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1. Introduction   

Radio-over-fibre (RoF) techniques have been subject of research during the last decades and 
find application in optical signal processing (photonic analogue-to-digital converters, 
photonic-microwave filters, arbitrary waveform generation), antenna array beamforming, 
millimetre-wave and THz generation systems, or photonic up- and down-converting links 
for applications such as broadband wireless access networks, electronic warfare and 
RADAR processing, imaging and spectroscopy or radio-astronomy (Seeds & Williams, 2006; 
Capmany & Novak, 2007). In these applications a radio signal typically in the millimetre-
wave band is transmitted through optical fibre employing laser sources and electro-optical 
devices. 
The use of optical fibre links to distribute telecommunication standards is the more 
successful application of RoF technology, usually known as hybrid fibre-radio (HFR) 
networks (Jager & Stohr, 2001). HFR networks have been deployed in the last decade due to 
the increasing demand of high-bitrate communication services in today’s access network. 
This demand is based on the steady market introduction of services requiring the 
transmission of massive data quantities, like high-definition movie distribution, on-line 
gaming and rich Internet experience by example (Merill Lynch, 2007).  
The HFR concept applied to the enhancements of community antenna television (CATV) 

networks reflected in the so-called hybrid-fibre coax (HFC) network, in which a combination 

of digital and analogue channels is distributed from a central location to many users 

distributed geographically (Darcie & Bodeep, 1990; Wilson et al., 1995). In HFC networks the 

last mile connection is provided through coaxial cable whilst in HFR networks the last mile 

connection is always a wireless link. This is not a minor difference, as the wireless 

environment is much more hostile than cable imposing restrictive RoF link performance 

requirements in terms of linearity, noise and power handling capabilities, key parameters to 

guarantee a spurious free dynamic range (SFDR) for the whole link high enough to cope 

with geographical dispersion of users and complex modulation formats used by current 

wireless standards. A simplified schematic of a HFR network is shown in Fig. 1.  

RoF technology allows centralising the required RF signal processing functions in one 
shared location (Central Office, CO) and then to use optical fibre to distribute the RF signals 
to the remote access units (RAU). This allows important cost savings as the RAUs can be 
simplified significantly, as they only need to perform optoelectronic conversion and filtering 
and amplification functions. It is possible to use wavelength multiplexing techniques 
(WDM) in order to increase capacity and to implement advanced network features such as 
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dynamic allocation of resources. This centralised and simplified RAU scheme allows lower 
cost system operation and maintenance, which are reflected into major system OPEX 
savings, especially in broadband wireless communication systems where a high density of 
RAUs is necessary. 
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Fig. 1. Simplified schematic of a RoF system. LD: Laser diode. BS: Base Station. RAU: 
Remote Access Unit. BPF: Band-pass filter. Amp: Electrical amplifier. 

The CO and the RAU perform electro-optical (E/O) and opto-electronic (O/E) conversion of 
wireless signals respectively. E/O conversion is achieved employing either directly 
modulated laser sources or external electro-optic modulators. O/E conversion is done 
employing photodetectors or photoreceivers (Seeds & Williams, 2006).  Regarding the RF 
transport, when the signal is transported directly at the frequency of operation there are 
benefits regarding cost, complexity and upgradeability, as there is no need for complex RF 
signal processing at the RAU involving up/down conversion or base-band mux/demux 
(Capmany & Novak, 2007; Jager & Stohr, 2001). 
RoF techniques and complete transmission systems have been demonstrated for frequencies 
up to 120 GHz (Hirata et al., 2003). As mentioned before, the most successful application of 
RoF technologies has been the transmission of wireless standards over optical fibre links in 
centralized architectures, also known as distributed antenna systems (DAS) for both indoor 
and outdoor applications. The broad bandwidth of the optical fibre facilitates standard- 
independent multiservice operation for cellular systems, such as GSM (Owaga et al., 1992), 
UMTS (Persson et al., 2006), wireless LAN (WiFi 802.11 a/b/g/n) (Chia et al., 2003; Niiho et 
al., 2004; Nkansah et al., 2006) and also for emerging technologies WiMAX (Pfrommer et al., 
2006) and Ultra-wideband (UWB) (Llorente et al., 2007). Available commercial systems 
however are typically limited to frequency ranges between 800-2500 MHz. Demonstrations 
of such DAS systems include their deployment to provide uniform wireless coverage in 
important sportive events such as the 2000 Olympic games and 2006 world cup (Rivas & 
Lopes, 1998; Cassini & Faccin, 2003). For indoor applications where picocell configurations 
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are envisaged, advanced multi-function devices such as waveguide electro-absorption 
modulator (Wake et al., 1997) or polarization independent asymmetric Fabry-Perot 
modulators (Liu et al., 2003; Liu et al., 2007) are used as detector/modulator. 
Two key factors limiting the overall transmission performance in RoF systems are the 
optical source and the electro-optic modulation technique employed. Regarding the laser 
source, at frequencies used for major wireless standards (GSM, WiFi 802.11 a/b/g, UMTS) 
and also WiMAX up to 5-6 GHz, directly modulated semiconductor lasers are preferred due 
to lower cost (Qian et al., 2005). For higher frequencies, the required performances can be 
satisfied only by externally modulated transmitters. Devices with bandwidth handling 
capabilities in excess of these required by near-term WIMAX deployments, in particular 
distributed feedback (DFB) lasers offering the required bandwidth and performances, exist 
commercially, but normally at a high cost taking into account the number of devices 
required for typical applications. Recently, a lot of research efforts have been devoted to the 
development of low-cost/high-performance transmitters, for instance uncooled lasers 
(Ingham et al., 2003; Hartmann et al., 2003) or vertical-cavity surface-emitting lasers 
(VCSEL) (Persson et al., 2006; Chia et al., 2003).  Probably, the most restrictive requirement 
for wireless services provision over RoF systems is the SFDR. Nowadays SFDRs in excess of 
100 dB·Hz2/3 have been demonstrated experimentally, providing enough dynamic range to 
be employed in real applications (Seeds & Williams, 2006). 

