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1. Introduction 

It is well known that the velocity of a light pulse in a medium, referred to as the group 
velocity, is smaller than the phase velocity of light, c/n, where c is the speed of light in 
vacuum, and n is the refractive index of the medium. The difference between phase and 
group velocity of light is a result of two circumstances: a pulse is generically composed of a 
range of frequencies, and the refractive index, n, of a material is not constant but depends on 
the frequency, ω, of the radiation, n = n(ω). A group index ng(ω) = n + ω(dn/dω) is used to 

quantify the delay (or advancement), Δtg, of an optical pulse, Δtg = ngL/c, which propagates 
in a medium of length L, where c/ng is called the group velocity (Brillouin, 1960).  
For about a century studies of this phenomenon, now topically referred to as slow light (SL), 
were mostly of a scholastic nature. In general the effect is very small for propagation of light 
pulses through transparent media. However when the light resonantly interacts with 
transitions in atoms or molecules, as for gain and absorption, the effect is greatly enhanced. 
Fig. 1 shows the gain (inverted absorption) spectral profile around a resonance together 
with its refractive index dispersion profile, the gradient of which results in ng(ω).  
 

 

Fig. 1. a), Normalized dispersion of the gain coefficient, g(ω), (dashed line), the refractive 

index, n(ω), and  b),the group index, ng(ω), for a gain resonance. 

As seen in the figure ng(ω) peaks at line centre and it is here that the group delay is a 
maximum. However in reality for a meaningful delay the gain required must be high and 
this leads to competing nonlinear effects, which overshadow the slowing down (Basov et al., 
1966). On the other hand in the vicinity of an absorbing resonance the corresponding 
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absorption is much too high to render the group effect useful. An exciting breakthrough 
happened in the early nineties when it was shown that group velocities of few tens of 
meters per second were possible with nonlinear resonance interactions (Hau et al., 1999). 
Two important features of nonlinear resonances make this possible: substantially reduced 
absorption, or even amplification, of radiation at a resonance, and sharpness of such 
resonances; the sharper a resonance, the higher dn/dω and so the stronger the enhancement 
of group index, and hence the greater the pulse is delayed. 
Widely ranging applications for slow light have been proposed, of which those for 
telecommunication systems and devices (optical delay lines, optical buffers, optical 
equalizers and signal processors) are currently of most interest (Gauthier, 2005). The 
essential demand of such devices is compatibility with existing telecommunication systems, 

that is they must be of wide enough bandwidth (≥10 GHz) and able to be integrated 
seamlessly into such systems.  
Of the various nonlinear resonance mechanisms and media, which allow sufficiently long 
induced delays, stimulated Brillouin and Raman scattering (SBS and SRS) in optical fiber are 
deemed to be among the best candidates. Currently SBS is the most actively investigated 
and many experimental and theoretical papers on pulse delaying via SBS in optical fiber 
have been published in the last few years, see the review paper (Thevenaz, 2008) and 
references therein. In this process the pulse to be delayed is a frequency down-shifted 
(Stokes) pulse. This is transmitted through an optical fiber through which continuous wave 
(CW) pump radiation is sent in the opposite direction to prime the delay process. It is 
supposed that the Stokes pulse is amplified by parametric coupling with the pump wave 
and a material (acoustic) wave in the medium (Kroll, 1965), and the amplification is 
characterised by a resonant-type gain profile. The dispersion of refractive index associated 
with this profile (which is similar to that in Fig.1) can then be used to increase the group 
index for optical pulses at the Stokes frequency (Zeldovich, 1972).  
Along with obvious device compatibility, there are several other advantages of the SL via 

SBS approach for optical communications systems: slow-light resonance can be created at 

any wavelength by changing the pump wavelength; use of optical fibre allows for long 

interaction lengths and thus low powers for the pump radiation, the process runs at room 

temperature, it uses off the shelf telecom equipment, and SBS works in the entire 

transparency range of fibers and in all types of fiber. Currently a main obstacle to 

applications of this approach is the narrow SBS gain spectral bandwidth, (Thevenaz, 2008), 

which is typically ≈ 120-200 MHz in silica fiber in the spectral range of telecom optical 

radiation (~1.3-1.6 μm) (Agrawal, 2006). 

