduction/selection strategy to
mate feasible and infeasible individuals, and (iii) a selection scheme to give advantage for a
given number of feasible individuals.

3. The Adaptive Penalty Method

The adaptive penalty method (APM) was originally introduced in (Barbosa & Lemonge,
2002). In (Barbosa & Lemonge, 2003), the behavior of the penalty parameters was studied
and further tests were performed. Finaly, in (Lemonge & Barbosa, 2004.), a slight but
important modification was introduced leading to its present form. The method does not
require any type of user defined penalty parameter and uses information from the
population, such as the average of the objective function and the level of violation of each
constraint during the evolution.

Figure 1. A pictorial description of the function f

The fitness function proposed in APM is written as:

⎪⎩

⎪
⎨
⎧

+∑ otherwise)()(

feasible is if),(

=)(

1=

xvkxf

xxf

xF
jj

m

j

where

⎩
⎨
⎧

〉〈
〉〈

otherwise)(

,)(>)(if),(
=)(

xf

xfxfxf
xf (3)

www.intechopen.com

Frontiers in Evolutionary Robotics

16

and 〉〈)(xf is the average of the objective function values in the current population. In the

Figure 1 feasible as well as infeasible solutions are shown. Among the 4 infeasible solutions,
the individuals c and d have their objective function values (represented by open circles) less

than the average objective function and, according to the proposed method, have f given

by 〉〈)(xf . The solutions a and b have objective function values which are worst than the

population average and thus have)(=)(xfxf .

The penalty parameter is defined at each generation by:

2

1=

])([

)(
|)(=|

〉〈

〉〈
〉〈

∑ xv

xv
xfk

l

m

l

j

j (4)

and 〉〈)(xvl is the violation of the l -th constraint averaged over the current population.

Denoting by pop the population size, one could also write

)(

)(

|)(|

=
1=

2

1=1=

1= i

j

pop

ii

l

pop

i

m

l

i
pop

i
j xv

xv

xf

k ∑
∑∑

∑

⎥
⎦

⎤
⎢
⎣

⎡
 (5)

The idea is that the values of the penalty coefficients should be distributed in a way that
those constraints which are more difficult to be satisfied should have a relatively higher
penalty coefficient.
Besides been tested by the authors, the APM has also been used by other researchers in
different fields (Zavislak, 2004, Gallet, 2005, Obadage & Hampornchai, 2006).

4. Variants of the APM

The adaptive penalty method, as originally proposed, (i) computes the constraint violations

jv in the current population, and (ii) updates all penalty coefficients jk at every

generation. As a result, those coefficients undergo (potentially large) variations at every
generation as shown in (Barbosa & Lemonge, 2003).
Despite its success, questions naturally arise concerning, for instance, the desirability of
reducing the amplitude of those oscilations, and the possibility of reducing the computer
time without compromising the quality of the results.
In the following, some possible variants of the APM will be considered.

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

17

4.1 The sporadic APM

One first variant of the APM corresponds to: (i) compute the constraint violations jv in the

current population, (ii) update the penalty coefficients jk , but (iii) keep the penalty

coefficients jk fixed for f generations.

 The gains in computer time are obvious: step (i) is performed only every f generations. Of

course, one should investigate if convergence is negativelly affected.

4.2 The sporadic APM with constraint violation accumulation
A second variant considered here corresponds to: (i) accumulate the constraint violations

jv for f generations, (ii) update the penalty coefficients jk , and (iii) keep the penalty

coefficients jk fixed for f generations

 The gains in computer time are very small, but the oscilations in the jk values can be

reduced.

4.3 The APM with monotonic penalty coefficients

As the penalty coefficients should (at least theoretically) grow indefinitely, another variant

corresponds to the monotonic APM: no jk is allowed to have its value reduced along the

evolutionary process:

4.4 The APM with damping

Finaly, one can think of reducing the oscilations in jk by using a weighted average

between the current value of jk and the new value predicted by the method:

() current

j

new

j

new

j kkk θθ −+ 1=)()(

where [0,1]∈θ .

4.5 A compact notation
A single notation can be introduced in order to describe the whole family of adaptive
penalty techniques.
The numerical parameters involved are:

• The frequency f (measured in number of generations) of penalty parameter updating,

• The weight parameter [0,1]∈θ used in the update formula for the penalty parameter.

Two additional features are: (i) constraint violations can alternatively be accumulated for all

the f generations, or can be computed only every f generations, and (ii) the penalty

parameter is free to vary along the process, or monotonicity will be enforced.

www.intechopen.com

Frontiers in Evolutionary Robotics

18

The compact notation APM(
accf , mθ) indicates a member of the family of methods where

the penalty coefficients are updated every f generations, based on constraint violations

which are accumulated (superscript acc) over those f generations, using the weight

parameter θ , and enforcing monotonicity (subscript m). Thus, the original APM

corresponds to APM(1,1).
The five members of the APM family considered for testing here are:

Variant Description

1 � The original APM: APM(1,1)

2 � The sporadic APM: APM(f ,1)

3 � The sporadic APM with constraint violation accumulation: APM(
accf ,1)

4
 � The sporadic APM with constraint violation accumulation and smoothing:

APM(
accf ,θ)

5
 � The sporadic APM with constraint violation accumulation, smoothing, and

monotonicity enforcement: APM(
accf , mθ)

In the experiments performed, the values =f 100 and =f 500 are used when 1000 and

5000 generations are employed, respectively. Also, 0.5=θ was adopted.