2. Ultra-wideband radio-over-fibre 

2.1 Optical generation  
The basic elements of RoF systems are broadband laser sources either employing direct or 
external modulation, a suitable transmission media such as multi-mode fibre (MMF), single-
mode fibre (SMF) or plastic optical fibre (POF), and broadband photodetectors or 
photoreceivers (Seeds & Williams, 2006; Capmany & Novak, 2007; Dagli, 1999). The laser 
source and modulation method is the key element in the performance of RoF applications. 
The generation of the optical signal to be transmitted in the RoF system is of special 
difficulty in the case of UWB signals. UWB is a radio technology intended for cable 
replacement in home applications within a range of tens of meters (picocell range), with 
high-definition video and audio communications a potential application (Duan et al., 2006). 
UWB is also attractive in many other applications including medicine, sensor networks, etc. 
UWB radio offers: High data rate capability (>1 Gbit/s), low radiated power spectral density 
(PSD) minimising the interference, low-cost equipment commercially available. UWB is 
available in two main implementations: Multi-band orthogonal frequency-division 
multiplexing (MB-OFDM) and impulse radio. The ECMA standard (ECMA-368, 2007) uses 
MB-OFDM in 528 MHz individual sub-bands, whilst the impulse-radio implementation 
employs short pulses (in the range of hundreds of picoseconds) modulated in amplitude, 
time, polarity or shape to fill a desired bandwidth. MB-OFDM generally shows superior 
performance to the impulse-radio approach in terms of multi-path fading and intersymbol 
interference (ISI) tolerance, whilst impulse-radio is able to provide simultaneously 
communications, localization and ranging to a sub-centimetre resolution. 
Currently, UWB uses the unlicensed band from 3.1 to 10.6 GHz mainly for indoor 
communications (FCC 04-285, 2004; ECMA-368, 2007) and the 24 GHz band for vehicular 
short-range radar applications (SARA Group, 2009), with a bandwidth larger than 20% of 
the centre frequency or a 10-dB bandwidth of at least 500 MHz as in FCC regulation (FCC 

www.intechopen.com



 Frontiers in Guided Wave Optics and Optoelectronics 

 

122 

04-285, 2004) or at least 50 MHz as in ETSI regulations (ETSI, 2008) and a maximum radiated 
PSD of -41.3 dBm/MHz to guarantee spectral coexistence with other wireless narrowband 
services complementary in terms of range and bitrate such as WiMAX. Nevertheless, the 
whole UWB band 3.1-10.6 GHz is not available worldwide due to coexistence concerns 
(WiMedia, 2009). Outside the United States, available effective bandwidth is 1.5 GHz which 
only supports hundreds of Mbit/s. However, the unlicensed 60 GHz band enables UWB 
multi-Gbit/s wireless communications worldwide, as shown in Fig. 2, while challenges 
related to wireless channel and transceiver design have to be addressed (Daniels & Heath, 
2007).  
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Fig. 2. International frequency allocations in the 60 GHz band (as of January 2009). (*) (ECC, 
2009)  

RoF distribution of UWB signals, termed UWB-over-fibre, has received great interest to 

extend the UWB range exploiting the advantages of the broad bandwidth, low loss, light 

weight, and immunity to electromagnetic interference offered by optical fibres.  

In this section, different techniques for generating impulse-radio UWB signals in the optical 

domain is reported, featuring frequencies ranging from baseband up to millimetre-wave 

bands, including 24 GHz and 60 GHz. Some laser source characteristics are also discussed. 

2.1.1 Impulse-radio ultra-wideband baseband  
For UWB-over-fibre systems, it is desirable to generate UWB signals directly in the optical 
domain, avoiding the use of additional E/O and O/E conversions and exploiting the 
advantages provided by optics such as broadband processing, light weight, small size, and 
immunity to electromagnetic interference. Many techniques have been proposed to generate 
impulse-radio UWB signals in the 3.1-10.6 GHz band in the optical domain. These 
techniques have mainly focused on generating Gaussian monocycle and doublet pulse 
shapes, which have been demonstrated to provide better bit error rate (BER) and multipath 
performance among different pulse types (Chen & Kiaei, 2002). 
RoF distribution of UWB signals in the band from 3.1 to 10.6 GHz for high-definition 
audio/video broadcasting in optical access networks, e.g. in fibre-to-the-home (FTTH) 
networks has been proposed (Llorente et al., 2008). The performance of both MB-OFDM and 
impulse-radio UWB implementations at 1.25 Gbit/s is experimentally analysed and 
compared for different SMF links, ranging from 25 km up to 60 km. Both UWB 
implementations exhibit error-free operation (BER< 10-9) up to 50 km without dispersion 
compensation. The impulse radio technology exhibits degraded performance compared 
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with OFDM although other optimized impulse-radio generation and detection schemes 
could lead to different results. OFDM-UWB degrades quickly with fibre length, due to the 
carrier suppression effect (Schmuck, 1995).  
Several demonstrations on optical generation of impulse-radio UWB in the band from 3.1 to 
10.6 GHz including fibre and/or wireless transmission have been reported achieving 65 cm 
wireless distance at 500 Mbps data employing on-off keying (OOK) amplitude modulation 
(Abtahi et al., 2008); 20 cm at 1.025 Gbit/s OOK-modulated data after up to 10 km of 
dispersion-compensated SMF (Hanawa et al., 2009); 5 cm at 1.6875 Gbit/s OOK-modulated 
data after 24 km of SMF (Pan & Yao, 2009a); at 1.625 Gbit/s data employing pulse-position 
modulation (PPM) after up to 200 m of SMF (Shams et al., 2009a), or 37 km of SMF with no 
wireless transmission (Shams et al., 2009b); and at 781.25 Mbit/s data employing binary 
phase-shift keying (BPSK) modulation after 30 km of SMF (Yu et al., 2009). In addition, 
techniques have been reported capable of pulse shape modulation (PSM) (Dong et al., 2009), 
or reconfigurable for multiple modulation formats (Pan & Yao, 2009b). 
Photonic generation of Gaussian monocycle pulses based on balanced photodetection of 
data Gaussian pulses has been proposed (Hanawa et al., 2007; Beltrán et al., 2008). Data 
Gaussian pulses are first generated by intensity modulation of an electrical data sequence 
with optical Gaussian pulses from a pulsed laser. This technique is shown in Fig. 3. Optical  
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Fig. 3. Gaussian monocycle pulse generation based on balanced photodetection. ODL: 
Optical delay line. BPD: Balanced photodetector. PD: Photodetector. 
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Fig. 4. Monocycle pulses generated employing the technique in Fig. 3; (a) the temporal 
waveform and (b) its spectrum (resolution bandwidth: 30 kHz). 
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data pulses are split into two equal parts to drive the two inputs of the balanced 
photodetector. Optical delay is employed to adjust the relative time delay between the two 
signals. The pulse width of Gaussian pulses and the time-delay difference are adjusted so as 
to generate the desired UWB bandwidth. This approach has been experimentally 
demonstrated employing an actively mode-locked fibre laser and a Mach-Zehnder 
modulator (MZM) (Beltrán et al., 2008). To control the pulse width, a spool of standard SMF 
is included after the MZM. Fig. 4 shows monocycles generated based on balanced 
photodetection exhibiting a UWB 10-dB bandwidth of 6 GHz at 1.25 Gbit/s. 
Gaussian monocycle pulses can also be generated based on differential photoreception of 
data Gaussian pulses (Beltrán et al., 2009b) targeting to reduce cost and complexity. Fig. 5 
shows this technique. Again, data Gaussian pulses are first generated by intensity 
modulation of an electrical data sequence with optical Gaussian pulses from a pulsed laser. 
Optical data pulses are photodetected and amplified by an electrical amplifier providing 
complementary outputs. The two outputs are combined after adjusting their relative time 
delay to generate monocycles. The pulse width of Gaussian pulses and the time-delay 
difference are adjusted so as to generate the desired UWB bandwidth. This approach has 
been experimentally demonstrated employing an actively mode-locked fibre laser and a  
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Fig. 5. Gaussian monocycle pulse generation based on differential photoreceiver. PD: 
Photodetector. TIA: Transimpedance amplifier. EDL: Electrical Delay Line. 
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Fig. 6. Monocycle pulses generated employing the technique in Fig. 5; (a) the temporal 
waveform and (b) its spectrum (resolution bandwidth: 300 kHz). 
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MZM. To control the pulsewidth, a spool of standard SMF is included after the MZM. Fig. 6 
shows monocycles generated based on differential photoreception exhibiting a UWB 10-dB 
bandwidth of 3.8 GHz at 1.244 Gbit/s. 
The photonic techniques for Gaussian monocycle generation shown in Fig. 3 and Fig. 5 are 
capable of providing high-quality pulses covering the whole UWB band with simple and 
flexible configuration compared with other techniques employing custom fibre Bragg 
gratings, nonlinear optical processes or spectrum shaping components.  
UWB generation requires a pulse width in the order of hundreds of picoseconds to generate 
a suitable UWB bandwidth and a multi-gigahertz pulse repetition rate equal to the target 
data rate of the system. Gain-switched laser diodes, as used in (Hanawa et al., 2007; 
Kaszubowska-Anandarajah et al., 2008), passive or active mode-locked fibre lasers, e.g. 
(PriTel, 2009), and emerging optically pumped passively mode-locked vertical-external-
cavity surface-emitting lasers (VECSEL) can provide repetition rates suitable for UWB 
systems. In contrast to mode-locked lasers, gain switched lasers are simpler and more 
compact. However, timing jitter and also fluctuations of other pulse parameters are larger 
than for mode-locked lasers. Optically pumped VECSELs have the potential for very 
compact and cheap. In addition, suitable pulses for UWB applications could also be 
generated by modulating a continuous-wave light source, e.g. (Wu et al., 2007). 

