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1. Introduction  

Inspired by the Darwinian principles of evolution, genetic algorithms (GAs)  (Holland, 1975, 
Goldberg, 1989) are widely used in optimization. GAs encode all the variables corresponding 
to a candidate solution (the phenotype) in a data structure (the genotype) and maintain a 
population of genotypes which is evolved mimicking Nature's evolutionary process. 
Individuals are selected for reproduction in a way that better performing solutions have a 
higher probability of being selected. The genetic material contained in the chromosome of such 
"parent" individuals is then recombined and mutated, by means of crossover and mutation 
operators, giving rise to offspring which will form a new generation of individuals. The 
process is repeated for a given number of generations or until some stopping criteria are met. 
GAs are search algorithms which can be directly applied to unconstrained optimization 

problems, UOP ),( Sf , where one seeks for an element x  belonging to the search space 

S , which minimizes (or maximizes) the real-valued objective function f . In this case, the 

GA usually employs a fitness function closely related to f . However, practical 

optimization problems often involve several types of constraints and one is led to a 

constrained optimization problem, COP ),,( bSf , where an Sx∈  that minimizes (or 

maximizes) f  in S  is sought with the additional requirement that the boolean function 

)(xb  (which includes all constraints of the problem) is evaluated as true. Elements in S  

satisfying all constraints are called feasible. 
The straightforward application of GAs to COPs is not possible due to the additional 
requirement that a set of constraints must be satisfied.  Difficulties may arise as the objective 
function may be undefined for some (or all) infeasible elements, and an informative measure 
of the degree of infeasibility of a given candidate solution may not be easily defined. Finally, 
for some real-world problems, the check for feasibility can be more expensive than the 
computation of the objective function itself. 
As a result, several techniques have been proposed and compared in the literature in order 
to enable a GA to tackle COPs. Those techniques can be classified either as  direct (feasible or 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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interior), when only feasible elements in S  are considered, or as  indirect (exterior), when 

both feasible and infeasible elements are used during the search process. 
Direct techniques include: a) the design of special  closed genetic operators, b) the use of 
special decoders, c) repair techniques, and d)  "death penalty". 
In special situations, closed genetic operators (in the sense that when applied to feasible 
parents they produce feasible offspring) can be designed if enough domain knowledge is 
available (Shoenauer & Michalewicz, 1996). Special decoders (Koziel & Michalewicz, 1999) - 
that always generate feasible individuals from any given genotype have been devised, but 
no applications considering non-linear implicit constraints have been published. 
Repair methods (Liepins & Potter, 1996, Orvosh & Davis, 1994) use domain knowledge in 
order to move an infeasible offspring into the feasible set. However, there are situations 
when it is very expensive, or even impossible, to construct such a repair operator, drastically 
reducing the range of applicability of repair methods. The design of efficient repair methods 
constitutes a formidable challenge, specially when non-linear implicit constraints are 
present. 
Discarding any infeasible element generated during the search process ("death penalty") is 
common practice in non-populational optimization methods. Although problem 
independent, no consideration is made for the potential information content of any 
infeasible individual. 
Summarizing, direct techniques are problem dependent (with the exception of the "death 
penalty") and actually of extremely reduced practical applicability. 
Indirect techniques include: a) the use of Lagrange multipliers (Adeli & Cheng, 1994), which 
may also lead to the introduction of a population of multipliers and to the use of the concept 
of coevolution (Barbosa, 1999), b) the use of fitness as well as constraint violation values in a 
multi-objective optimization setting (Surry & Radcliffe, 1997), c) the use of special selection 
techniques (Runarsson & Yao, 2000), and d) "lethalization": any infeasible offspring is just 
assigned a given, very low, fitness value (Kampen et al., 1996). 
For other methods proposed in the evolutionary computation literature see (Shoenauer & 
Michalewicz, 1996, Michalewicz & Shoenauer, 1996, Hinterding & Michalewicz, 1998, Koziel 
& Michalewicz, 1998, Kim & Myung, 1997), references therein, and the repository 
http://www.cs.cinvestav.mx/constraint/, maintained by C.A.C. Coello. 
Methods to tackle COPs which require the knowledge of constraints in explicit form have 
thus limited practical applicability. This fact, together with simplicity of implementation are 
perhaps the main reasons why penalty techniques, in spite of their shortcomings, are the 
most popular ones. 
Penalty techniques, originating in the mathematical programming community, range from 
simple schemes (like "lethalization") to penalty schemes involving from one to several 
parameters. Those parameters can remain constant (the most common case) or be dynamically 
varied along the evolutionary process according to an exogenous schedule or an adaptive 
procedure. Penalty methods, although quite general, require considerable domain knowledge 
and experimentation in each particular application in order to be effective. 
In previous work (Barbosa & Lemonge, 2002, Lemonge & Barbosa, 2004), the authors 
developed a general penalty method for GAs which (i) handles inequality as well as equality 
constraints, (ii) does not require the knowledge of the explicit form of the constraints as a 
function of the decision/design variables, (iii) is free of parameters to be set by the user, (iv) 
can be easily implemented within an existing GA code and (v) is robust. 
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In this adaptive penalty method (APM), in contrast with approaches where a single penalty 
parameter is used, an adaptive scheme automatically sizes the penalty parameter 
corresponding to  each constraint along the evolutionary process. 
In the next section the penalty method and some of its traditional implementations within 
genetic algorithms are presented. In Section 3 the APM is revisited and some variants are 
proposed, Section 4 presents numerical experiments with several test-problems from the 
literature and the paper closes with some conclusions. 