Several examples from the literature are considered in the next section in order to test the
performance of the variants considered with respect to the original APM.

5. Numerical experiments

Our baseline binary-coded generational GA uses a Gray code, rank-based selection, and
elitism (the best element is always copied into the next generation along with 1 copy where
one bit has been changed). A uniform crossover operator was applied with probability equal
to 0.9 and a mutation operator was applied bit-wise to the offspring with rate

0.004=mp .

5.1 Test 1 - The G-Suite

The first set of experiments uses the well known G1-G11 suite of test-problems. A complete
description of each problem can be found, for example, in (Lemonge, & Barbosa, 2004). The
G-Suite, repeatedly used as a test-bed in the evolutionary computation literature, is made up
of different kinds of functions and involves constraints given by linear inequalities,
nonlinear equalities and nonlinear inequalities. For the eleven problems, the population size
is set to 100, 25 independent runs were performed, with the maximum number of
generations equal to 1000 and 5000, and each variable was encoded with 25 bits. For the

variant 5, the value of θ is set to 0.5. The Tables 1 and 2 present the values of the best, mean

and the worst solutions found for each function with respect to the five variants of the APM.
The values presented in boldface correspond to the better solution among the variants.

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

19

Test-problem Best-known Variant Best Mean Worst

g01 -15 1 -14.9996145 -14.9845129 -14.8267331

 2 -14.9997983 -14.9988652 -14.9939536

 3 -14.9997216 -14.9876210 -14.8305302

 4 -14.9997582 -14.9986873 -14.9960541

 5 -14.9996321 -14.9979965 -14.9891883

g02 -0.8036191 1 -0.7789661 -0.6996669 -0.5728089

 2 -0.7873126 -0.7250099 -0.5998890

 3 -0.7925228 -0.7255508 -0.6244844

 4 -0.7846081 -0.7191555 -0.6307588

 5 -0.7838283 -0.7097919 -0.5855941

g03 -1.0005001 1 -0.9972458 -0.7779740 -0.5027824

 2 -0.9361403 -0.4968387 -0.0368749

 3 -0.9803577 -0.4463771 -0.1012515

 4 -0.9682280 -0.4168279 -0.0212638

 5 -0.7666858 -0.3919809 -0.1462019

g04 -30665.538671 1 -30665.3165485 -30578.5496875 -30387.6140423

 2 -30664.6156191 -30578.3703906 -30458.6292214

 3 -30663.9053552 -30577.5611718 -30432.1269937

 4 -30664.4464089 -30573.7182031 -30369.9518043

 5 -30662.5018601 -30591.6589843 -30358.6826419

g05 5126.4967140 1 5127.3606448 5343.2514134 5993.0123939

 2 5127.0852075 5341.0769391 5935.3076090

 3 5126.7785185 5323.8655104 5935.3019471

 4 5127.0852075 5290.0768500 5935.3076090

 5 5128.8444266 5378.8769735 6102.9022396

g06 -6961.8138755 1 -6957.5403309 -6913.0707583 -6868.6591021

 2 -6951.1888908 -6901.2575390 -6705.1840698

 3 -6958.1031284 -6879.5979882 -6296.5426371

 4 -6954.9453586 -6906.1789453 -6797.2374636

 5 -6961.4475438 -6805.2293359 -5237.1477535

g07 24.3062090 1 24.7768086 27.7708738 35.6097627

 2 24.8049743 28.0120724 28.0120724

 3 25.0308511 28.4575817 44.1698225

 4 24.5450354 27.8486413 36.8722275

 5 24.7255055 29.8150354 63.5219816

g08 -0.0958250 1 -0.0958250 -0.08768981 -0.0258067

 2 -0.0958250 -0.06476799 -0.0013001

 3 -0.0958250 -0.62599863 -0.0147534

 4 -0.0958250 -0.65938715 -0.0255390

 5 -0.0958250 -0.53489946 0.0123813

www.intechopen.com

Frontiers in Evolutionary Robotics

20

Test-problem Best-known Variant Best Mean Worst

g09 680.6300573 1 680.7376315 682.0270142 690.4830475

 2 680.7722707 681.5344751 685.8184957

 3 680.7343755 681.4195117 683.1598659

 4 680.8243208 681.8727295 687.0344127

 5 680.6814564 681.4697436 683.2056847

g10 7049.2480205 1 7070.5636522 8063.2916015 8762.119390

 2 7237.0250892 10056.5608887 14688.684065

 3 7191.9045654 10165.4067383 14733.840629

 4 7217.4084043 9607.9555664 13715.794540

 5 7117.7173709 9322.0432129 12645.139817

g11 0.7499000 1 0.7523536 0.8585980 0.9932359

 2 0.7521745 0.8878919 0.9992905

 3 0.7521730 0.8879267 0.9992905

 4 0.7521745 0.8879346 0.9991157

 5 0.7501757 0.8822223 0.9954779

Table 1. Results of the G-Suite using 1000 generations

Test-problem Best-known Variant Best Mean Worst

g01 -15 1 -14.9999800 -14.95263298 -14.6373581

 2 -14.9999914 -14.99962558 -14.9969186

 3 -14.9999826 -14.99953311 -14.9920359

 4 -14.9999910 -14.99998634 -14.9999264

 5 -14.9999915 -14.9999189 -14.9996256

g02 -0.8036191 1 -0.8015561 -0.77248005 -0.7261164

 2 -0.8025720 -0.76760471 -0.7328427

 3 -0.8023503 -0.77583072 -0.7401626

 4 -0.8030480 -0.77158681 -0.7752280

 5 -0.8025918 -0.77851344 -0.7306644