This chapter reviews our ongoing work on the physical mechanisms that give rise to pulse 
delay in SBS. In section 2 the theoretical background of the SBS phenomenon is given and 
the main working equations describing this nonlinear interaction are presented. In section 3 
ways by which the SBS spectral bandwidth may be increased are addressed. Waveguide 
induced spectral broadening of SBS in optical fibre is considered as a means of increasing 
the bandwidth to the multi-GHz range. An alternative way widely discussed in the 
literature, (Thevenaz, 2008), is based on spectral broadening of the pump radiation. 
However it is shown through analytic analysis of the SBS equations converted to the 
frequency domain that pump radiation broadening by any reasonable amount has only a 
negligible effect on increasing the SBS bandwidth. Importantly in this section we show that, 
irrespective of the nature of the broadening considered, the SBS gain bandwidth remains 
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centred at the Brillion frequency which is far removed from the centre frequency of the 
Stokes pulse. Consequently the associated group index, which is enhanced at and around 
the SBS gain centre, cannot lead to group index induced delay of a Stokes pulse as claimed 
in the literature (Thevenaz, 2008). In section 4 the actual physical mechanisms by which a 
Stokes pulse is delayed through SBS are examined. Analytical analysis of the equations in 
the time domain shows that the SBS amplification process does not amplify an external the 
Stokes pulse and so again cannot induce group delay of this pulse. Rather the delay is 
shown to be predominantly a consequence of SBS gain build-up determined by inertia of the 
acoustic wave excitation. Finally in section 5 conclusions are drawn from this work in regard 
to current understanding of SL in SBS. 

2. Theory of stimulated Brillioun scattering 

In SBS, the resonance in a medium’s response occurs at the Brillouin frequency, ΩB, which is 

the central frequency of the variation of density in a medium, δρ(z,t) = 1/2{ρ(z,t)exp[-

i(ΩBt+qz)] + c.c.}. This density variation is resonantly induced by an electrostrictive force 

resulting from interference of two plane counter-propagating waves, the forward-going (+z 

direction) Stokes and backward-going (-z direction) pump optical fields, ES(z,t) = 

1/2{ES(z,t)exp[-i(ωSt-kSz)] + c.c.} and Ep(z,t) = 1/2{Ep(z,t)exp[-i(ωpt+kpz)] + c.c.}, respectively, 

where ρ(z,t), ES(z,t) and Ep(z,t) are the amplitudes of the acoustic wave and of Stokes and 

pump fields, with Ω = ωp - ωS and q = kp + kS, ωS and kS, and ωp and kp being their radian 

frequencies and wavevectors and c.c. is the abbreviation for complex conjugate. In an 

isotropic medium δρ(z,t) is described by the equation, (Zeldovich et al., 1985), 
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where νs is the speed of a free acoustic wave, A is its damping parameter, ∇2 ≡ ∂2/∂z2 in the 

chosen plane wave model, ε and ρ0 are the dielectric function and equilibrium density of the 

medium, and E(z,t) = Ep(z,t) + ES(z,t). Since the amplitude ρ(z,t) is supposed to be slowly 

varying in space, then ∇2δρ(z,t) ≅ -q2δρ(z,t) and Eq.(1) is usually reduced to 
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This is then the equation for the induced acoustic wave. It is a typical equation for an 

externally driven damped resonant oscillator, in which the right-hand side is the driving 

force, ΩB = qνs = 2νsωp/(c/n+νs) ≅ 2nνsωp/c is the resonant frequency of the oscillator, known 

as the Brillouin frequency, ΓB is the FWHM spectral width of the resonant profile with 2/ΓB 

being the decay time of the acoustic wave. 

The pump field reflected by the induced acoustic wave is a new Stokes field, which in turn 
interacts with the pump field to further electrostrictively enhance the acoustic wave and so 
the Stokes field and so forth. Increase of the Stokes field in SBS is therefore a direct 
consequence of increase of reflectivity of the acoustic wave for the pump field. As such, so 
called “SBS gain” characteristics are determined by the reflectivity, spectral characteristics 
and dynamics of the acoustic wave. In the approximation that the CW pump radiation is not 
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depleted over the interaction length, L, the spatial/temporal evolution of the Stokes signal is 
described by the nonlinear wave equation,  
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Eqs (2) and (3) are the basic equations, which describes the SBS phenomenon in an optically 
lossless medium in the small signal plane wave approximation. Since the density and Stokes 

field amplitudes, ρ(z,t) and ES(z,t), vary slowly in both space and time and the acoustic wave 
in SBS attenuates strongly, their evolution is usually reduced to two well known first order 

equations: from Eq.(2) the relaxation equation for ρ(z,t),  
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which describes the amplitude of the driven damped resonant oscillator, and from Eq.(3) the 
partial differential equation for ES(z,t), 
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Here δΩ = Ω - ΩB is the difference between the acoustic drive frequency, Ω, and the resonant 
Brillouin frequency and asterisk, *, marks complex conjugate. The right-hand side of Eq. (5) 
is a source of the Stokes emission. 