2. Penalty Methods 

A standard constrained optimization problem in 
nR  can be written as the minimization of a 

given objective function )(xf , where 
nRx∈  is the vector of design/decision variables, 

subject to inequality constraints ppxg p ,1,2,= 0,)( K≥  as well as equality constraints 

qqxhq ,1,2,= 0,=)( K . Additionally, the variables may be subject to bounds 

U

ii

L

i xxx ≤≤ , but this type of constraint is trivially enforced in a GA. 

Penalty techniques can be classified as  multiplicative or  additive. In the multiplicative case, a 

positive penalty factor )),(( Txvp  is introduced in order to amplify (in a minimization 

problem) the value of the fitness function of an infeasible individual. One would have 

1=)),(( Txvp  for a feasible candidate solution x  and 1>)),(( Txvp  otherwise. Also, 

)),(( Txvp  increases with the “temperature” T  and with constraint violation. An initial 

value for the temperature is required as well as the definition of a schedule whereby T  
grows with the generation number. This type of penalty has received much less attention in 
the evolutionary computation community than the additive type. In the additive case, a 
penalty functional is added to the objective function in order to define the fitness value of an 
infeasible element. They can be further divided into: (a)  interior techniques, when a barrier 

functional )(xB  -which grows rapidly as x  approaches the boundary of the feasible 

domain- is added to the objective function  

)(
1

)(=)( xB
k

xfxFk +  

and (b)  exterior techniques, where a penalty functional is introduced  

 )()(=)( xkPxfxFk +    (1) 

 such that 0=)(xP , if x  is feasible, and 0>)(xP  otherwise (for minimization 

problems). In both cases, as ∞→k , the sequence of minimizers of the UOP ),( SFk  

converges to the solution of the COP ),,( bSf . 
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At this point, it is useful to define the amount of violation of the j -th constraint by the 

candidate solution 
nRx∈  as  

⎩
⎨
⎧

− otherwise)}({0,max

,constraintequality an for |,)(|
=)(

xg

xh
xv

j

j

j  

It is also common to design penalty functions that grow with the vector of violations 
mRxv ∈)(  where qpm +=  is the number of constraints to be penalized. The most 

popular penalty function is given by  

 
β))((=)(

1=

xvkxP j

m

j

∑     (2) 

where k  is the penalty parameter and 2=β . Although it is easy to obtain the 

unconstrained problem, the definition of the penalty parameter k  is usually a time-

consuming problem-dependent trial-and-error process. 
Le Riche et al. (1995) present a GA based on two-level of penalties, where two fixed penalty 

parameters 1k  and 2k  are used independently in two different populations. The idea is to 

create two sets of candidate solutions where one of them is evaluated with the parameter 1k  

and the other with the parameter 2k . With 21 kk ≠ , there are two different levels of 

penalization and there is a higher chance of maintaining feasible as well as infeasible 
individuals in the population and to get offspring near the boundary between the feasible 

and infeasible regions. The strategy can be summarized as: (i) create pop×2  individuals 

randomly ( pop  is the population size); (ii) evaluate each individual considering each 

penalty parameter and create two ranks; (iii) combine the two ranks in a single one with size 

pop ; (iv) apply genetic operators; (v) evaluate new offspring ( pop×2 ), using both 

penalty parameters and repeat the process. 
Homaifar et al. (1994) proposed a penalty strategy with multiple coefficients for different 
levels of violation of each constraint. The fitness function is written as  

2

1=

))(()(=)( xvkxfxF jij

m

j

∑+  

where i  denotes one of the l  levels of violation defined for the −j th constraint. This is an 

attractive strategy because, at least in principle, it allows for a good control of the 

penalization process. The weakness of this method is the large number, 1)(2 +lm , of 

parameters that must be set by the user for each problem. 

www.intechopen.com



An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems 

 

13 

Joines & Houck (1994) proposed that the penalty parameters should vary dynamically along 

the search according to an exogenous schedule. The fitness function )(xF  was written as 

in (1) and (2) with the penalty parameter, given by 
α)(= tCk × , increasing with the 

generation number t . They used both 2 ,1=β  and suggested the values 0.5=C  and 

2=α . 

Powell & Skolnick (1994), proposed a method of superiority of feasible points where each 
candidate solution is evaluated by the following expression:  

),()()(=)(
1=

xtxvrxfxF j

m

j

θ++ ∑  

where r  is a constant. The main assumption is that any feasible solution is better than any 
infeasible solution. This assumption is enforced by a convenient definition of the function 

),( xtθ . This scheme can be modified by the introduction of the tournament selection 

proposed  in (Deb,  2000), coupled with the fitness function:  

⎪⎩

⎪
⎨
⎧

+∑ otherwise),(

feasible, is  if),(

=)(

1=

xvf

xxf

xF
j

m

j

max

 

where maxf  is the function value of the worst feasible solution. As observed in the 

expression above, if a solution is infeasible the value of its objective function is not 

considered in the computation of the fitness function, instead, maxf  is used. However, Deb's  

constraint handling scheme (Deb, 2000) -which also uses niching and a controlled mutation- 
works very well for his real-coded GA, but not so well for his binary-coded GA. 
Among the many suggestions in the literature (Powell & Skolnick, 1993, Michalewicz & 
Shoenauer, 1996, Deb, 2000) some of them -more closely related to the work presented here- 
will be briefly discussed in the following. 