g03 -1.0005001 1 -1.0004896 -1.00040364 -0.9999571

 2 -1.0004634 -0.98604559 -0.6746467

 3 -1.0004630 -0.97507574 -0.3823454

 4 -1.0004602 -0.97900237 -0.5014565

 5 -1.0004553 -0.99997359 -0.9962939

g04 -30665.538671 1 -30665.523774 -30665.094688 -30661.761001

 2 -30665.536925 -30664.093203 -30643.260211

 3 -30665.537505 -30665.365000 -30664.505410

 4 -30665.533257 -30664.861094 -30660.745418

 5 -30665.520939 -30664.819062 -30660.360061

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

21

Test-problem Best-known Variant Best Mean Worst

g05 5126.4967140 1 5127.3606448 5321.5713820 5993.0113312

 2 5126.7738829 5323.8496730 5935.3030129

 3 5126.7738829 5323.8495456 5935.3030129

 4 5126.7738829 5323.8496943 5935.3030129

 5 5128.8443865 5385.9205375 6102.8994189

g06 -6961.8138755 1 -6961.7960836 -6742.3431201 -1476.0027566

 2 -6961.7960836 -6961.7763086 -6961.7592083

 3 -6961.7960836 -6961.7720312 -6961.7592083

 4 -6961.7960836 -6961.7763086 -6961.7592083

 5 -6961.7960837 -6961.7752278 -6961.7592083

g07 24.3062090 1 24.4162533 26.4573583 30.7900065

 2 24.6482626 27.2199523 39.8419615

 3 24.5543275 26.9851276 38.2220049

 4 24.7315254 27.8377833 51.1675542

 5 24.4148575 26.3590182 29.5413519

g08 -0.0958250 1 -0.0958250 -0.0876899 -0.0258094

 2 -0.0958250 -0.0565442 -0.0010461

 3 -0.0958250 -0.0649342 -0.0010460

 4 -0.0958250 -0.0660025 -0.0204120

 5 -0.0958250 -0.0632326 -0.0197011

g09 680.6300573 1 680.6334486 680.7850952 681.1733250

 2 680.6673020 680.8470361 681.7406035

 3 680.7122589 680.8832129 681.3188377

 4 680.6505355 680.8678125 681.3625388

 5 680.6527662 680.8803711 681.6149132

g10 7049.2480205 1 7205.1435740 8392.399951 10349.909364

 2 7064.1563375 10108.975371 15407.413766

 3 7062.6060743 9953.722324 14200.173044

 4 7064.5428438 8554.065429 13156.5681862

 5 7064.3344362 10079.815684 14387.7769407

g11 0.7499000 1 0.7523536 0.8556172 0.9468393

 2 0.7521745 0.8834432 0.9903447

 3 0.7521745 0.8834432 0.9903447

 4 0.7521745 0.8845256 0.9937399

 5 0.7501757 0.8761453 0.9944963

Table 2. Results of the G-Suite using 5000 generations

Observing the results presented in Tables 1 and 2 one can see that the original APM found
more often the best solutions. Among the new variants, the variants 3 and 5 were the most
successful. As the performance of variant 4 was not as good as that of variants 3 and 5, one
may suspect that, at least for this set of problems, the inclusion of the damping procedure
was detrimental.
The graphics from the figures 2 to 25 show the values of the coefficients kj along the 1000
generations performed for the functions g06, g09, g04 and g01. For the Variant 1 are drawn

www.intechopen.com

Frontiers in Evolutionary Robotics

22

two graphics where the second one correponds to a logarithmic scale for the coefficient

jk in the y-axis.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

log
 k_

j

Generations

k1
k2

Figure 2. Variant 1 – Test-problem g06 Figure 3. Variant 1 – Test-problem g06 (log

scale for y-axis)

 0

 800

 1600

 2400

 3200

 4000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2

 0

 800

 1600

 2400

 3200

 4000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2

Figure 4. Variant 2 – Test-problem g06 Figure 5. Variant 3 – Test-problem g06

 0

 900

 1800

 2700

 3600

 4500

 0 200 400 600 800 1000

k_
j

Generations

k1
k2

 0

 400

 800

 1200

 1600

 2000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2

Figure 6. Variant 4 – Test-problem g06 Figure 7. Variant 5 – Test-problem g06

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

23

 0

 100000

 200000

 300000

 400000

 500000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 200 400 600 800 1000
log

 k_
j

Generations

k1
k2
k3
k4

Figure 8. Variant 1 – Test-problem g09 Figure 9. Variant 1 – Test-problem g09 (log

scale for y-axis)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4

Figure 10. Variant 2 – Test-problem g09 Figure 11. Variant 3 – Test-problem g09

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4

 0

 8000

 16000

 24000

 32000

 40000

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4

Figure 12. Variant 4 – Test-problem g09 Figure 13. Variant 5 – Test-problem g09

www.intechopen.com

Frontiers in Evolutionary Robotics

24

 0

 4e+006

 8e+006

 1.2e+007

 1.6e+007

 2e+007

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 0 200 400 600 800 1000
log

 k_
j

Generations

k1
k2
k3
k4
k5
k6

Figure 14. Variant 1 – Test-problem g04 Figure 15. Variant 1 – Test-problem g04

(log scale for y-axis)