2.1.2 Impulse-radio ultra-wideband in the millimetre-wave band 
For UWB optical transmission in RoF operating in the millimetre-wave bands, 24 GHz and 
60 GHz, broadband optical frequency up-conversion centralized in the CO appears as a cost-
effective solution instead of employing broadband electrical mixing at each RAU. A number 
of techniques have been reported for millimetre-wave impulse-radio UWB signal generation 
based on optical up-conversion. These techniques have been demonstrated in the 24 GHz 
band regulated for vehicular radar and also used in communications. One approach (Kuri et 
al., 2006) up-converts electrical rectangular pulses based on a complex self-heterodyne 
technique employing an arrayed waveguide grating (AWG) and a special MZM with high 
extinction ratio to suppress the residual RF carrier to meet the UWB emission mask. Another 
approach (Guennec & Gary, 2007) up-converts monocycle or doublet pulses generated by 
electrical transmitters commercially available by modulation in a MZM biased in nonlinear 
regime. This technique is simple, however it requires high-frequency electro-optic devices 
which make it difficult to be upgraded to higher frequency bands. The approaches 
demonstrated in (Fu et al., 2008; Li et al., 2009) serve as both frequency up-conversion and 
optical amplification and up-convert monocycle pulses generated employing electrical 
Gaussian pulses and a frequency discriminator. The former method is based on nonlinear 
polarization rotation in a semiconductor optical amplifier (SOA) exhibiting limited 
performance at high frequencies, whilst the latter method employs a more complex 
architecture based on a fibre optical parametric amplifier (OPA) but can be extended to 
higher frequency bands. An approach based on up-conversion of optical pulses in a MZM 
biased in non-linear regime has also been demonstrated (Chang et al., 2008). Optical 
monocycle and doublet pulses are generated by driving a dual-parallel MZM with electrical 
Gaussian pulses. In this demonstration, the performance of the millimetre-wave UWB signal 
after fibre transmission is analyzed showing the doublet pulse has better tolerance to fibre 
dispersion than the monocycle pulse.  
Gaussian monocycle pulses do not meet the FCC spectrum mask in the 3.1-10.6 GHz band. 
However, these pulses have been demonstrated to be suitable for further frequency up-
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conversion (Guennec & Gary, 2007). Optical up-conversion to 20 GHz of the generated 
baseband monocycles shown in Fig. 4 based on the technique in (Guennec & Gary, 2007) 
was also demonstrated in (Beltrán et al., 2008). A simpler approach to generate UWB 
monocycles in the millimetre-wave band based on frequency up-conversion of data 
Gaussian optical pulses in a MZM at the CO and monocycle shaping at RAUs has been 
proposed (Beltrán et al., 2009a; Beltrán et al., 2009c). This technique is depicted in Fig. 7.  
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Fig. 7. Millimetre-wave impulse-radio UWB-over-fibre based on up-conversion in a Mach-
Zehnder modulator at the CO and monocycle shaping at the RAU. LO: Local oscillator.  

This method has been demonstrated in two proof-of-concept experiments by modulating 
Gaussian optical pulses from an actively mode-locked fibre laser with data in a MZM to 
generate data Gaussian pulses whose pulse width is subsequently controlled by standard 
SMF. A second MZM driven by a local oscillator (LO) signal and biased at quadrature point 
(linear regime) generating an optical double-sideband signal with carrier is employed for 
up-conversion. The millimetre-wave signal is so obtained after photodetection and filtering 
at the RAU. In order to verify appropriate operation, the millimetre-wave signal is down-
converted with the same LO signal employed for up-conversion in an electrical mixer 
(conventional homodyne detection) and further low-pass filtered, with no fibre and no air 
transmission.  
In the first experiment (Beltrán et al., 2009a), monocycle shaping is based on balanced 
photodetection as shown in Fig. 3. UWB monocycles are generated at 19 GHz, exhibiting a 
single-sideband 10-dB bandwidth of 2.5 GHz at 622 Mbit/s, as shown in Fig. 8. Also shown  
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Fig. 8. (a) RF spectrum of UWB monocycles at 19 GHz generated in the setup in Fig. 1 with 
monocycle shaping as in Fig. 3. The FCC UWB mask is shown as a dashed line translated to 
19 GHz; (b) down-converted data monocycles. 
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in Fig. 8 is the down-converted signal. The monocycles bear OOK-modulated data so that 
they are suitable for simultaneous vehicular radar and communications in the 24 GHz band 
to provide traffic safety applications. 
Monocycle shaping based on differential photoreception as shown in Fig. 5 is performed in 
the second experiment (Beltrán et al., 2009c). This technique does not increase significantly 
the complexity of RAUs. UWB monocycles are generated at 16.85 GHz, exhibiting a single-
sideband 10-dB bandwidth of 2.5 GHz and bearing OOK-modulated data at 1.244 Gbit/s, as 
shown in Fig. 9. Also shown in Fig. 9 is the down-converted signal.  
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Fig. 9. (a) RF spectrum of UWB monocycles at 16.85 GHz generated in the setup in Fig. 7 
with monocycle shaping as in Fig. 5. The FCC UWB mask is shown as a dashed line 
translated to 16.85 GHz; (b) eye diagram of down-converted data monocycles. 