2.1 Adaptive penalties 

A procedure where the penalty parameters change according to information gathered 
during the evolution process was proposed by Bean & Hadj-Alouane (Bean & Alouane, 
1992). The fitness function is again given by (1) and (2) but with the penalty parameter 

)(= tk λ  adapted at each generation by the following rules:  

⎪
⎩

⎪
⎨

⎧

≤≤+−∈/

≤≤+−∈

+

otherwise)(

1  allfor    if),(

1  allfor    if),()(1

=1)( 2

1

t

tigtFbt

tigtFbt

t i

i

λ

λβ

λβ

λ  
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 where 
ib  is the best element at generation i , F  is the feasible region, 21 ββ ≠  and 

1>, 21 ββ . In this method, the penalty parameter of the next generation 1)( +tλ  

decreases when all best elements in the last g  generations are feasible, increases if all best 

elements are infeasible, and otherwise remains without change. The fitness function is 
written as:  

⎥
⎦

⎤
⎢
⎣

⎡
++ ∑∑ (x)h|(x)gλ(t)F(x)=f(x) j

p

j=

i

n

i= 1

2

1

 

Schoenauer & Xanthakis (1993), presented a strategy that handles constrained problems in 
stages: (i) initially, a randomly generated population is evolved considering only the first 
constraint until a certain percentage of the population is feasible with respect to that 
constraint; (ii) the final population of the first stage of the process is used in order to 
optimize with respect to the second constraint. During this stage, the elements that had 
violated the previous constraint are removed from the population, (iii) the process is 
repeated until all the constraints are processed. This strategy becomes less attractive as the 
number of constraints grows and is potentially dependent on the order in which the 
constraints are processed. 
The method proposed by Coit et al. (1996), uses the fitness function:  

α))()/(())()(()(=)(
1=

tvxvtFtFxfxF jj

m

j

allfeas ∑−+  

where )(tFall  corresponds to the best solution (without penalty), until the generation t , 

feasF  corresponds to the best feasible solution, and α  is a constant. The fitness function is 

also written as:  

α))()/(())()(()(=)(
1=

tNFTxvtFtFxfxF j

m

j

allfeas ∑−+  

where NFT (Near Feasibility Threshold) defines the threshold distance, set by the user, 
between the feasible and infeasible regions of the search space. 
A variation of the method proposed by Coit et al. (1996) is presented in (Gen & Gheng, 
1996a), where the fitness function is defined as:  

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
− ∑

i

i
n

i b

xb

n
xfxF

)(1
1)(=)(

1=

 

and [ ]iii bxgxb −Δ )(0,max=)(  refers to the constraint violation. Based upon the same 

idea, Gen and Cheng (1996b), proposed an adaptive penalty scheme where the fitness 
function is written as:  
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⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ
− ∑ max

i

i
n

i b

xb

n
xfxF

)(1
1)(=)(

1=

 

where [ ])(,max= xbb i

max

i ΔΔ ε  is the maximum violation of the constraint i  and ε  is a 

small positive value to avoid dividing by zero. 
Hamida & Schoenauer (2000), proposed an adaptive scheme using: (i) a function of the 
proportion of feasible individuals in the population, (ii) a seduction/selection strategy to 
mate feasible and infeasible individuals, and (iii) a selection scheme to give advantage for a 
given number of feasible individuals. 

3. The Adaptive Penalty Method 

The adaptive penalty method (APM) was originally introduced in (Barbosa & Lemonge, 
2002). In (Barbosa & Lemonge, 2003), the behavior of the penalty parameters was studied 
and further tests were performed. Finaly, in (Lemonge & Barbosa, 2004.), a slight but 
important modification was introduced leading to its present form. The method does not 
require any type of user defined penalty parameter and uses information from the 
population, such as the average of the objective function and the level of violation of each 
constraint during the evolution. 

  

Figure 1. A pictorial description of the function f  

The fitness function proposed in APM is written as: 

⎪⎩

⎪
⎨
⎧

+∑ otherwise)()(

feasible is  if),(

=)(

1=

xvkxf

xxf

xF
jj

m

j

 

where  

 

⎩
⎨
⎧

〉〈
〉〈

otherwise)(

,)(>)( if),(
=)(

xf

xfxfxf
xf     (3) 
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and 〉〈 )(xf  is the average of the objective function values in the current population. In the 

Figure 1 feasible as well as infeasible solutions are shown. Among the 4 infeasible solutions, 
the individuals c and d have their objective function values (represented by open circles) less 

than the average objective function and, according to the proposed method, have f  given 

by 〉〈 )(xf . The solutions a and b have objective function values which are worst than the 

population average and thus have )(=)( xfxf . 

The penalty parameter is defined at each generation by:  

 
2

1=

])([

)(
|)(=|

〉〈

〉〈
〉〈

∑ xv

xv
xfk

l

m

l

j

j     (4) 

and 〉〈 )(xvl  is the violation of the l -th constraint averaged over the current population. 

Denoting by pop  the population size, one could also write  

 )(

)(

|)(|

=
1=

2

1=1=

1= i

j

pop

ii

l

pop

i

m

l

i
pop

i
j xv

xv

xf

k ∑
∑∑

∑

⎥
⎦

⎤
⎢
⎣

⎡
   (5) 

The idea is that the values of the penalty coefficients should be distributed in a way that 
those constraints which are more difficult to be satisfied should have a relatively higher 
penalty coefficient.  
Besides been tested by the authors, the APM has also been used by other researchers in 
different fields (Zavislak, 2004, Gallet, 2005, Obadage & Hampornchai, 2006). 