 0

 2e+006

 4e+006

 6e+006

 8e+006

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6

 0

 2e+006

 4e+006

 6e+006

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6

Figure 16. Variant 2 – Test-problem g04 Figure 17. Variant 3 – Test-problem g04

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6

 0

 1e+006

 2e+006

 3e+006

 4e+006

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6

Figure 18. Variant 4 – Test-problem g04 Figure 19. Variant 5 – Test-problem g04

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

25

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8
k9

 1

 10

 100

 1000

 0 200 400 600 800 1000
log

 k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8
k9

Figure 20. Variant 1 – Test-problem g01 Figure 21. Variant 1 – Test-problem g01

 (log scale for y-axis)

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8
k9

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8
k9

 0

 10

 20

 30

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8
k9

Figure 22. Variant 2 – Test-problem g01 Figure 23. Variant 3 – Test-problem g01

 0

 10

 20

 30

 40

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8
k9

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

k_
j

Generations

k1
k2
k3
k4
k5
k6
k7
k8
k9

Figure 24. Variant 4 – Test-problem g01 Figure 25. Variant 5 – Test-problem g01

www.intechopen.com

Frontiers in Evolutionary Robotics

26

5.2 Test 2 - The pressure vessel design
This problem (Sandgren, 1998, Kannan & Kramer, 1995, Deb, 1997, Coello, 2000)
corresponds to the weight minimization of a cylindrical pressure vessel with two spherical
heads. The objective function involves four variables: the thickness of the pressure vessel

(sT), the thickness of the head (hT), the inner radius of the vessel (R) and the length of the

cylindrical component (L). Since there are two discrete variables (sT and hT) and two

continuous variables (R and L), one has a nonlinearly constrained mixed discrete-
continuous optimization problem. The bounds of the design variables are

5,0.0625 ≤≤ hs TT (in constant steps of 0.0625) and 200,10 ≤≤ LR . The design

variables are given in inches and the weight is written as:

RTLTRTRTTLRTTW sshhshs

222 19.843.16611.77816224.0=),,,(+++

to be minimized subject to the constraints

0240=)(01,296,0004/3=),(

00.00954=),(00.0193=),(

4

32

3

21

≥+−≥−+

≥−≥−

LLgRLRLRg

RTRTgRTRTg hhss

ππ

 The first two constraints establish a lower bound to the ratios RTs / and RTh/ ,

respectively. The third constraint corresponds to a lower bound for the volume of the vessel
and the last one to an upper bound for the length of the cylindrical component.
The Table 3 presents the results of the pressure vessel design using 1000 generations. Two
identical results were found for the best value of the final weight (6059.7145293) with
respect to the APM variants 2 and 3. Using 5000 generations, the same value of the final
weight was found four times as shown in the Table 4. Except for the original APM (variant
1), all variants were able to find the best solutions.

 Variant best median Mean std worst frun

1 6059.7151671 6227.8170385 6474.4169921 4.53E+02 7509.8518229 25

2 6059.7145293 6384.0497026 6447.2068164 4.19E+02 7340.3461505 25

3 6059.7145293 6410.2945786 6481.3246679 4.29E+02 7544.4928499 25

4 6059.7187531 6371.1972928 6467.6047851 4.30E+02 7544.5662019 25

5 6059.7151671 6376.8444814 6502.6069921 4.37E+02 7544.4928499 25

Table 3. Results of the pressure vessel design using 1000 generations

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

27

 variant best median Mean std worst frun

 1 6059.7903738 6525.0826625 6571.3568945 4.79E+02 7333.0935211 25

2 6059.7145293 6370.7942228 6448.2773437 4.21E+02 7334.9819158 25

3 6059.7145293 6372.4349034 6445.8280859 4.16E+02 7340.8828459 25

4 6059.7145293 6370.7970442 6466.9971289 4.03E+02 7334.2645178 25

5 6059.7145293 6370.7798337 6445.3129101 4.58E+02 7332.9812503 25

 Table 4. Results of the pressure vessel design using 5000 generations

5.3 Test 3 - The cantilever beam design
This test problem (Erbatur et al., 2000) corresponds to the minimization of the volume of the
cantilever beam subject to the load P, equal to 50000 N, at its tip. There are 10 design

variables corresponding to the height (iH) and width (iB) of the rectangular cross-section

of each of the five constant steps. The variables 1B and 1H are integer, 2B and 3B

assume discrete values to be chosen from the set { }8,3.12.4,2.6,2. , 2H and 3H are

discrete and chosen from the set { }55.0,60.045.0,50.0, and, finally, 4B , 4H , 5B , and

5H are continuous. The variables are given in centimeters and the Young's modulus of the

material is equal to 200 GPa. The volume of the beam is given by

ii

i

ii BHBHV ∑
5

=1

100=),(

subject to:

cmBHg

iBHBHg

icmNBHg

ii

iiiii

iiii

2.7=),(

,51,=20/=),(

,51,=/14000=),(

11

5

2

≤

≤

≤

+

δ

σ

K

K

where δ is the tip deflection of the beam in the vertical direction.