As can be observed in Fig. 8 and Fig. 9, the RF residual carrier does not limit the UWB 

emission mask. This enables the simultaneous wireless transmission of the two spectral 

sidebands improving receiver sensitivity at expense of reduced spectral efficiency. The two 

sidebands could be also filtered separately enabling a simultaneous dual-band generation.  

Fig. 10 shows a UWB-over-fibre system where optical data monocycles are frequency up-

converted in a MZM in nonlinear regime. This approach has been proposed and 

demonstrated in a proof-of-concept experiment for millimetre-wave UWB generation in the 

60 GHz band (Beltrán et al., 2009b). Electrical Gaussian monocycles are converted to optical 

domain by external modulation in a MZM to generate optical data monocycles. In the 

experiment, electrical OOK-modulated monocycles are generated as shown in Fig. 5. Fig. 

11 (a) shows the so-obtained optical data monocycles. A low-frequency LO of 14.25 GHz 

multiplied by 2 is applied to a second MZM biased at minimum transmission point to 

generate an optical double-sideband signal with a suppressed carrier (optical carrier 

suppression modulation), resulting in UWB monocycles at 57 GHz after photodetection and 

filtering at the RAU. The millimetre-wave signal is down-converted by electrical homodyne 

detection employing the LO signal multiplied by 4 and further low-pass filtered to verify 

appropriate operation, with no air transmission. 

UWB monocycles are generated at 57 GHz, exhibiting a 10-dB bandwidth of 3.8 GHz at 
1.244 Gbit/s, as shown in Fig. 11 (b). In this technique it is required to filter the residual RF 
carrier frequency for wireless transmission in practice. Further transmission over 100 m of 
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standard SMF is demonstrated with no performance degradation. Fig. 11 (c) shows the 
demodulated signal after fibre transmission. This UWB RoF system has been proposed for 
multi-Gbit/s high-definition video/audio distribution within in-vehicle networks, e.g. in 
aircrafts, where also fibre interconnects RAUs along the vehicle. The impulse-radio UWB 
approach offers also ranging and localization functionalities of special interest for 
localization of users potentially interfering and for radio tagging and passenger 
identification applications. 
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Fig. 10. Setup of the photonic 60 GHz impulse UWB-over-fibre based on up-conversion of 
data optical monocycles in a Mach-Zehnder modulator in nonlinear regime. CW: 
Continuous-wave laser. LO: Local oscillator. PD: Photodetector. LNA: Low-noise amplifier. 
BPF: Band-pass filter. HPA: High-power amplifier. DCA: Digital communications analyzer. 
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Fig. 11. Measurements in the setup in Fig. 10; (a) optical data monocycles; (b) RF spectrum of 
UWB monocycles at 57 GHz; (c) eye diagram of down-converted data monocycles. 

In the techniques in Fig. 7 and Fig. 10, biasing the MZM employed for up-conversion at 
minimum transmission point requires half of the LO frequency and reduces the RF power 
fading effect due to fibre chromatic dispersion (Ma et al., 2007), however higher power is 
required in the system to not degrade performance with respect to bias at quadrature point. 
In addition, in both techniques baseband signal is also available after photodetection, which 
could be provided via a wired connection and a user could employ a simple, low-cost 
receiver to detect the signal by filtering out the millimetre-wave signal. Also, the baseband 
signal could meet the UWB mask in the 3.1-10.6 GHz band and be radiated employing an 
antenna with a suitable frequency response (Pan & Yao, 2009a). 

2.1.3 Pulsed laser source characterization 
As described in the previous section, optical generation of impulse-radio signals can be 
achieved employing pulsed laser sources. The overall RoF performance depends directly on 
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the characteristics of the specific pulsed laser employed.  In particular, polarization stability 
i.e. the variation of polarization over time is of special importance when external 
modulation is employed. 
The polarization stability of a pulsed laser source can cause spectrum distortion. The 
experimental setup for the characterization of the polarization stability of a femtosecond 
pulsed laser is depicted in Fig. 12. A computer controls the process of capture and storage of 
data.  
 

Pulsed

Laser

PC

Polarizer
Polarization

Analyzer
OSA

 

Fig. 12. Experimental setup to characterize the polarization stability of pulsed lasers. PC: 
Polarization controller. OSA: Optical spectrum analyzer. 

The polarization stability and the distortion of the laser spectrum are evaluated for linear 

horizontal polarization (LH) with an orientation of 0º (launched polarization) adjusted by 

the polarization controller in Fig. 12. In practice, the orientation adjusted is ~3.6º (LH+3.6º). 

The optical spectrum analyzer captures the spectrum with 0.05 nm resolution bandwidth 

and -80 dBm sensitivity. The evaluation is performed at different wavelengths at which the 

spectrum gets distorted for different launched polarizations. The measurement time is 24 h. 

Fig. 13 (a) shows the orientation ψ  (LH+ψ ) calculated from the normalized Stokes vector 

(S1, S2, S3) given by the polarization analyzer as a function of time. Abrupt changes in the 
behaviour are due to abrupt temperature changes (disconnection/connection of conditioned 
air) in the laboratory measurement environment. Fig. 13 (b) is a plot of Poincare sphere 
showing the evolution over time of the normalized Stokes vector. From the Stokes vector 
other parameters characterizing polarization such as the degree of polarization (DOP),  
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Fig. 13. Characterization of the polarization stability of a femtosecond pulsed laser; (a) 
Orientation; (b) Poincare sphere; (c) spectra over 1 h. 
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degree of linear polarization (DOLP), degree of circular polarization (DOCP) and ellipticity 
can also be calculated. Fig. 13 (c) shows the evolution of spectrum over time for a 
measurement time of 1 h over a zone in which the temperature is stable. The polarization 
stability, expressed as the standard deviation of the normalized Stokes parameters, is lower 
than 0.001 at 1 h independently on the wavelength at which is evaluated. 

2.2 Transmission performance 
In RoF systems, analog radio signals are modulated on the intensity of the optical signals 

(E/O conversion) to be transmitted over an optical fibre link employing either directly 

modulated lasers or external modulators, as shown in Fig. 1. Directly modulated 

semiconductor lasers such as DFB lasers and VCSELs are preferred due to lower cost whilst 

for high frequencies the required performance can be satisfied only by externally modulated 

transmitters. 