3. Spectral broadening of SBS 

In the literature on group index induced slow light it is argued that rate at which optical 
pulses may be delayed is ultimately determined by the spectral bandwidth of the resonance 
responsible for slow light generation in the material (Boyd & Gauthier, 2002). So, the 
narrower the bandwidth the larger is the delay. On the other hand, to minimize pulse 
distortion the bandwidth must exceed substantially that of the optical pulse to be delayed 
and consequently determines a lower limit for the duration of the optical pulse. This 
argument is correct for systems in which a resonance in the material is in resonance with the 
optical pulse to be delayed, such as those based on electromagnetically induced 
transparency and coherent population oscillation (Boyd & Gauthier, 2002). However as 
shown below this does not apply to SBS since the resonance occurs around the Brillouin 

frequency, ΩB, which is far from the frequency of the Stokes pulse to be delayed. This point 
has been overlooked in the literature on SL via SBS and as a consequence has led to 
misinterpretation of experimental findings of Stokes pulse delay in SBS. This issue is 
considered in some detail in section 4 where it is shown the Stokes delay arises from the 
inertial build up time of SBS and not group index delay as has been claimed throughout the 
literature. Nevertheless it is still of academic interest to consider ways in which the spectral 
bandwidth of SBS may be increased and this is considered below. 

The physical mechanism responsible for ΓB is attenuation of the Brillioun acoustic wave, in 
liquids and solid optical media this is predominantly due to viscosity (Zeldovich et al., 

1985). Such spectral broadening is homogeneous in nature. For bulk silica, ΓB, scales with 
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pump radiation wavelength, λ, as ΓB ≅ 2π40/λ2 MHz (Heiman et al. 1979), where λ is in μm. 
It is evident from this expression that the shorter the radiation wavelength the wider the 

spectrum, so for radiation in the short wavelength transmission window of silica, λ ≅ 0.2 

μm, ΓB is expected to be ~2π GHz compared to ~ 20 MHz at telecom wavelengths, λ ≅ 1.3-1.6 

μm. The SBS gain bandwidth in fibers may also be broadened through varying fiber design, 
doping concentration, strain and/or temperature (Tkach et al., 1986; Shibata et al., 1987; 
Azuma et al., 1988; Shibata et al., 1989; Yoshizawa et al., 1991; Tsun et al., 1992; Yoshizawa & 
Imai, 1993; Shiraki et al., 1995; LeFloch & Cambon, 2003). However the highest achieved 

line-width enhancement factor, compared to ΓB is ~5, (Yoshizawa et al., 1991). A potentially 

attractive solution to increasing ΓB is by waveguide induced spectral broadening (Kovalev & 
Harrison, 2000), which is discussed in some detail below (Sect. 3.1). Spectral broadening of 
the pump radiation has also been proposed (Stenner et al., 2005, Herraez et al., 2006) as a 

means for broadening ΓB and is currently a subject of considerable activity (Thevenaz, 2008). 
However, as shown below (see Sect. 3.2) the effect is in fact negligible.  

3.1 Waveguide induced spectral broadening of SBS 

Due to the waveguiding nature of beam propagation in optical fiber and its effect on the SBS 

interaction, such propagation has been shown to render the Stokes spectrum 

inhomogeneous (Kovalev & Harrison, 2000), the bandwidth of which is massive in fibers of 

high numerical aperture, NA (Kovalev & Harrison, 2002). The nature of the broadening 

arises from the ability of optical fiber to support a fan of beam directions within an angle 2θc 

(Fig. 2), where θc is the acceptance angle of the fiber, defined as 
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where ncl,co are the refractive indices of the fiber cladding and core, respectively.  
 

 

Fig. 2. Sketch showing the nature of waveguide induced broadening of SBS gain spectrum; 
a), schematic of fiber, and, b), homogeneously broadened spectral profiles for different 

angles of scattering, ϕ. 

The frequency shift of the Stokes depends on the angle, φ, between the momentum vectors 

of the pump and scattered radiation through the relation ΩB(φ)=4πnνssin(φ/2)/λ. So the 

range of ΩB(φ) in a fiber will be from ΩB(π) = 4πnνs /λ to ΩB(π-2θc) = 4πnνscosθc /λ. For every 

ΩB(φ) there corresponds a homogeneously broadened line of the form  
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The Stokes spectrum, broadened by guiding, is then the convolution of frequency-shifted 
homogeneously broadened components, each generated from a different angular 
component of the pump and Stokes signal (such broadening is inhomogeneous by 
definition). The shape of the broadened Brillouin linewidth is described by the equation 
(Kovalev & Harrison, 2002), 

 1 1( ) ( 2 )
( , ) tan 2 tan 2

2 ( ) ( 2 )

B B B c
i c

B B c B B

π π θγ θ
π π θ

− −
⎡ ⎤⎛ ⎞ ⎛ ⎞Γ Ω −Ω Ω − −Ω

Ω = −⎢ ⎥⎜ ⎟ ⎜ ⎟
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, (8) 

where θc is linked to NA through Eq.(6). Fig. 3 shows γi(Ω,θc) for five values of NA. 
 