The Table 5 shows the results for the cantilever beam design when 1000 generations were
used. The best final volume found (64842.0265521), was achieved by the third variant of the
APM variant. Using 5000 generations, the variant 4 provided the best solution among the
variants, with a final volume equal to 64578.1955255 as shown in the Table 6.

www.intechopen.com

Frontiers in Evolutionary Robotics

28

variant best median mean std worst frun

1 65530.7729044 68752.485343 70236.739375 3.59E+03 78424.35756 25

2 64991.8776321 68990.278258 70642.622188 4.47E+03 84559.93461 25

3 64842.0265521 68662.595134 70312.300781 4.39E+03 78015.93963 25

4 64726.0899470 68924.741220 71383.862812 5.60E+03 85173.95180 25

5 65281.3580659 69142.397989 69860.818906 3.66E+03 78787.491031 25

Table 5. Results of the cantilever beam design using 1000 generations

 ariant best median mean std worst frun

1 64578.1959540 68293.437745 67153.214844 2.00E+03 72079.947779 25

2 64578.1957397 64965.027481 66161.232500 1.77E+03 68391.603479 25

3 64578.1959540 64992.041635 66704.774531 3.13E+03 79124.364956 25

4 64578.1955255 68201.363366 66682.130313 1.86E+03 68722.669573 25

5 64578.1957397 65015.052899 66450.535156 1.89E+03 69294.203883 25

Table 6. Results of the cantilever beam design using 5000 generations

5.4 Test 4 - The Tension/Compression Spring design

This example corresponds to the minimization of the volume V of a coil spring under a

constant tension/compression load. There are three design variables: the number Nx =1

of active coils of the spring, the winding diameter Dx =2 and the wire diameter dx =3 .

The volume of the coil is written as:

() 2

123 2=)(xxxxV +

 and is subject to the constraints:

()
()

01
1.5

=)(0
140.54

1=)(

0
12566

2.26

12566

4
=)(0

71875
1=)(

12
4

3

2

2

1
3

2

112

3

1

122
24

1

3

3

2
1

≤−
+

≤−

≤+
−

−
≤−

xx
xg

xx

x
xg

xxxx

xxx
xg

x

xx
xg

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

29

 where

15.02.01.30.250.20.05 321 ≤≤≤≤≤≤ xxx

From the Table 7 one can observe that the variants 2, 3 and 4 were able to find the better
results for the Tension/Compression Spring design using 1000 generations. The final
volume reached is equal to 0.0126973. Using 5000 generations, the previous result for the
best volume remains the same (0.0126973) and is again found by the variants 2, 3 and 4 of
the APM (Table 8).

 Variant best median Mean std worst frun

 1 0.0127181 0.0136638 0.0144048 1.82E-03 0.0178499 25

2 0.0126973 0.0135445 0.0144046 1.79E-03 0.0178499 25

3 0.0126973 0.0135445 0.0144074 1.80E-03 0.0178674 25

4 0.0126973 0.0135456 0.0143907 1.78E-03 0.0178499 25

5 0.0127255 0.0140187 0.0146077 1.83E-03 0.0178499 25

Table 7. Results of the coil spring design using 1000 generations

Variant best median mean std worst frun

 1 0.0127181 0.0135456 0.0143920 1.82E-03 0.0178499 25

2 0.0126973 0.0135445 0.0143769 1.78E-03 0.0178499 25

3 0.0126973 0.0135445 0.0143706 1.78E-03 0.0178499 25

4 0.0126973 0.0135445 0.0143868 1.80E-03 0.0178499 25

5 0.0127255 0.0127255 0.0146097 1.84E-03 0.0178499 25

Table 8. Results of the coil spring design using 5000 generations

5.5 Test 5 - The 10-bar truss design
This well known test problem (Goldberg & Samtani, 1986), which corresponds to the weight
minimization of a 10-bar truss, will be analyzed here subject to constraints involving the
stress in each member and the displacements at the nodes. The design variables are the

cross-sectional areas of the bars (1,10= , iAi). The allowable stress is limited to ± 25ksi

and the displacements are limited to 2 in, in the x and y directions. The density of the

material is 0.1 lb/in
3

, Young's modulus is E = 10
4

 ksi, and vertical downward loads of 100
kips are applied at nodes 2 and 4.

www.intechopen.com

Frontiers in Evolutionary Robotics

30

Two cases are analyzed: discrete and continuous variables. For the discrete case the values

of the cross-sectional areas (in
2

) are chosen from the set of 42 options: 1.62, 1.80, 1.99, 2.13,
2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00,
22.90, 26.50, 30.00, 33.50. Using a six-bit string for each design variable, a total of 64 strings
are available which are mapped into the 42 allowable cross sections. For the continuous case

the minimum cross sectional area is equal to 0.1 in
2

.
For the discrete case all of the variants of the APM were able to find the best result for the
final weight of the 10-bar truss structure (5490.738) as detailed in the Table 19. For the
continuous case, the original APM (variant 1) found the best solution for the final weight
(5062.6605) shown in the Table 10.