It has been shown that a VCSEL has higher RF to optical power conversion efficiency than 

an external MZM and a DFB laser diode for the same output optical power (Gamage et al., 

2008a; Gamage et al., 2008b).  In addition, in case of the bandwidth is not a limiting factor 

direct modulation of a DFB laser leads to less distortion on UWB signals than external 

modulation with MZM because of its less nonlinearity, for the same output power 

(Jazayerifar et al., 2008). In addition, impulse-radio UWB signals are more sensitive to 

nonlinear distortion and less sensitive to noise than OFDM UWB signals for the same 

transmitted energy due to the higher peak-to-peak power. In practice, higher modulated 

power can be obtained with MZM but increasing the input optical power. The impact of 

laser chirp on UWB signals is almost negligible, but it affects the amount of dispersion when 

the UWB signal is transmitted over fibre.  

Most of the UWB RoF systems have focused on SMF which is best suited for long-distance 

access applications. RoF in combination with MMF fibres can be deployed within homes 

and office buildings for baseband digital data transmission supporting 3.5 GHz wireless 

signals. The large core diameter of MMF fibres (typically 50 μm or 62.5 μm) offers easier 

installation and maintenance in within-building environments and reduced cost compared 

to SMF (Koonen & Garcia, 2008). Note that MMF is also widely used in within-building fibre 

installations for baseband data transmission systems at far more than 10 Gbit/s. Compared 

to silica MMF, graded-index plastic optical fibres (GI-POF) offer further advantages such as 

smaller bending radius, better tolerance to tensile load and stress, and simpler 

connectorization. 

A RoF system employing VCSEL direct modulation of impulse-radio UWB signals in the 
3.1-10.6 GHz band has been demonstrated over 100 m MMF (Jensen et al., 2009). Error-free 
operation employing FEC is achieved at a wireless distance of 8 m at 2.5 Gbit/s or 4 m at 
4 Gbit/s. Impulse-radio UWB generation employing DFB direct modulation and 
transmission over 100 m GI-POF has also been recently demonstrated (Abraha et al., 2009). 
In this section, an analysis of impulse-radio UWB propagation on standard SMF is 

presented. The analysis compares two modulation schemes: External modulation in a MZM 

at 1550 nm and direct modulation in a VCSEL at 1310 nm. Fig. 14 shows the two UWB radio-

over-fibre implementations considered. The analysis targets to evaluate the impact of the 

modulation index on the reach and has been performed employing the commercial 

simulation tool VPITransmissionMakerTM (version 7.5).  
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Fig. 14. Impulse-radio UWB RoF optical link configuration and VCSEL characteristics. CW: 
Continuous-wave laser. PD: Photodetector. Amp: Amplifier. Att: Variable attenuator. LPF: 
Low-pass filter. BERT: BER test. 

Table 1 summarises the parameters of the components shown in Fig. 14 employed in the 
analysis. Typical parameters of commercially available components are considered.  
 

CW param                    value MZM param                 value Photodiode PIN param value 

Laser power              10 dBm Chirp                                    0 Responsivity              0.65 A/W 

RIN                      -130 dB/Hz Vπ DC                               5 V Dark current                     5 nA 

Amplifier param         value Vπ RF                                 5V Thermal noise          10pA/√Hz 

Gain                               40 dB Insertion losses               6 dB VCSEL param                value 

Noise factor                  3.8 dB Extinction ratio             35 dB Core radius                   2·10-6 m 

LO param                      value LPF param                     value Active region 
 Thickness                  0.3·10-6 m 

LPF type      Bessel 4th order Confinement factor         0.03 Power                           7 dBm
Frequency               3.75 GHz Bandwidth                   3 GHz  

Table 1. UWB radio-over-fibre parameters employed in the setup in Fig. 14. 

The impulse-radio UWB signal consists of fifth-derivative Gaussian pulses at 5.4 GHz 10-dB 

bandwidth, which are compliant with current UWB regulation in the 3.1-10.6 GHz band. 

This signal is OOK-modulated with 214-1 pseudo-random bit sequence (PRBS) data at 

1.25 Gbit/s resulting the data UWB pulses to be modulated. Both MZM and VCSEL are 

biased in linear regime, MZM at its quadrature bias point and VCSEL at the centre of the 

linear zone of its L-I curve, i.e. at ( )+ / 2th satI I  where thI  is the threshold current of 1 mA 

and satI  is the saturation current of 3.5 mA which corresponds to the 1-dB compression 

point. Fig. 14 shows the V-I and L-I curves of the commercial VCSEL at 27 ºC in the analysis. 

At each modulation index, the attenuator sets a maximum PSD of -41.3 dBm/MHz at the 

radiation point (1) in Fig. 14. This power level would meet the UWB mask in current 

regulation employing a transmitter antenna with 0 dBi gain. Down-conversion to baseband 

is performed by electrical mixing (6.5 dB conversion losses) to obtain a suitable eye diagram 

for BER performance evaluation. Optical noise is predominant at receiver so that a Chi2 

method is employed for BER estimation. BER performance at different fibre lengths is 

compared with the back-to-back (B2B) configuration (with no fibre transmission) to evaluate 

the fibre degradation. Fig. 15 shows the BER results. External modulation gives a maximum 

reach of 50 km at error-free operation (BER< 10-9) at 0.25 modulation index. Direct 
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modulation gives a maximum reach of 25 km at 0.16 modulation index. Higher modulation 

indexes than these shown in Fig. 15 result in distortion which makes the UWB spectrum 

non-compliant with regulation. Longer reach could be achieved employing a pre-amplifier 

at receiver or forward error correction codes (FEC) (BER< 2.2·10-3) at expense of increased 

complexity. Fig. 16 and Fig. 17 show examples of UWB signal and down-converted signal 

for external and direct modulation, respectively. 
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Fig. 15. Performance of impulse-radio UWB over SMF as a function of the modulation index; 
(a) External modulation in a MZM; (b) Direct modulation in a VCSEL.  
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Fig. 17. Impulse-radio UWB signal at point (1) in Fig. 14 (a) RF spectrum and (b) time-
domain, (c) down-converted eye diagram at 0.16 direct modulation index for B2B 
configuration. (d-f) the same for 20 km SMF. 

3. Conclusion 

In this chapter, the principles and state-of-the-art of RoF technology has been presented. The 
use of optical sources for the generation of impulse-radio UWB RoF, as one of the most 
challenging applications to date, has been described and the expected performance after 
optical transmission has been presented. A technique based on frequency up-conversion of 
optical UWB signals in a MZM in nonlinear regime has been presented. This technique 
permits the optical generation of UWB monocycles at 57 GHz bearing data at 1.244 Gbit/s. 
The generation and further transmission of impulse-radio UWB over 100 m of SMF has been 
demonstrated with good quality pulses. Another technique performing up-conversion in a 
MZM of optical pulses with subsequent electrical UWB shaping has been demonstrated at 
16.85 GHz bearing data at 1.244 Gbit/s with good quality. The polarization stability of a 
pulsed laser has also been presented as key factor limiting system performance. Finally, the 
RoF distribution of impulse-radio UWB has been analyzed over long-distance SMF links 
suitable for access networks. The longest transmission reach is achieved employing external 
modulation in a MZM.  