 

Fig. 3. Line shape of the Brillouin gain spectrum in optical fiber for several NA values 
(Kovalev & Harrison, 2002). 
 

 

Fig. 4. Relation between, a), the gain profile (dashed) and the phase index (solid) and, b), 
group index, for SBS in optical fibers. 

Intuitively, the dispersion and group index profiles, which are associated with the 
convolutionally broadened SBS gain spectrum (dashed lines in Fig.4a), are expected to also 
be convolutionally broadened (solid lines in Fig.4a and Fig.4b). As seen (Fig.4b) the 
maximum ng is expected to be more or less constant and so it’s value for each and all the 
homogeneous spectral components that contribute to the group index profile is the same. 
The shape of the group index spectrum is determined more precisely by numerical 
simulation (Kovalev et al., 2008). The group index in the case of the SBS resonance in optical 
fiber can be expressed as (Okawachi, 2005; Kovalev & Harrison, 2005), 
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where g0 is the value of the SBS gain coefficient at the exact Brillouin resonance and Ip is the 

pump radiation intensity. When several resonant frequencies, ΩB, exist in the medium, and 

the distribution of their relative amplitudes over the range from ΩB(π) to ΩB(π-2θc) is some 
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function F(ΩB), the spectrum of the “broadened” group index, ngb(Ω), is described by the 
convolution integral, 
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Results of calculations for the case when F(ΩB) = 1 in the range from ΩB(π) to ΩB(π-2θc) are 
presented in Fig.5. For the sake of illustration the results are centred by shifting the limits of 

integration in such a way that the lower limit is ω1 = ω0 - mΓB/2 and ω2 = ω0 + mΓB/2, where 
m, which is called the rate of broadening, varies from 2 to 100. As seen the width of the 
profile increases continuously with increasing m. The original shape of the profile 

(individual components in Fig 4b) is retained for a broadening of m ≤ 2. Beyond this, the 

profile becomes top-hat, at m ≅ 4, and for m > 4 it exhibits a dip, the depth of which increases 
with increasing m. For m > 20 the dip tends to becomes flat-bottomed. It can therefore be 
seen that the value of group index can stay constant over a broad range of frequencies, 
especially when m > 60. However the price for this is a reduced magnitude of the group 
index. However, as seen in Eq.(9), this may be compensated for by increase of the pump 
intensity. 
 

 

Fig. 5. Shape of group index, ngb, spectrally broadened due to waveguiding nature of fiber, 
a) for m = 2-6, and b), for m = 2-100.  

Earlier work has shown that waveguide induced broadening is dependant on the numerical 
aperture of fiber through the equation (Kovalev & Harrison, 2002), 
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It follows from Eq.(11) that in the calculations above, m = 2 corresponds to NA = 0.12, which 
is standard for single-mode telecom fiber. However, it is now readily possible to realise 
single-mode fiber with much higher NA, ~0.8 (Knight et al., 2000). For such fiber the 
broadening is ~15 GHz, which is comparable with the needs of telecom devises. As noted 
above this analysis assumes that the homogeneously broadened Brillouin gain contributions 

to the inhomogeneous profile are uniformly distributed, F(ΩB) = 1. It is relatively straight 
forward to account for alternative distributions by introducing their appropriate shape 

function F(ΩB) into Eq.(10). 
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These considerations therefore show that waveguide induced spectral broadening of the 
gain bandwidth of SBS in optical fiber is potentially massive (> 10 Gb/s), and readily 
achievable. 

3.2 On the effect of the pump spectral width on spectral broadening of SBS 

It has been proposed in (Stenner et al., 2005) that spectral broadening of the pump radiation 
may lead to comparable spectral broadening of the Stokes pulse in SBS. This approach has 
since been the focus of many publications, (Minardo et al., 2006; Shumakher et al., 2006; Zhu 
& Gauthier, 2006; Zadok et al., 2006; Chin et al., 2006; Schneider et al., 2006; Kalosha et al., 
2006; Zhu et al., 2007; Song & Hotate, 2007; Lu et al., 2007; Zhang et al., 2007-1 & -2; Yi et al., 
2007; Shi et al., 2007; Pant et al., 2008; Ren & Tomita, 2008; Sakamoto et al., 2008; Wang et al., 
2008; Schneider et al., 2008; Cheng et al., 2008), aimed at high data rate applications of SL. In 
this section the validity of this assertion is examined and it is shown that the effect is in fact 
negligible.  
This may be seen from examining the spectral features of the medium’s response and the 
Stokes emission through Fourier transformation of Eqs (4) and (5) using the following basic 

properties of Fourier transforms, F(ω) ≡ S[f(t)], (Korn & Korn, 1967), 
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where f(t) is a function of time. Here ω and ν are Fourier transform frequencies, which are 
the difference frequencies of the acoustic, Stokes and pump signals from their respective line 
centers. Eqs (4) and (5) then give 
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Note that here we have primed the Stokes and pump fields within (13), which are 
responsible for inducing the acoustic wave, to distinguish them from the generated Stokes 
field, (LHS of (14)), and from the pump field, which generates the new Stokes field, (the field 

( )pE ω#  under the integral in (14)). δΩ is a detuning parameter, which can influence only the 

strength of the medium’s response to the drive force at frequency, Ω. (In the case of non-

monochromatic pump and Stokes fields δΩ can be considered as the difference between the 
central frequencies of their bandwidths.)  