 variant best median mean std worst frun

 1 5490.7378 5599.4444 5605.6312 1.29E+02 6156.3977 25

2 5490.7378 5634.5138 5647.7405 1.94E+02 6487.3525 25

3 5490.7378 5585.0667 5636.5571 2.12E+02 6561.2738 25

4 5490.7378 5628.1253 5669.3382 2.00E+02 6550.6018 25

5 5490.7378 5596.3125 5600.6728 6.38E+01 5719.3412 25

Table 9. Results of the 10-bar truss with respect to the discrete case

 variant best median mean std worst frun

 1 5062.6605 5088.1406 5116.4183 9.20E+01 5527.0238 25

2 5068.5702 5089.9409 5129.8554 1.20E+03 5631.3084 25

3 5066.8124 5093.6549 5106.9311 5.71E+01 5306.6538 25

4 5068.5005 5091.6265 5138.9569 1.49E+02 5774.8811 25

5 5063.6410 5087.2172 5126.4837 1.37E+02 5705.4190 25

Table 10. Results of the 10-bar truss with respect to the continuous case

5.6 Test 6 - The 120-bar truss

This is a three-dimensional dome structure corresponding to a truss with 120 members
(Saka & Ulker, 1991, Ebenau et al., 2005, Capriles et al, 2007).
The dome is subject to a downward vertical equipment loading of 600 kN at its crown (node
1). The displacements are limited to 2 cm, in the x , y and z directions. The density of

material is 7860 kg/m
3

 and Young's modulus is equal to 21000 kN/cm
2

. The maximum

normal stress is limited by =maxσ 32.273 kN/cm
2

 in tension and compression. Moreover,

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

31

the buckling in members under compression is considered, and the stress constraints are
given now by:

2
= with ,1,2,=0,1

||

j

jE

j

E

E

j

j

L

kEA
pi σ

σ

σ
σK≤−

where jσ is the buckling stress at the j -th member,
E

jσ is the maximum allowable

buckling stress for this member, and k is the buckling coefficient, adopted equal to 4. The

total number of constraints is equal to 351.
The cross-sectional areas are the sizing design variables and they are to be chosen from a
Table containing 64 options (see Capriles et al, 2007).

 Variant best median mean std worst frun

 1 59.5472 59.9999 60.0266 2.50E-01 60.7749 25

2 59.5472 60.0459 60.2679 6.33E-01 62.3707 25

3 59.7145 60.0459 60.7749 3.05E+00 75.1747 25

4 59.5472 60.0459 60.8720 3.05E+00 75.1747 25

5 59.5472 59.9748 60.0711 4.03E-01 61.0417 25

 Table 11.Results of the 120-bar truss

In this experiment the five variants of the APM were able to find the same best solution
(59.5472). The fifth variant of the APM provided the best value of the median (59.9748) and
the original APM presented the best result corresponding to the mean value.

6. Conclusion

From the experiments performed here one can see that the original APM found more often
the best solutions. Among the new variants, the variants 3 and 5 were the most successful.
As the performance of variant 4 was slightly inferior to that of variants 3 and 5, one may
suspect that the inclusion of the damping procedure was not advantageous.
A more important conclusion may be that there were not large discrepancies among the
results obtained by the original APM and the four new variants, which provide
computational savings, and that robust variants can be obtained from the overall family of
adaptive penalty methods considered here.

7. References

Barbosa, H.J.C. & Lemonge, A.C.C. (2002). An adaptive penalty scheme in genetic
algorithms for constrained optimization problems. Proceedings of the Genetic and
Evolutionary Computation Conference - GECCO, pp. 287–294, 9-13 July 2002. Morgan
Kaufmann Publishers, New York.

www.intechopen.com

Frontiers in Evolutionary Robotics

32

Barbosa, H.J.C. & Lemonge, A.C.C. (2003). A new adaptive penalty scheme for genetic
algorithms. Informations Sciences, Vol. 156, No. 5, pp. 215–251, 2003.

Lemonge, A.C.C. & Barbosa, H.J.C. (2004). An adaptive penalty scheme for genetic
algorithms in structural optimization. Int. Journal for Numerical Methods in
Engineering, Vol. 59, No. 5, pp. 703–736, 2004.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Reading, MA, 1989.

Shoenauer, M. & Michalewicz, Z. (1996). Evolutionary computation at the edge of feasibility.
In H-M. Voigt; W. Ebeling; I. Rechenberg and H-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN IV, Vol. 1141, pp. 245–254, Berlin, 1996.
Springer-Verlag. LNCS.

Koziel, S. & Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous mappings,
and constrained parameter optimization. Evolutionary Computation, Vo. 7, No. 1, pp.
19–44, 1999.

Liepins, G.E. & Potter, W.D. (1996). A genetic algorithm approach to multiple-fault
diagnosis. In L. Davis, editor, Handbook of Genetic Algorithm, Chapter 7, pp. 237–250,
Boston, USA, 1996. International Thomson Computer Press.