4. Variants of the APM 

The adaptive penalty method, as originally proposed, (i) computes the constraint violations 

jv  in the current population, and (ii) updates all penalty coefficients jk  at every 

generation. As a result, those coefficients undergo (potentially large) variations at every 
generation as shown in (Barbosa & Lemonge, 2003). 
Despite its success, questions naturally arise concerning, for instance, the desirability of 
reducing the amplitude of those oscilations, and the possibility of reducing the computer 
time without compromising the quality of the results. 
In the following, some possible variants of the APM will be considered. 
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4.1 The sporadic APM 

One first variant of the APM corresponds to:  (i) compute the constraint violations jv  in the 

current population, (ii) update the penalty coefficients jk , but (iii) keep the penalty 

coefficients jk  fixed for f  generations. 

 The gains in computer time are obvious: step (i) is performed only every f  generations. Of 

course, one should investigate if convergence is negativelly affected. 

4.2 The sporadic APM with constraint violation accumulation 
A second variant considered here corresponds to: (i) accumulate the constraint violations 

jv  for f  generations,  (ii) update the penalty coefficients jk ,  and (iii) keep the penalty 

coefficients jk  fixed for f  generations  

 The gains in computer time are very small, but the oscilations in the jk  values can be 

reduced. 

4.3 The APM with monotonic penalty coefficients 

As the penalty coefficients should (at least theoretically) grow indefinitely, another variant 

corresponds to the monotonic APM: no jk  is allowed to have its value reduced along the 

evolutionary process: 

4.4 The APM with damping 

Finaly, one can think of reducing  the oscilations in jk  by using a weighted average 

between the current value of jk  and the new value predicted by the method:  

( ) current

j

new

j

new

j kkk θθ −+ 1= )()(
 

where [0,1]∈θ . 

4.5 A compact notation  
A single notation can be introduced in order to describe the whole family of adaptive 
penalty techniques.  
The numerical parameters involved are: 

• The frequency f  (measured in number of generations) of penalty parameter updating,  

• The weight parameter [0,1]∈θ  used in the update formula for the penalty parameter.  

Two additional features are: (i) constraint violations can alternatively be accumulated for all 

the f  generations, or can be computed only every f  generations, and (ii)  the penalty 

parameter is free to vary along the process, or monotonicity will be enforced.  
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The compact notation APM(
accf , mθ ) indicates a member of the family of methods where 

the penalty coefficients are updated every f  generations, based on constraint violations 

which are accumulated (superscript acc ) over those f  generations, using the weight 

parameter θ , and enforcing monotonicity (subscript m ). Thus, the original APM 

corresponds to APM(1,1). 
The five members of the APM family considered for testing here are:   

Variant Description 

1     � The original APM: APM(1,1)  

2     � The sporadic APM: APM( f ,1)  

3     � The sporadic APM with constraint violation accumulation: APM(
accf ,1)  

4 
    � The sporadic APM with constraint violation accumulation and smoothing: 

APM(
accf ,θ )  

5 
    � The sporadic APM with constraint violation accumulation, smoothing, and 

monotonicity enforcement: APM(
accf , mθ )  

 

In the experiments performed, the values =f  100 and =f  500 are used when 1000 and 

5000 generations are employed, respectively. Also, 0.5=θ  was adopted. 

Several examples from the literature are considered in the next section in order to test the 
performance of the variants considered with respect to the original APM. 

5. Numerical experiments 

Our baseline binary-coded generational GA uses a Gray code, rank-based selection, and 
elitism (the best element is always copied into the next generation along with 1 copy where 
one bit has been changed). A uniform crossover operator was applied with probability equal 
to 0.9 and a mutation operator was applied bit-wise to the offspring with rate 

0.004=mp . 

5.1 Test 1 - The G-Suite 

The first set of experiments uses the well known G1-G11 suite of test-problems. A complete 
description of each problem can be found, for example, in (Lemonge, & Barbosa, 2004). The 
G-Suite, repeatedly used as a test-bed in the evolutionary computation literature, is made up 
of different kinds of functions and involves constraints given by linear inequalities, 
nonlinear equalities and nonlinear inequalities. For the eleven problems, the population size 
is set to 100, 25 independent runs were performed, with the maximum number of 
generations equal to 1000 and 5000, and each variable was encoded with 25 bits. For the 

variant 5, the value of θ  is set to 0.5. The Tables 1 and 2 present the values of the best, mean 

and the worst solutions found for each function with respect to the five variants of the APM.  
The values presented in boldface correspond to the better solution among the variants. 
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Test-problem Best-known Variant Best Mean Worst 