Consider the case of a typical SBS slow light experiment in which the spectrum of the Stokes 

signal corresponds to that of a temporally smooth pulse and the spectrum of the pump 

radiation is the Fourier-transform of a continuous wave field the amplitude of which is 

randomly fluctuating in time. As seen, the right-hand sides of these equations are 

proportional to the convolution integrals of spectra '*( )pE ω# and ' ( , )SE z ω# in Eq.(13), and ( )pE ω#  

and *( , )zρ ω#  in Eq.(14), respectively.  
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Eq. (13) is an algebraic equation, the solution of which gives the spectrum of the medium’s 
response 
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is the function which determines the spectrum of the driving force for the medium’s 

response. The spectrum of the medium’s response is then given by the modulus of ),(~* ωρ z , 

),(~ ωρ z . 
The spectrum of the Stokes field is described by the first order differential equation, Eq.(14), 
the solution of which is 
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where ),0(
~ ωSE  is the spectrum of an input Stokes signal at z = 0 and  
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is the function which determines the spectrum of the source of the generated Stokes field. 
Equations (15)-(18) describe the spectral features of the SBS-induced material response and 
Stokes field when both optical fields, pump and Stokes, are non-monochromatic. Note that 
solution Eq.(17) in the spectral domain is entirely consistent with the analytical solution of 
Eqs. (4) and (5), previously obtained in the temporal domain for stimulated scattering 
induced by non-monochromatic pump and monochromatic Stokes fields in (Kroll, 1965, 
Charman et al., 1970, Akhmanov et al., 1971, Akhmanov et al., 1988), and for monochromatic 
pump and non-monochromatic Stokes fields in (Kovalev et al., 2009). 
It is easily seen that the solution (17) for the Stokes field differs substantially from that 
usually deduced in textbooks from (4) and (5) in the steady state approximation (that is 
when both pump and Stokes fields are considered monochromatic),  
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which results from the equation for the Stokes field of the form, (Zeldovich et al., 1985), 
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Here it is again important to remember that δΩ is a detuning parameter, the value of which 
is the difference between the frequencies of the monochromatic pump and Stokes fields as 
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chosen, Ω = ωp - ωS, and the resonant Brillouin frequency, ΩB, |EpEp*| is the pump radiation 
intensity, and g0 is the standard steady state SBS gain coefficient. Equation (20) means that 
the Stokes field is amplified in the medium with gain proportional to the pump radiation 
intensity. To appreciate the difference between this case and our case let us consider both 
pump and Stokes fields in Eqs.(13)-(18) to be monochromatic. The spectra of the amplitudes of 

driving forces and of the medium’s response then reduce to δ-functions at ω = 0 and these 
depend on z only. The equation for the Stokes field is then, 

 
'* '

0

1

( ( ))( )

2(1 2 )

p SS
p

B

g E E zdE z
E

dz i δ −

⎡ ⎤
= ⎢ ⎥

− ΩΓ⎢ ⎥⎣ ⎦
,  (21) 

The physical meaning of Eq.(21) is substantially different from that of Eq.(20), though their 
mathematical forms may look similar. Equation (21) describes the spatial evolution of the 
amplitude of the Stokes field, which results from reflection of the pump field by the induced 
acoustic wave. Since the Stokes field on the RHS of Eq.(21) is responsible for creating the 
acoustic wave, it is not the same as the reflected Stokes field on the LHS of this equation and 
therefore it is distinguished by its prime. Though for this monochromatic case the Stokes 
fields have the same frequency, their roles still remain physically distinct as in our general 
treatment above. Such distinction is not made in the text-book treatment that leads to Eq.(20) 
and to its familiar exponential solution, Eq.(19), which displays “gain” and a “modified 
propagation constant” for the Stokes field (see (Zhu et al., 2005)). Evidently the solution for 
Eq.(21) cannot be the same. As such, though the RHS of this equation has both real and 

imaginary parts (in the case of non-zero detuning, δΩ), this does not modify the propagation 
constant for the reflected Stokes field and therefore it can have no bearing on changing the 
refractive and group index for this field.  
Returning now to the solutions (15)-(18) of Eqs. (13) and (14) for the general case in which 
either one of the fields or both have nonzero bandwidth, they display three important 
features of the SBS interaction: i) the external input Stokes signal, as seen in Eq.(17), 
propagates through a non-absorbing medium without gain or measurable loss (its energy 
loss for creating the acoustic wave is usually negligible), ii) the SBS-generated Stokes signal 
is a result of reflection of the pump radiation by the acoustic wave, which is created by the 
pump and the original Stokes fields (see Eqs. (4) and (5)), and iii) each spectral component of 
the generated Stokes signal arises from a range of spectral components of the non-
monochromatic pump and Stokes fields, see Eqs. (17) and (18).  