Orvosh, D. & Davis, L. (1994). A genetic algorithm to optimize problems with feasibility
constraints. Proc. Of the First IEEE Conference on Evolutionary Computation, pp. 548–
553. IEEE Press, 1994.

Adeli, H. & Cheng, N.-T. (1994). Augmented Lagrangian Genetic Algorithm for Structural
Optimization. Journal of Aerospace Engineering, Vol. 7, No. 1, pp. 104–118, January
1994.

Barbosa, H.J.C. (1999) A coevolutionary genetic algorithm for constrained optimization
problems. Proc. of the Congress on Evolutionary Computation, pp. 1605–1611,
Washington, DC, USA, 1999.

Surry, P.D. & Radcliffe, N.J. (1997). The COMOGA Method: Constrained Optimisation by
Multiobjective Genetic Algorithms. Control and Cybernetics, Vol. 26, No. 3, 1997.

Runarsson, T.P. & Yao, X. (2000). Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation, Vol. 4, No. 3, pp. 284–
294, September 2000.

Kampen, A.H.C. van, Strom, C.S. & Buydens, L.M.C.(1996). Lethalization, penalty and
repair functions for constraint handling in the genetic algorithm methodology.
Chemometrics and Intelligent Laboratory Systems, Vo. 34, pp. 55–68, 1996.

Michalewicz, Z. & Shoenauer, M. (1996). Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation, Vol. 4, No. 1, pp. 1–32, 1996.

Hinterding, R. &. Michalewicz, Z. (1998). Your brains and my beauty: Parent matching for
constrained optimization. Proc. of the Fifth Int. Conf. on Evolutionary Computation, pp.
810–815, Alaska, May 4-9, 1998.

Koziel, S. & Michalewicz, Z. (1998). A decoder-based evolutionary algorithm for constrained
optimization problems, Proc. of the Fifth Parallel Problem Solving - PPSN. T. Bäck;
A.E. Eiben; M. Shoenauer and H.-P. Schwefel, Editors Amsterdam, September 27-30
1998. Spring Verlag. Lecture Notes in Computer Science.

www.intechopen.com

An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems

33

Kim, J.-H. & Myung, H. (1997). Evolutionary programming techniques for constrained
optimization problems. IEEE Transactions on Evolutionary Computation, Vol. 2, No. 1,
pp. 129–140, 1997.

Le Riche, R.G; Knopf-Lenoir, C. & Haftka, R.T. (1995). A segregated genetic algorithm for
constrained structural optimization. Proc. of the Sixth Int. Conf. on Genetic Algorithms,
pp. 558–565, L.J. Eshelman Editor, Pittsburgh, PA., July 1995.

Homaifar, H.; Lai, S.H.-Y. & Qi, X. (1994). Constrained optimization via genetic algorithms.
Simulation, Vol. 62, No. 4, pp. 242–254, 1994.

Joines, J. & Houck, C. (1994). On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with GAs. Proc. of the First IEEE Int.
Conf. on Evolutionary Computation. Z. Michalewicz; J.D. Schaffer; H.-P. Schwefel;
D.B. Fogel and H. Kitano, Editors, pp. 579–584, June 19-23, 1994.

Powell, D. & Skolnick, M.M. (1993). Using genetic algorithms in engineering design
optimization with non-linear constraints. Proc. of the Fifth Int. Conf. on Genetic
Algorithms, In S. Forrest, Editor, pp. 424–430, San Mateo, CA, 1993. Morgan
Kaufmann.

Deb, K. (2000) An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering, Vol. 186, Nos. 2-4, pp. 311–338,
June 2000.

Michalewicz, Z. (1995). A survey of constraint handling techniques in evolutionary
computation. Proc. of the 4th Int. Conf. on Evolutionary Programming, pp. 135–
155, Cambridge, MA, 1995. MIT Press.

Michalewicz, Z; Dasgupta, D; Le Riche, R.G. & Shoenauer, M. (1996). Evolutionary
algorithms for constrained engineering problems. Computers & Industrial
Engineering Journal, Vol. 30, No. 2, pp. 851–870, 1996.

Bean, J.C. & Alouane, A.B. (1992). A dual genetic algorithm for bounded integer programs.
Technical Report TR 92-53, Departament of Industrial and Operations Engineering,
The University of Michigan, 1992.

Shoenauer, M. & Xanthakis, S. (1993). Constrained GA optimization. Proc. of the Fifth Int.
Conf. on Genetic Algorithms, S. Forrest, editor, pp. 573–580, Los Altos, CA, 1993.
Morgan Kaufmann Publishers.

Coit, D.W.; Smith, A.E. & Tate, D.M. (1996). Adaptive penalty methods for genetic
optimization of constrained combinatorial problems. INFORMS Journal on
Computing, Vo. 6, No. 2, pp. 173–182, 1996.

Yokota, T ; Gen, M. ; Ida, K. & Taguchi, T. (1995). Optimal design of system reliability by an
improved genetic algorithms. Trans. Inst. Electron. Inf. Comput. Engrg., J78-A(6), pp.
702–709, 1995.

Gen, M. & Gheng, R. (1996a). Interval programming using genetic algorithms. Proc. of the
Sixth International Synposium on Robotics and Manufactoring, Montepelier, France,
1996.