g01 -15 1 -14.9996145 -14.9845129 -14.8267331 

  2 -14.9997983 -14.9988652 -14.9939536 

  3 -14.9997216 -14.9876210 -14.8305302 

  4 -14.9997582 -14.9986873 -14.9960541 

  5 -14.9996321 -14.9979965 -14.9891883 

g02 -0.8036191 1 -0.7789661 -0.6996669 -0.5728089 

  2 -0.7873126 -0.7250099 -0.5998890 

  3 -0.7925228 -0.7255508 -0.6244844 

  4 -0.7846081 -0.7191555 -0.6307588 

  5 -0.7838283 -0.7097919 -0.5855941 

g03 -1.0005001 1 -0.9972458 -0.7779740 -0.5027824 

  2 -0.9361403 -0.4968387 -0.0368749 

  3 -0.9803577 -0.4463771 -0.1012515 

  4 -0.9682280 -0.4168279 -0.0212638 

  5 -0.7666858 -0.3919809 -0.1462019 

g04 -30665.538671 1 -30665.3165485 -30578.5496875 -30387.6140423 

  2 -30664.6156191 -30578.3703906 -30458.6292214 

  3 -30663.9053552 -30577.5611718 -30432.1269937 

  4 -30664.4464089 -30573.7182031 -30369.9518043 

  5 -30662.5018601 -30591.6589843 -30358.6826419 

g05 5126.4967140 1 5127.3606448 5343.2514134 5993.0123939 

  2 5127.0852075 5341.0769391 5935.3076090 

  3 5126.7785185 5323.8655104 5935.3019471 

  4 5127.0852075 5290.0768500 5935.3076090 

  5 5128.8444266 5378.8769735 6102.9022396 

g06 -6961.8138755 1 -6957.5403309 -6913.0707583 -6868.6591021 

  2 -6951.1888908 -6901.2575390 -6705.1840698 

  3 -6958.1031284 -6879.5979882 -6296.5426371 

  4 -6954.9453586 -6906.1789453 -6797.2374636 

  5 -6961.4475438 -6805.2293359 -5237.1477535 

g07 24.3062090 1 24.7768086 27.7708738 35.6097627 

  2 24.8049743 28.0120724 28.0120724 

  3 25.0308511 28.4575817 44.1698225 

  4 24.5450354 27.8486413 36.8722275 

  5 24.7255055 29.8150354 63.5219816 

g08 -0.0958250 1 -0.0958250 -0.08768981 -0.0258067 

  2 -0.0958250 -0.06476799 -0.0013001 

  3 -0.0958250 -0.62599863 -0.0147534 

  4 -0.0958250 -0.65938715 -0.0255390 

  5 -0.0958250 -0.53489946 0.0123813 
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Test-problem Best-known Variant Best Mean Worst 

g09 680.6300573 1 680.7376315 682.0270142 690.4830475 

  2 680.7722707 681.5344751 685.8184957 

  3 680.7343755 681.4195117 683.1598659 

  4 680.8243208 681.8727295 687.0344127 

  5 680.6814564 681.4697436 683.2056847 

g10 7049.2480205 1 7070.5636522 8063.2916015 8762.119390 

  2 7237.0250892 10056.5608887 14688.684065 

  3 7191.9045654 10165.4067383 14733.840629 

  4 7217.4084043 9607.9555664 13715.794540 

  5 7117.7173709 9322.0432129 12645.139817 

g11 0.7499000 1 0.7523536 0.8585980 0.9932359 

  2 0.7521745 0.8878919 0.9992905 

  3 0.7521730 0.8879267 0.9992905 

  4 0.7521745 0.8879346 0.9991157 

  5 0.7501757 0.8822223 0.9954779 

Table 1. Results of the G-Suite using 1000 generations 

 

Test-problem Best-known Variant Best Mean Worst 

g01 -15 1 -14.9999800  -14.95263298  -14.6373581 

  2 -14.9999914  -14.99962558  -14.9969186 

  3 -14.9999826  -14.99953311  -14.9920359 

  4 -14.9999910  -14.99998634  -14.9999264 

  5 -14.9999915  -14.9999189  -14.9996256 

g02 -0.8036191 1 -0.8015561   -0.77248005  -0.7261164 

  2 -0.8025720   -0.76760471  -0.7328427 

  3 -0.8023503   -0.77583072  -0.7401626 

  4 -0.8030480   -0.77158681  -0.7752280 

  5 -0.8025918   -0.77851344  -0.7306644 

g03 -1.0005001 1 -1.0004896   -1.00040364  -0.9999571 

  2 -1.0004634   -0.98604559  -0.6746467 

  3 -1.0004630   -0.97507574  -0.3823454 

  4 -1.0004602   -0.97900237  -0.5014565 

  5 -1.0004553   -0.99997359  -0.9962939 

g04 -30665.538671  1 -30665.523774 -30665.094688 -30661.761001 

  2 -30665.536925 -30664.093203 -30643.260211 

  3 -30665.537505 -30665.365000 -30664.505410 

  4 -30665.533257 -30664.861094 -30660.745418 

  5 -30665.520939 -30664.819062 -30660.360061 
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Test-problem Best-known Variant Best Mean Worst 