To see the consequences of this, consider the case when the growth of the Stokes field along 

z is small. As such, the z dependence of ( , )SE z ω#  and *( , )zρ ω# is dropped. While this 

approximation does not account for gain narrowing of the SBS spectrum, typical for higher 

amplification, (Zeldovich et al., 1985), it still captures reasonably well the trends in the 

spectral features of the Stokes field, ( , )SE z ω# , the medium response, ( )ρ ω# , and so the SBS 

gain and the modified refractive and group indices. It then follows from Eq.(17) that the 

output spectrum of the Stokes signal, ( )SE ω# , is the sum of the Fourier spectra of the input 

Stokes signal, (0, )SE ω# , and the convoluted spectrum of the pump field and medium’s 

excitation, characteristics which are described by the function FE(ω) (see Eq. (18)). The latter 

is the SBS-induced contribution to the Stokes signal, and is determined by which of ( )pE ω#  

or *( )ρ ω#  is spectrally broadest. These spectral features of the output Stokes radiation are 
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consistent with those predicted earlier in the low gain approximation using the temporal 

domain treatment of stimulated Raman scattering, (Akhmanov et al., 1971, Akhmanov et al., 

1988), and SBS, (Zeldovich et al., 1985), with non-monochromatic pump fields.  

In contrast to the spectral features of the Stokes emission, those of the medium’s response, 

( )ρ ω# , have to date received little attention. According to Eq.(15) this case is not as 

straightforward as that of the Stokes spectrum since a Lorentzian shape multiplier of 

bandwidth ΓB appears in addition to the convolution integral, Fρ(ω). From Eq. (15), ( )ρ ω#  is 

given as 

 
( )

0 2 22

( )
( )

8 4

B

s
B

F

v

ρ ωερ ω ρ
ρ π ω δ

∂ Ω
=

∂ Γ + + Ω
# . (22) 

Examples of the spectra, ( )ρ ω# , are shown in Fig. 6 by solid curves for δΩ = 0 (Fig. 6(a)) and 

δΩ = 0.1 GHz (Fig. 6(b)).  
 
 

 
 

Fig. 6. a), LHS and RHS halves of the (symmetrical) spectra of |Fρ(ω)| (dashed) and of 

)(~ ωρ  (solid lines) respectively for spectral widths of Fρ(ω) 0.02(1), 0.2(2), 2(3) and 20(4) 

GHz, when ΓB = 0.2 GHz and δΩ = 0. The dotted line 5 is the Lorentzian-shaped spectrum 

with ΓB = 0.2 GHz; b), spectra of ( )ρ ω#  for the same spectral widths of Fρ(ω) when δΩ = 0.1 

GHz. 

It follows from Eq.(22) that when the spectral width, δωρ, of the driving force, |Fρ(ω)| 

(shown by dashed curves in Fig. 6(a)), is narrower than ΓB, the width, Γ, and centre 

frequency of ( )ρ ω#  is determined by |Fρ(ω)|, (the convolution of '*( )pE ω#  and ' ( )SE ω#  as given 

in Eq. (16)), the central frequency of which is detuned by δΩ as shown by curve 1 in Fig. 

6(b). Nonzero detuning δΩ results also in decreased amplitude of the medium’s response 

(compare solid curves 1 of Figs. 6(a) and 6(b)). As δωρ increases, Γ grows and for δωρ > ΓB it 

saturates at ~1.7ΓB (solid curves 3 and 4 in Fig. 6(a)), and the effect of the detuning δΩ on the 

features of the medium’s spectrum becomes negligible (compare solid curves 3 and 4 in 

Figs. 6(a) and 6(b)). In essence, this means that irrespective of how broad the bandwidth of 

the broadband pump and/or Stokes emission is/are, the bandwidth of the material 

response spectrum is predominantly determined by the features of the material and can 

never be much greater than that of the medium’s resonant response (~ΓB). This is exactly the 

features expected from an externally driven damped resonant oscillator (see Eq.(2)).  
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From Eq. (22) the SBS induced dispersion of refractive index, Δn(ω) ≅ (∂ε/∂ρ)| ( )ρ ω# |/2n0, 

and its corresponding induced group index at the frequency of the Stokes radiation, 

0( ) ( ) ( / ) |
Sg S S Sn n d n d ωω ω ω ω= + Δ , may be directly determined. To do so let us replace the 

relative frequency ω in the equations above with the absolute frequency, ω’, and consider 

the spectrum of |Fρ(ω’)| to be Gaussian in shape centred at frequency ΩB, Fρ(ω’) = Fρaexp[-

(ω’-ΩB)2/δωρ2], where a p SF I Iρ = is the spectral amplitude and IS is the Stokes signal 

intensity. The induced group index at absolute frequency ω’ is then 
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.  