Gen, M. & Gheng, R. (1996b). A survey of penalty techniques in genetic algorithms. Proc. of
the 1996 International Conference on Evolutionary Computation, IEEE, pp. 804–809,
Nagoya, Japan, UK, 1996.

Hamida, S.B. & Shoenauer, M. (2000). An adaptive algorithm for constrained optimization
problems. Parallel Problem Solving from Nature - PPSN VI, Vo. 1917, pp. 529–538,
Berlin. Springer-Verlag. Lecture Notes in Computer Science, 2000.

www.intechopen.com

Frontiers in Evolutionary Robotics

34

Zavislak, M.J. (2004). Constraint handling in groundwater remediation design with genetic
algorithms, 2004. M.Sc. Thesis, Environmental and Civil Engineering, The Graduate
College of the Illinois University at Urbana-Champaign.

Gallet, C. ; Salaun, M. & Bouchet, E. (2005). An example of global structural optimisation
with genetic algorithms in the aerospace field. VIII International Conference on
Computational Plasticity - COMPLAS VIII, CIMNE, Barcelona, 2005.

Obadage, A.S. & Hampornchai, N. (2006). Determination of point of maximum likelihood in
failure domain using genetic algorithms. International Journal of Pressure Vessels and
Piping, Vol. 83, No. 4, pp. 276–282, 2006.

Sandgren, E. (1998). Nonlinear integer and discrete programming in mechanical design.
Proc. of the ASME Design Technology Conference, pp. 95–105, Kissimee, FL, 1988.

Kannan, B.K. & Kramer, S.N. (1995). An augmented Lagrange multiplier based method for
mixed integer discrete continuous optimization and its applications to mechanical
design. Journal of Mechanical Design, Vol. 116, pp. 405–411, 1995.

Deb, K. (1997). GeneAS: A robust optimal design technique for mechanical component
design. Evolutionary Algorithms in Engineering Applications, pp. 497–514. Springer-
Verlarg, Berlin, 1997.

Coello, C.A.C. (2000). Use of a Self-Adaptive Penalty Approach for Engineering
Optimization Problems. Computers in Industry, Vol. 41, No. 2, pp. 113–127, January
2000.

Erbatur, F. ; Hasançebi, I. ; Tütüncü, I. & Kilç, H. (2000). Optimal design of planar and space
structures with genetic algorithms. Computers & Structures, Vo. 75, pp. 209–224,
2000.

Goldberg, D.E. & Samtani, M.P. (1986). Engineering optimization via genetic algorithms.
Proc. 9th Conf. Electronic Computation, ASCE, pp. 471–482, New York, NY, 1986.

Saka, M.P. & Ulker, M. (1991). Optimum design of geometrically non-linear space trusses.
Computers and Structures, Vol. 41, pp. 1387–1396, 1991.

Ebenau, C. ; Rotsschafer, J. & Thierauf, G. (2005). An advance evolutionary strategy with an
adaptive penalty function for mixed-discrete structural optimisation. Advances in
Engineering Software, Vo. 36, pp. 29–38, 2005.

Capriles, P.V.S.Z.; Fonseca, L.G. ; Barbosa, H.J.C & Lemonge, A.C.C. (2007). Rank-based ant
colony algorithms for truss weight minimization with discrete variables.
Communications in Numerical Methods in Engineering, Vol. 26, No. 6, pp. 553–576,
2007.

www.intechopen.com

Frontiers in Evolutionary Robotics

Edited by Hitoshi Iba

ISBN 978-3-902613-19-6

Hard cover, 596 pages

Publisher I-Tech Education and Publishing

Published online 01, April, 2008

Published in print edition April, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presented techniques and experimental results which have been pursued for the purpose of

evolutionary robotics. Evolutionary robotics is a new method for the automatic creation of autonomous robots.

When executing tasks by autonomous robots, we can make the robot learn what to do so as to complete the

task from interactions with its environment, but not manually pre-program for all situations. Many researchers

have been studying the techniques for evolutionary robotics by using Evolutionary Computation (EC), such as

Genetic Algorithms (GA) or Genetic Programming (GP). Their goal is to clarify the applicability of the

evolutionary approach to the real-robot learning, especially, in view of the adaptive robot behavior as well as

the robustness to noisy and dynamic environments. For this purpose, authors in this book explain a variety of

real robots in different fields. For instance, in a multi-robot system, several robots simultaneously work to

achieve a common goal via interaction; their behaviors can only emerge as a result of evolution and

interaction. How to learn such behaviors is a central issue of Distributed Artificial Intelligence (DAI), which has

recently attracted much attention. This book addresses the issue in the context of a multi-robot system, in

which multiple robots are evolved using EC to solve a cooperative task. Since directly using EC to generate a

program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Helio J. C. Barbosa and Afonso C. C. Lemonge (2008). An Adaptive Penalty Method for Genetic Algorithms in

Constrained Optimization Problems, Frontiers in Evolutionary Robotics, Hitoshi Iba (Ed.), ISBN: 978-3-902613-

19-6, InTech, Available from:

http://www.intechopen.com/books/frontiers_in_evolutionary_robotics/an_adaptive_penalty_method_for_geneti

c_algorithms_in_constrained_optimization_problems

www.intechopen.com

Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