4. References 

Abraha, S.T.; Yang, H.; Tangdiongga, E. & Koonen, A.M.J. (2009). Novel generation and 
transmission of FCC-compliant impulse radio ultra wideband signals over 100-m 
GI-POF. Proceedings of International Topical Meeting on Microwave Photonics, pp. 1-4, 
ISBN 978-84-8363-424-0, Valencia, Spain, October 2009  

www.intechopen.com



 Frontiers in Guided Wave Optics and Optoelectronics 

 

134 

Abtahi, M.; Mirshafiei, M.; LaRochelle, S. & Rusch, L.A. (2008). All-optical 500-Mb/s UWB 
transceiver: an experimental demonstration. IEEE Journal Lightwave Technology, Vol. 
26, No. 15, August 2008, pp. 2795–2802, ISSN 0733-8724 

Beltrán, M.; Morant, M.; Pérez, J.; Llorente, R. & Martí, J. (2008). Photonic generation and 
frequency up-conversion of impulse-radio UWB signals, Proceedings of IEEE Lasers 
and Electro-Optics Society, pp. 498-499, ISBN 978-1-4244-1931-9, Newport Beach, 
California, United States, November 2008 

Beltrán, M.; Llorente, R.; Sambaraju, R. & Martí, J. (2009a). 24 GHz UWB-over- fibre system 
for simultaneous vehicular radar and communications, Proceedings of ICT-
MobileSummit, pp. 1-6, ISBN 978-1-905824-12-0, Santander, Spain, June 2009 

Beltrán, M.; Llorente, R.; Sambaraju, R. & Martí, J. (2009b). 60 GHz UWB-over-fiber system 
for in-flight communications, Proceedings of IEEE MTT-S International Microwave 
Symposium, pp. 5-8, ISBN 978-1-4244-2803-8, Boston, United States, June 2009 

Beltrán, M.; Sambaraju, R.; La Porta, A.; Llorente, R. & Perez, J. (2009c). Photonic generation 
and envelope detection of millimeter-wave ultra-wideband impulse-radio 
employing Mach-Zehnder modulators, Proceedings of IEEE International Conference 
on Ultra-Wideband, pp. 428-432, ISBN 978-1-4244-2931-8, Vancouver, Canada, 
September 2009 

Capmany, J. & Novak, D. (2007). Microwave photonics combines two worlds. Nature 
Photonics, Vol. 1, June 2007, pp. 319-330 

Cassini, A. & Faccin, P. (2003). Proceedings of International Topical Meeting on Microwave 
Photonics, pp. 123–128, ISBN 978-1-4244-2168-8, Budapest, Hungary, September 
2003  

Chang, Q.; Tian, Y.; Ye, T.; Gao, J. & Su, Y. (2008). A 24-GHz ultrawideband over fiber 
system using photonic generation and frequency up-conversion. IEEE Photonics 
Technology Letters, Vol. 20, No. 19, October 2008, pp. 1651-1653, ISSN 1041-1135 

Chen, X & Kiaei, S. (2002). Monocycle shapes for ultra-wideband systems, Proceedings of 
International Symposium on Circuits and Systems, pp. 597-600, ISBN 0-7803-7448-7, 
Scottsdale, Arizona, United States, May 2002 

Chia, M. Y. W.; Luo, B.; Yee, M. L. & Hao, E. J. Z. (2003). Radio over multimode fibre 
transmission for wireless LAN using VCSELs. IEEE Electronics Letters, Vol. 39, No. 
15, July 2003, pp. 1143–1144, ISSN 0013-5194 

Dagli, N. (1999). Wide-Bandwidth Lasers and Modulators for RF Photonics. IEEE 
Transactions on Microwave Theory and Techniques, Vol. 47, No. 7, July 1999, pp. 1151-
1171, ISSN 0018-9480 

Daniels, R. C. & Heath, R. W. (2007). 60 GHz wireless communications: emerging 
requirements and design recommendations. IEEE Vehicular Technology Magazine, 
Vol. 2, No. 3, September 2007, pp. 41-50 

Darcie, T.E. & Bodeep, G.E. (1990). Lightwave subcarrier CATV transmission systems. IEEE 
Transactions on Microwave Theory and Techniques, Vol. 38, No. 5, May 1990 pp. 524-
533, ISSN 0018-9480 

Dong, J.; Zhang, X.; Huang, D. & Rosas-Fernández, J.B. (2009). All-optical ultra-wideband 
doublet generation and non-degraded transmission over optical fiber, Proceedings of 
Optical fiber communication conference, pp. 1-3, ISBN 978-1-4244-2606-5, San Diego, 
California, United States, March 2009 

www.intechopen.com



Radio-over-Fibre Techniques and Performance  

 

135 

Duan, C.; Pekhteryev, G.; Fang, J.; Nakache, Y-P.; Zhang, J.; Tajima, K.; Nishioka, Y. & Hirai, 
H. (2006). Transmitting multiple HD video streams over UWB links, Proceedings of 
Consumer Communications and Networking Conference, pp. 691-695, ISBN 1-4244-0085-
6, Las Vegas, United States, January 2006 

ECC/REC/(09)01, Use of the 59 – 64 GHz frequency band for point-to-point fixed wireless 
systems, January 2009 

ECMA-368 International Standard, High rate ultra wideband PHY and MAC Standard, 
2007. 

ETSI EN 302 065, Ultra WideBand (UWB) technologies for communication purposes; 
Harmonized EN covering the essential requirements of article 3.2 of the R&TTE 
Directive, February 2008 

FCC 04-285, Revision of part 15 of the commission’s rules regarding ultra-wideband 
transmission systems, December 2004 

Fu, S.; Zhong, W.; Wen, Y.J. & Shum, P. (2008). Photonic monocycle pulse frequency up-
conversion for ultrawideband-over-fiber applications. IEEE Photonics Technology 
Letters, Vol. 20, No. 12, June 2008, pp. 1006-1008, ISSN 1041-1135 

Gamage, P.A.; Nirmalathas, A.; Lim, C.; Wong, E.; Novak, D. & Waterhouse, R. (2008a). 
Multi-services distribution using power-efficient low-cost VCSELs, Proceedings of 
International Topical Meeting on Microwave Photonics, pp. 169–172, ISBN 978-1-4244-
2168-8, Gold Coast, Australia, October 2008  

Gamage, P.A.; Nirmalathas, A.; Lim, C.; Wong, E.; Novak, D. & Waterhouse, R. (2008b). 
Performance comparison of directly modulated VCSEL and DFB lasers in wired-
wireless networks. IEEE Photonics Technology Letters, Vol. 20, No. 24, December 
2008, pp. 2102–2104, ISSN 1041-1135 