The dispersion of the SBS-induced group index, which is described by Eq. (23), has a 
maximum at ω’ = ΩB - Δ and a minimum at ω’ = ΩB + Δ, where Δ is functionally dependent 
on δωρ and is < ΓB/2. These maximum and minimum, in principle, may be of very high 
amplitude, however it is critically important to note that they are located at ω’ ≈ ΩB. At the 
Stokes frequency, ω’ = ωS, since ωS >> ΩB > ΓB (ωS ≈ 1.7⋅104ΩB in silica), Eq.(23) reduces to  
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ρ
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−

= − , (24) 

which shows that the SBS-induced ng(ωS) is independent of both ΓB and ΩB, and is negligibly 

small for any reasonable bandwidth, δωρ, of ( )ρ ω# . As such the acoustic resonance can have 

next to no effect in enhancing or modifying the natural group index in the medium for the 
Stokes signal. Consequently spectral broadening of pump radiation by any reasonable 
amount results in only minute increase of the spectral width of the material’s resonant 
excitation in SBS, and furthermore because this resonance is far away from a Stokes optical 
signal frequency to be delayed the approach cannot be effective in modifying a natural 
group index of a medium.  
This may also be seen using the following less rigorous simple argument. The resonant 

Brillouin frequency, ΩB, that is the frequency of the acoustic wave, for Stokes radiation 

excited by a monochromatic pump radiation, is ΩB = 2nνsωp/c. Broadening of the pump 

radiation spectrum by Δωp then results in pump induced broadening of the acoustic wave 

spectrum, ΔΩB, = 2nνsΔωp/c. It follows that for Δωp of ~2π⋅(12-25) GHz (Zu et al., 2007; Song 

& Hotate, 2007), which is of order of ΩB for SBS excited by 1.55 μm pump radiation in silica 

fiber (n ≅ 1.45, νs ≅ 6 km/s), ΔΩB ≅ 2π⋅(0.6-1.5) MHz << ΓB ≅ 2π⋅16 MHz. Clearly then pump 
induced broadening of the acoustic wave spectrum is negligible compared to its 

homogeneous spectral width, ΓB, for any reasonable value of the pump spectrum width up 
to few tens of GHz. 

4. Effect of acoustic wave inertia on Stokes pulse delay in SBS 

In this section the underlying physical processes that give rise to Stokes pulse delay in SBS 
are addressed.  

www.intechopen.com



Physical Nature of “Slow Light” in Stimulated Brillouin Scattering 

 

95 

In typical SBS-based slow light experiments the CW pump power is kept below the value at 
which the SBS interaction experiences pump depletion. The pump power is therefore 
constant throughout the interaction length (in lossless media). This is also an underlying 
reason why the contribution of spontaneous scattering to the SBS interaction is considered 
sufficiently small to be ignored in theoretical treatments of this problem (Song et al., 2005; 
Okawachi et al., 2005; Zhu et al., 2005). Equations (4) and (5) with appropriate boundary 
conditions are therefore sufficient for describing the evolution of a Stokes pulse in a 
medium.  
It is convenient to introduce the new temporal coordinate t’ = t – zn/c and suppose that the 

centre frequency of the Stokes pulse spectrum coincides with the resonant Brillouin Stokes 

frequency, that is δΩ = 0. In terms of the new variables Eqs (4) and (5) can be rewritten as  

 ( ( ')) *
2

S S
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, (25) 

and  
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This set of equations has an analytic solution, which can be obtained using Reimann’s 

method (Bronshtein & Semendyaev, 1973). Consider the case addressed in typical SL 

experiments, in which the duration of the Stokes pulse is much less than its transit time in 

the medium and the pump is CW monochromatic radiation. Assuming that there are no 

acoustic waves in the medium before a Stokes pulse enters, and ES(t’≤ 0) = 0, ES(z=0,t’) = 

ES0(t’) and Ep(z,t’) ≡ Ep = const, the solutions for the Stokes field and the density variation are 

then 
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and  
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Here Ip = |Ep|2 is the pump radiation intensity in [W/cm2], I0,1(x) are the Bessel functions of 

imaginary argument x, and g is the SBS gain coefficient, 
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Suppose that the input Stokes signal is an optical pulse, the time dependent intensity of 

which is given by 
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where IS0 is the intensity at the peak of the pulse, tp is the FWHM pulse duration. The shape 
of the pulse is shown in Figs. 7 and 8 (curves for G = gIpL =0) and it is a good approximation 
for pulses actually used in experiments (Pohl & Kaiser, 1970). Since the SBS exponential 
gain, G, in the fiber is supposed to be below the SBS threshold, this, according to (Kovalev & 
Harrison, 2007), limits G to ≤12 for standard silica fibers of > 0.1 km length.  
 