g05 5126.4967140 1 5127.3606448  5321.5713820 5993.0113312 

  2 5126.7738829  5323.8496730 5935.3030129 

  3 5126.7738829  5323.8495456 5935.3030129 

  4 5126.7738829  5323.8496943 5935.3030129 

  5 5128.8443865  5385.9205375 6102.8994189 

g06 -6961.8138755 1 -6961.7960836 -6742.3431201 -1476.0027566 

  2 -6961.7960836 -6961.7763086 -6961.7592083 

  3 -6961.7960836 -6961.7720312 -6961.7592083 

  4 -6961.7960836 -6961.7763086 -6961.7592083 

  5 -6961.7960837 -6961.7752278 -6961.7592083 

g07 24.3062090 1 24.4162533   26.4573583 30.7900065 

  2 24.6482626   27.2199523 39.8419615 

  3 24.5543275   26.9851276 38.2220049 

  4 24.7315254   27.8377833 51.1675542 

  5 24.4148575   26.3590182 29.5413519 

g08 -0.0958250 1 -0.0958250 -0.0876899 -0.0258094 

  2 -0.0958250 -0.0565442 -0.0010461 

  3 -0.0958250 -0.0649342 -0.0010460 

  4 -0.0958250 -0.0660025 -0.0204120 

  5 -0.0958250 -0.0632326 -0.0197011 

g09 680.6300573 1 680.6334486 680.7850952  681.1733250 

  2 680.6673020 680.8470361  681.7406035 

  3 680.7122589 680.8832129  681.3188377 

  4 680.6505355 680.8678125  681.3625388 

  5 680.6527662 680.8803711  681.6149132 

g10 7049.2480205 1 7205.1435740  8392.399951 10349.909364 

  2 7064.1563375 10108.975371 15407.413766 

  3 7062.6060743  9953.722324 14200.173044 

  4 7064.5428438  8554.065429 13156.5681862 

  5 7064.3344362 10079.815684 14387.7769407 

g11 0.7499000 1 0.7523536 0.8556172 0.9468393 

  2 0.7521745 0.8834432 0.9903447 

  3 0.7521745 0.8834432 0.9903447 

  4 0.7521745 0.8845256 0.9937399 

  5 0.7501757 0.8761453 0.9944963 

Table 2. Results of the G-Suite using 5000 generations 

Observing the results presented in Tables 1 and 2 one can see that the original APM found 
more often the best solutions. Among the new variants, the variants 3 and 5 were the most 
successful. As the performance of variant 4 was not as good  as that of variants 3 and 5, one 
may suspect that, at least for this set of problems, the inclusion of the damping procedure 
was detrimental.  
The graphics from the figures 2 to 25 show the values of the coefficients kj along the 1000 
generations performed for the functions g06, g09, g04 and g01. For the Variant 1 are drawn 
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two graphics where the second one correponds to a logarithmic scale for the coefficient 

jk in the y-axis. 
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Figure 2. Variant 1 – Test-problem g06 Figure 3. Variant 1 – Test-problem g06  (log 

scale for y-axis) 
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Figure 4. Variant 2 – Test-problem g06   Figure 5. Variant 3 – Test-problem g06 
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Figure 6. Variant 4 – Test-problem g06 Figure 7. Variant 5 – Test-problem g06 
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Figure 8. Variant 1 – Test-problem g09 Figure 9. Variant 1 – Test-problem g09 (log 

scale for y-axis) 
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Figure 10. Variant 2 – Test-problem g09  Figure 11. Variant 3 – Test-problem g09 

 
 

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  200  400  600  800  1000

k_
j

Generations

k1
k2
k3
k4

 0

 8000

 16000

 24000

 32000

 40000

 0  200  400  600  800  1000

k_
j

Generations

k1
k2
k3
k4

 
Figure 12. Variant 4 – Test-problem g09 Figure 13. Variant 5 – Test-problem g09 
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Figure 14. Variant 1 – Test-problem g04 Figure 15. Variant 1 – Test-problem g04  

(log scale for y-axis) 
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Figure 16. Variant 2 – Test-problem g04 Figure 17. Variant 3 – Test-problem g04 
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Figure 18. Variant 4 – Test-problem g04 Figure 19. Variant 5 – Test-problem g04 
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Figure 20. Variant 1 – Test-problem g01 Figure 21. Variant 1 – Test-problem g01 

 (log scale for y-axis) 
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Figure 22. Variant 2 – Test-problem g01 Figure 23. Variant 3 – Test-problem g01 
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Figure 24. Variant 4 – Test-problem g01  Figure 25. Variant 5 – Test-problem g01 
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5.2 Test 2 - The pressure vessel design 
This problem (Sandgren, 1998, Kannan & Kramer, 1995, Deb, 1997, Coello, 2000) 
corresponds to the weight minimization of a cylindrical pressure vessel with two spherical 
heads. The objective function involves four variables: the thickness of the pressure vessel 

( sT ), the thickness of the head ( hT ), the inner radius of the vessel (R ) and the length of the 

cylindrical component ( L ). Since there are two discrete variables ( sT  and hT ) and two 

continuous variables (R  and L ), one has a nonlinearly constrained mixed discrete-
continuous optimization problem. The bounds of the design variables are 

5,0.0625 ≤≤ hs TT  (in constant steps of 0.0625) and 200,10 ≤≤ LR . The design 

variables are given in inches and the weight is written as:   

RTLTRTRTTLRTTW sshhshs

222 19.843.16611.77816224.0=),,,( +++  

to be minimized subject to the constraints  

0240=)(  01,296,0004/3=),(

00.00954=),(                       00.0193=),(

4

32

3

21

≥+−≥−+

≥−≥−

LLgRLRLRg

RTRTgRTRTg hhss

ππ
 

 The first two constraints establish a lower bound to the ratios RTs /  and RTh/ , 

respectively. The third constraint corresponds to a lower bound for the volume of the vessel 
and the last one to an upper bound for the length of the cylindrical component.  
The Table 3 presents the results of the pressure vessel design using 1000 generations. Two 
identical results were found for the best value of the final weight  (6059.7145293) with 
respect to the APM variants 2 and 3. Using 5000 generations, the same value of the final 
weight was found four times as shown in the Table 4. Except for the original APM (variant 
1), all  variants were able to find the best solutions. 