Hanawa, M.; Nakamura, K. & Nonaka, K. (2007). High-quality electrical Gaussian-
monocycle pulse generation by electrical-optical hybrid signal processing, 
Proceedings of Optoelectronics and Communications Conference, pp. 138-139, Kanagawa, 
Japan, July 2007 

Hanawa, M.; Mori, K.; Nakamura, K.; Matsui, A.; Kanda, Y. & Nonaka, K. (2009). Dispersion 
tolerant UWB-IR-over-fiber transmission under FCC indoor spectrum mask, 
Proceedings of Optical Fiber Communication conference, pp. 1-3, San Diego, California, 
United States, March 2009 

Hartmann, P.; Webster, M.; Wonfor, A.; Ingham, J.D.; Penty, R.V.; White, I.H.; Wake, D. & 
Seeds, A.J. (2003). Low-cost multimode fibre-based wireless LAN distribution 
system using uncooled directly modulated DFB laser diodes, Proceedings of 
European Conference on Optical Communication, pp. 804–805, Rimini, Italy, September 
2003 

Hirata, A.; Harada, M. & Nagatsuma, T. (2003). 120-GHz wireless link using photonic 
techniques for generation, modulation, and emission of millimeter-wave signals. 
IEEE Journal of Lightwave Technology, Vol. 21, No. 10, October 2003, pp. 2145-2153, 
ISSN 0733-8724 

Ingham, J.; Webster, M.; Wonfor, A.; Penty, R.; White, I. & White, K. (2003). Wide-frequency-
range operation of a high linearity uncooled DFB laser for next-generation radio-
over-fibre, Proceedings of Optical Fiber Communication conference, pp. 754–756, ISBN 
1-55752-746-6, Atlanta, Georgia, United States, March 2003 

www.intechopen.com



 Frontiers in Guided Wave Optics and Optoelectronics 

 

136 

Jager, D. & Stohr, A. (2001). Microwave Photonics, Proceedings of European Microwave 
conference, pp. 1-4, London, United Kingdom, September 2001 

Jazayerifar, M.; Cabon, B. & Salehi, J.A. (2008). Transmission of multi-band OFDM and 
impulse radio ultra-wideband signals over single mode fiber. IEEE Journal 
Lightwave Technology, Vol. 26, No. 15, August 2008, pp. 2594–2603, ISSN 0733-8724 

Jensen, J.B.; Rodes, R.; Caballero, A.; Yu, X.; Gibbon, T.B. & Monroy, I.T. (2009). 4 Gbps 
impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi 
mode fiber with 4 meters wireless transmission. Optics Express, Vol. 17, No. 19, 
September 2009, pp. 16898–16903, ISSN 113626 

Kaszubowska-Anandarajah, A.; Perry, P.; Barry, L.P. & Shams, H. (2008). An IR-UWB 
photonic distribution system. IEEE Photonics Technology Letters, Vol. 20, No. 22, 
November 2008, pp. 1884–1886, ISSN 1041-1135 

Koonen, A.M.J. & Garcia, L.M. (2008). Radio-over-MMF techniques Part II: Microwave to 
millimeter-wave systems. IEEE Journal Lightwave Technology, Vol. 26, No. 15, 
August 2008, pp. 2396–2408, ISSN 0733-8724 

Kuri, T.; Omiya, Y.; Kawanishi, T.; Hara, S. & Kitayama, K. (2006). Optical transmitter and 
receiver of 24-GHz ultra-wideband signal by direct photonic conversion 
techniques, Proceedings of International Topical Meeting on Microwave Photonics, pp. 1-
4, ISBN 1-4244-0204-2, Grenoble, France, October 2006 

Le Guennec, Y. & Gary, R. (2007). Optical frequency conversion for millimeter-wave ultra 
wideband-over-fiber systems. IEEE Photonics Technology Letters, Vol. 19, No. 13, July 
2007, pp. 996-998, ISSN 1041-1135 

Li, J.; Liang, Y. & Kin-Yip Wong, K. (2009). Millimeter-wave UWB signal generation via 
frequency up-conversion using fiber optical parametric amplifier. IEEE Photonics 
Technology Letters, Vol. 21, No. 17, September 2009, pp. 1172-1174, ISSN 1041-1135 

Liu, C.; Seeds, A.; Chadha, J.; Stavrinou, P.; Parry, G.; Whitehead, M.; Krysa, A. & Roberts, J. 
(2003). Bi-directional transmission of broadband 5.2 GHz wireless signals over fibre 
using a multiple-quantum-well asymmetric Fabry–Pérot modulator/photodetector, 
Proceedings of Optical Fiber Communication conference, pp. 738–740, ISBN 1-55752-746-
6, Atlanta, Georgia, United States, March 2003 

Liu, C.; Polo, V.; Van Dijk, F.; Pfrommer, H.; Piqueras, M.A.; Herrera, J.; Martinez, A.; 
Karlsson, S.; Kjebon, O.; Schatz, R.; Enard, A.; Yichuan Yu; Tsegaye, T.; Chin-Hsiu 
Chuang; Seeds, A.J. & Marti, J. (2007). Full-Duplex DOCSIS/WirelessDOCSIS 
Fiber–Radio Network Employing Packaged AFPMs as Optical/Electrical 
Transducers. IEEE Journal Lightwave Technology, Vol. 25, No. 3, March 2007, pp. 673–
684, ISSN 0733-8724 

Llorente, R.; Alves, T.; Morant, M.; Beltran, M.; Perez, J.; Cartaxo, A. & Marti, J. (2007). 
Optical distribution of OFDM and impulse-radio UWB in FTTH networks. 
Proceedings of Optical Fiber Communication conference, pp. 1–3, ISBN 978-1-55752-856-
8, San Diego, California, United States, February 2008 

Llorente, R.; Alves, T.; Morant, M.; Beltran, M.; Perez, J.; Cartaxo, A. & Marti, J. (2008). Ultra-
wideband radio signals distribution in FTTH networks. IEEE Photonics Technology 
Letters, Vol. 20, No. 11, June 2008, pp. 945–947, ISSN 1041-1135 

Ma, J.; Yu, J.; Yu, C.; Xin, X.; Zeng, J. & Chen, L. (2007). Fiber dispersion influence on 
transmission of the optical millimetre-waves generated using LN-MZM intensity 

www.intechopen.com



Radio-over-Fibre Techniques and Performance  

 

137 

modulation. IEEE Journal of Lightwave Technology, Vol. 25, No. 11, November 2007, 
pp. 3244-3256, ISSN 0733-8724 

Meryll Lynch (2007). Telecom services-wireless/cellular. Available at: 
http://www.scribd.com/doc/7656725/ML-Data-Growth 

Niiho, T.; Nakaso, M.; Masuda, K.; Sasai, H.; Utsumi, K. & Fuse, M. (2004). Multi-channel 
wireless LAN distributed antenna system based on radio-over-fibre techniques, 
Proceedings of IEEE Lasers & Electro-Optics Society, pp. 57-58, ISBN 0-7803-8557-8, Rio 
Grande, Puerto Rico, November 2004  