 

  Variant   best   median   Mean   std   worst   frun  

1   6059.7151671  6227.8170385  6474.4169921  4.53E+02  7509.8518229   25  

2   6059.7145293  6384.0497026  6447.2068164  4.19E+02  7340.3461505   25  

3   6059.7145293  6410.2945786  6481.3246679 4.29E+02  7544.4928499   25  

4   6059.7187531  6371.1972928  6467.6047851  4.30E+02  7544.5662019   25  

5   6059.7151671  6376.8444814  6502.6069921  4.37E+02  7544.4928499   25  

Table 3. Results of the pressure vessel design using 1000 generations 
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  variant   best   median   Mean   std   worst   frun  

 1   6059.7903738  6525.0826625  6571.3568945 4.79E+02  7333.0935211   25  

2   6059.7145293  6370.7942228  6448.2773437  4.21E+02  7334.9819158   25  

3   6059.7145293  6372.4349034  6445.8280859  4.16E+02  7340.8828459   25  

4   6059.7145293  6370.7970442  6466.9971289  4.03E+02  7334.2645178   25  

5   6059.7145293  6370.7798337  6445.3129101  4.58E+02  7332.9812503   25  

 Table 4. Results of the pressure vessel design using 5000 generations 

5.3 Test 3 - The cantilever beam design 
This test problem (Erbatur et al., 2000) corresponds to the minimization of the volume of the 
cantilever beam subject to the load P, equal to 50000 N, at its tip. There are 10 design 

variables corresponding to the height ( iH ) and width ( iB ) of the rectangular cross-section 

of each of the five constant steps. The variables 1B  and 1H  are integer, 2B  and 3B  

assume discrete values to be chosen from the set { }8,3.12.4,2.6,2. , 2H  and 3H  are 

discrete and chosen from the set { }55.0,60.045.0,50.0,  and, finally, 4B , 4H , 5B , and 

5H  are continuous. The variables are given in centimeters and the Young's modulus of the 

material is equal to 200 GPa. The volume of the beam is given by  

ii

i

ii BHBHV ∑
5

=1

100=),(  

subject to:  

cmBHg

iBHBHg

icmNBHg

ii

iiiii

iiii

2.7=),(

,51,=20/=),(

,51,=/14000=),(

11

5

2

≤

≤

≤

+

δ

σ

K

K

 

where δ  is the tip deflection of the beam in the vertical direction.  

The Table 5 shows the results for the cantilever beam design when 1000 generations were 
used.  The best final volume found (64842.0265521), was achieved by the third variant of the 
APM variant. Using 5000 generations, the variant 4 provided the best solution among the 
variants, with a final volume equal to 64578.1955255 as shown in the Table 6.  
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variant best median mean std worst frun 

1 65530.7729044 68752.485343 70236.739375 3.59E+03 78424.35756 25 

2 64991.8776321 68990.278258 70642.622188 4.47E+03 84559.93461 25 

3 64842.0265521 68662.595134 70312.300781 4.39E+03 78015.93963 25 

4 64726.0899470 68924.741220 71383.862812 5.60E+03 85173.95180 25 

5 65281.3580659 69142.397989 69860.818906 3.66E+03 78787.491031 25 

Table 5. Results of the cantilever beam design using 1000 generations   

 

 ariant best median mean std worst frun 

1 64578.1959540 68293.437745 67153.214844 2.00E+03 72079.947779 25 

2 64578.1957397 64965.027481 66161.232500 1.77E+03 68391.603479 25 

3 64578.1959540 64992.041635 66704.774531 3.13E+03 79124.364956 25 

4 64578.1955255 68201.363366 66682.130313 1.86E+03 68722.669573 25 

5 64578.1957397 65015.052899 66450.535156 1.89E+03 69294.203883 25 

Table 6. Results of the cantilever beam design using 5000 generations 

5.4 Test 4 - The Tension/Compression Spring design 

This example corresponds to the minimization of the volume V  of a coil spring under a 

constant tension/compression load. There are three design variables: the number Nx =1  

of active coils of the spring, the winding diameter Dx =2  and the wire diameter dx =3 . 

The volume of the coil is written as:  

( ) 2

123 2=)( xxxxV +  

 and is subject to the constraints: 

( )
( )

01
1.5

=)(0
140.54

1=)(

0
12566
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4
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12
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 where  

15.02.01.30.250.20.05 321 ≤≤≤≤≤≤ xxx  

From the Table 7 one can observe that the variants 2, 3 and 4 were able to find the better 
results for the Tension/Compression Spring design using 1000 generations. The final 
volume reached is equal to 0.0126973. Using 5000 generations, the previous result for the 
best volume remains the same (0.0126973) and is again found by the variants 2, 3 and 4 of 
the APM (Table 8). 