Nkansah, A.; Das, A.; Lethien, C.; Vilcot, J.-P.; Gomes, N.J.; Garcia, I.J.; Batchelor, J.C. & 
Wake, D. (2006). Simultaneous dual band transmission over multimode fibre-fed 
indoor wireless network. IEEE Microwave and Wireless Components Letters, Vol. 16, 
No. 11, November 2006, pp. 627-629, ISSN 1531-1309 

Ogawa, H.; Polifko, D. & Banba, S. (1992). Millimetre-wave fibre optic systems for personal 
radio communication. IEEE Transactions on Microwave Theory and Techniques, Vol. 
40, No. 12, December 1992, pp. 2285–2293, ISSN 0018-9480 

Pan, S. & Yao, J. (2009a). Photonic generation of chirp-free UWB signals for UWB over fiber 
applications, Proceedings of International Topical Meeting on Microwave Photonics, pp. 
1-4, ISBN 978-84-8363-424-0, Valencia, Spain, October 2009  

Pan, S. & Yao, J. (2009b). A photonic UWB generator reconfigurable for multiple modulation 
formats. IEEE Photonics Technology Letters, Vol. 21, No. 19, October 2009, pp.1381-
1383, ISSN 1041-1135 

Persson, K.-A.; Carlsson, C.; Alping, A.; Haglund, A.; Gustavsson, J.S.; Modh, P. & Larsson, 
A. (2006). WCDMA radio-over-fibre transmission experiment using singlemode 
VCSEL and multimode fibre. IEEE Electronics Letters, Vol. 42, No. 6, March 2006, pp. 
372–374, ISSN 0013-5194 

Pfrommer, H.; Piqueras, M. A.; Polo, V.; Herrera, J.; Martinez, A. & Marti, J. (2006). Radio-
over-Fibre Architecture for Simultaneous Feeding of 5.5 and 41 GHz WiFi or 4G 
Access Networks, Proceedings of IEEE MTT-S International Microwave Symposium, pp. 
301–303, Chicago, United States, June 2006 

PriTel, Inc. 1550-nm Actively Mode-locked Fiber Lasers [Online]. Available: 
http://www.pritel.com 

Qian, X.; Hartmann, P.; Ingham, J.D.; Penty, R.V. & White, I.H. (2005). Directly-modulated 
photonic devices for microwave applications, Proceedings of IEEE MTT-S 
International Microwave Symposium, pp. 4, ISBN 0-7803-8845-3, Long Beach, 
California, United States, June 2005 

Rivas, I. & Lopes, L.B. (1998). A microcellular DCA scheme using variable channel exclusion 
zones, Proceedings of IEEE Vehicular Technology Conference, pp. 1395–1399, ISBN 0-
7803-4320-4, Ottawa, Canada, May 1998 

SARA Group, Strategic Automotive Radar frequency Allocation, 24 GHz UWB SRR 
frequency allocation [Online]. Available: http://www.sara-
group.org/official_information/specific_decisions_for_different_countries/ 

Schmuck, H. (1995). Comparison of optically millimeter-wave system concepts with regard 
to chromatic dispersion. IEEE Electronic Letters, Vol. 31, No. 21, October 1995, pp. 
1848–1849 

Seeds, A.J. & Williams, K.J. (2006). Microwave photonics. IEEE Journal of Lightwave 
Technology, Vol. 24, No. 12, December 2006, ISSN 4628-4641 

www.intechopen.com



 Frontiers in Guided Wave Optics and Optoelectronics 

 

138 

Shams, H.; Kaszubowska-Anandarajah, A.; Perry, P.; Barry, L.P. (2009a). Optical generation, 
fiber distribution and air transmission for ultra wide band over fiber system, 
Proceedings of Optical fiber communication conference, pp. 1-3, ISBN 978-1-4244-2606-5, 
San Diego, California, United States, March 2009 

Shams, H.; Kaszubowska-Anandarajah, A.; Perry, P.; Barry, L.P. & Anandarajah, P. M. 
(2009b). Fiber distribution of IR-UWB signals based on an externally injected gain 
switched laser, Proceedings of European Conference on Lasers and Electro-Optics 2009 
and the European Quantum Electronics Conference, pp. 1-1, ISBN 978-1-4244-4079-5, 
Munich, Germany, June 2009 

Wake, D.; Johansson, D. & Moodie, D.G. (1997). Passive picocell—A new concept in wireless 
network infrastructure. IEEE Electronics Letters, Vol. 33, No. 5, February 1997, pp. 
404–406, ISSN 0013-5194 

Wilson, B.; Ghassemlooy, Z. & Darwazeh, I. (Eds.) (1995), Analogue Optical Fibre 
Communications, Institution of Engineering and Technology (15 Aug 1995), ISBN 
978-0852968321, London, United Kingdom 

WiMedia Alliance, Worldwide regulatory status [Online]. Available: 
http://www.wimedia.org 

Wu, X.; Christen, L.; Yang, J.; Nuccio, S.R.; Willner, A. & Paraschis, L. (2007). 40-GHz CSRZ 
optical pulse generation using a 10-GHz Mach-Zehnder modulator and a 25-ps 
delay line interferometer, Proceedings of IEEE Lasers and Electro-Optics Society, pp. 
882-883, ISBN 978-1-4244-0925-9, Florida, United States, October 2007 

Yu, X.; Gibbon, T. B. & Monroy, I. T. (2009). Experimental demonstration of all-optical 
781.25-Mb/s binary phase-coded UWB signal generation and transmission. IEEE 
Photonics Technology Letters, Vol. 21, No. 17, September 2009, pp. 1235-1237, ISSN 
1041-1135 

www.intechopen.com



Frontiers in Guided Wave Optics and Optoelectronics

Edited by Bishnu Pal

ISBN 978-953-7619-82-4

Hard cover, 674 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

As the editor, I feel extremely happy to present to the readers such a rich collection of chapters authored/co-

authored by a large number of experts from around the world covering the broad field of guided wave optics

and optoelectronics. Most of the chapters are state-of-the-art on respective topics or areas that are emerging.

Several authors narrated technological challenges in a lucid manner, which was possible because of individual

expertise of the authors in their own subject specialties. I have no doubt that this book will be useful to

graduate students, teachers, researchers, and practicing engineers and technologists and that they would love

to have it on their book shelves for ready reference at any time.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Roberto Llorente and Marta Beltrán (2010). Radio-over-Fibre Techniques and Performance, Frontiers in

Guided Wave Optics and Optoelectronics, Bishnu Pal (Ed.), ISBN: 978-953-7619-82-4, InTech, Available from:

http://www.intechopen.com/books/frontiers-in-guided-wave-optics-and-optoelectronics/radio-over-fibre-

techniques-and-performance



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