  Variant   best   median   Mean   std   worst   frun  

 1   0.0127181   0.0136638   0.0144048   1.82E-03  0.0178499   25  

2   0.0126973   0.0135445   0.0144046   1.79E-03  0.0178499   25  

3   0.0126973   0.0135445   0.0144074   1.80E-03  0.0178674   25  

4   0.0126973   0.0135456   0.0143907   1.78E-03  0.0178499   25  

5   0.0127255   0.0140187   0.0146077   1.83E-03  0.0178499   25  

Table 7. Results of the coil spring design using 1000 generations  

 

Variant   best   median   mean   std   worst   frun  

 1   0.0127181   0.0135456   0.0143920   1.82E-03  0.0178499   25  

2   0.0126973   0.0135445   0.0143769   1.78E-03  0.0178499   25  

3   0.0126973   0.0135445   0.0143706   1.78E-03  0.0178499   25  

4   0.0126973   0.0135445   0.0143868   1.80E-03  0.0178499   25  

5   0.0127255   0.0127255   0.0146097   1.84E-03  0.0178499   25  

Table 8.  Results of the coil spring design using 5000 generations  

5.5 Test 5 - The 10-bar truss design 
This well known test problem (Goldberg & Samtani, 1986), which corresponds to the weight 
minimization of a 10-bar truss, will be analyzed here subject to constraints involving the 
stress in each member and the displacements at the nodes. The design variables are the 

cross-sectional areas of the bars ( 1,10= , iAi ). The allowable stress is limited to ±  25ksi 

and the displacements are limited to 2 in, in the x  and y  directions. The density of the 

material is 0.1 lb/in
3

, Young's modulus is E = 10
4

 ksi, and vertical downward loads of 100 
kips are applied at nodes 2 and 4.  
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Two cases are analyzed: discrete and continuous variables. For the discrete case the values 

of the cross-sectional areas (in
2

) are chosen from the set of 42 options: 1.62, 1.80, 1.99, 2.13, 
2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 
22.90, 26.50, 30.00, 33.50. Using a six-bit string for each design variable, a total of 64 strings 
are available which are mapped into the 42 allowable cross sections. For the continuous case 

the minimum cross sectional area is equal to 0.1 in
2

.  
For the discrete case all of the variants of the APM were able to find the best result for the 
final weight of the 10-bar truss structure (5490.738) as detailed in the Table 19. For the 
continuous case, the original APM (variant 1) found the best solution for the final weight 
(5062.6605) shown in the Table 10.  

  variant   best   median   mean   std   worst   frun  

 1   5490.7378   5599.4444   5605.6312   1.29E+02   6156.3977   25  

2   5490.7378   5634.5138   5647.7405  1.94E+02   6487.3525   25  

3   5490.7378   5585.0667   5636.5571   2.12E+02   6561.2738   25  

4   5490.7378   5628.1253   5669.3382   2.00E+02   6550.6018   25  

5   5490.7378   5596.3125   5600.6728   6.38E+01   5719.3412   25  

Table 9. Results of the 10-bar truss with respect to the discrete case 

 

  variant   best   median   mean   std   worst   frun  

 1   5062.6605   5088.1406   5116.4183   9.20E+01   5527.0238   25  

2   5068.5702   5089.9409   5129.8554  1.20E+03   5631.3084   25  

3   5066.8124   5093.6549   5106.9311   5.71E+01   5306.6538   25  

4   5068.5005   5091.6265   5138.9569   1.49E+02   5774.8811   25  

5   5063.6410   5087.2172   5126.4837   1.37E+02   5705.4190   25  

Table 10. Results of the 10-bar truss with respect to the continuous case 

5.6 Test 6 - The 120-bar truss 

This is a three-dimensional dome structure corresponding to a truss with 120 members 
(Saka & Ulker, 1991, Ebenau et al., 2005, Capriles et al, 2007).    
The dome is subject to a downward vertical equipment loading of 600 kN at its crown (node 
1). The displacements are limited to 2 cm, in the x , y  and z  directions. The density of 

material is 7860 kg/m
3

 and  Young's modulus is equal to 21000 kN/cm
2

. The maximum 

normal stress is limited by =maxσ  32.273 kN/cm
2

 in tension and compression. Moreover, 
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the buckling in members under compression is considered, and the stress constraints are 
given now by:  

2
=   with   ,1,2,=0,1

||

j

jE

j

E

E

j

j

L

kEA
pi σ

σ

σ
σK≤−  

where jσ  is the buckling stress at the j -th member, 
E

jσ  is the maximum allowable 

buckling stress for this member, and k  is the buckling coefficient, adopted equal to 4. The 

total number of constraints is equal to 351. 
The cross-sectional areas are the sizing design variables and they are to be chosen from a 
Table containing 64 options (see Capriles et al, 2007).   

  Variant   best   median   mean   std   worst   frun  

 1   59.5472   59.9999   60.0266   2.50E-01   60.7749   25  

2   59.5472   60.0459   60.2679   6.33E-01   62.3707   25  

3   59.7145   60.0459   60.7749   3.05E+00   75.1747   25  

4   59.5472   60.0459   60.8720   3.05E+00   75.1747   25  

5   59.5472   59.9748   60.0711   4.03E-01   61.0417   25  

 Table 11.Results of the 120-bar truss 

In this experiment the five variants of the APM were able to find the same best solution 
(59.5472). The fifth variant of the APM provided the best value of the median (59.9748) and 
the original APM presented the best result corresponding to the mean value. 

6. Conclusion 

From the experiments performed here one can see that the original APM found more often 
the best solutions. Among the new variants, the variants 3 and 5 were the most successful. 
As the performance of variant 4 was slightly inferior to that of variants 3 and 5, one may  
suspect that the inclusion of the damping procedure was not advantageous.  
A more important conclusion may be that there were not large discrepancies among the 
results obtained by the original APM and the four new variants, which provide 
computational savings, and that robust variants can be obtained from the overall family of 
adaptive penalty methods considered here. 
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