 

Fig. 7. Output Stokes pulse shapes for a), tp = 200 ns (>>τ ) and G = 0 (1), 1(0.42), 4(0.026), 

8(0.0006), and 12(0.000012) and b), for tp = 18 ns (=τ ) and G = 0(1), 1(0.9), 2(0.6), 4(0.2), 
8(0.09), and 12(0.00026), where numbers in brackets are the amplitude magnification factors. 
The numbers on curves are Gs. 

 

 

Fig. 8. Output Stokes pulse shapes for a), tp = 4 ns (<τ ) and G = 0(1), 2(1), 4(1), 6(1), 8(0.2), 

and 12(0.007), and b), for tp = 0.5 ns (<<τ ) and G = 0(1), 4(1), 8(1), and 12(1 at the first peak 
and 0.3 at the tail). LHS of b) is temporally stretched to show profiles.  

 

 

Fig. 9. Output Stokes pulse a), delay, b), broadening factor, and c), effective exponential gain 
at peak of output pulse vs gain G for pulse durations tp = 200 (dashed), 18 (dotted), 4 (thick 
solid in the main graph and in the insert), and 0.5 ns (dashed in the inset). Thin solid lines in 

a) and c) are ΔTd = 9G ns and Gef = G dependencies respectively. 
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Figs 7 and 8 show the calculated relative output Stokes pulse powers, PS(t) = |ES(t)|2S (S is 
the effective area of fiber–mode cross section), shapes, amplitudes and delays for four input 

pulse durations, tp, and different G. Here the decay time, τ, of the hyper-sound wave in silica 

is taken to be τ = 18 ns at a pump radiation wavelength ~1.55 μm. It should be emphasized 
that the decay time of the acoustic wave, which is determined by the viscosity of fused silica 
(Pinnow, 1970), is used in these calculations rather than the SBS spectral width. This is 
because the latter depends on intrinsic characteristics of the fiber (core/cladding design, 
doping type and concentration, numerical aperture, etc. and the ambient environment 
(mechanical, thermal and electromagnetic fields (see Sec. 3), all of which can result in 

substantial variation of the resonant Brillouin frequency, ΩB. However they do not 
appreciably effect the viscosity of the medium.  
It follows from Figs 7 and 8 that the induced delay of the output Stokes pulse, its duration 
and peak power, which is estimated to be PS0eGef, where Gef is the effective SBS exponential 
gain, in all cases increase with increase of G. Rates of these growths depend substantially on 

the ratio of pulse duration to acoustic wave decay time, tp/τ, as shown in Fig. 9.  

For a long input Stokes pulse, tp = 200 ns that is tp/τ = 200/18 >> 1, the output pulse, on 
increase of G, remains similar in form (Fig. 7(a)), and is increasingly delayed following 

ΔTd/G ≅ 11 ns as shown by the thick dashed line in Fig. 9(a). Additional calculations have 

shown that it may coincide with ΔTd ≅ τ G/2 ≅ 9G ns (shown by the thin solid line in Fig. 

9(a)), but this happens only when tp/τ ≅ 2.5±0.5 and >100. For tp/τ < 2 the growth of ΔTd falls 

below the value ΔTd ≅ 9G ns. The duration of the output pulse compared to that of the input 
is slightly broadened with increase of G (see dashed line in Fig. 9(b)), and Gef decreases very 
slightly compared to G (dashed line in Fig. 9(c)). 

For tp = 18 ns (Fig. 7(b)), that is tp/τ  = 1, ΔTd for the output pulse again increases with G 

though not linearly; at lower G (0 to ~2) with slope ΔTd /G ≅ 3 ns, and at higher G (> 2) with 

slope ΔTd /G ≅ 9 ns (dotted line in Fig. 9(a)). The pulse broadening in this case increases 

substantially with G, by a factor ≥ 5 at G > 10 (dotted line in Fig. 9(b)) and Gef decreases 

notably, by a factor of ~3 at lower G to ~1.5 at G ≥ 10 (dotted line in Fig. 9(c)).  

For the short pulses, tp ≤ 4 ns (Fig. 8), that is for tp/τ < 1, significant new features appear. For 

G < 4 the output pulses approximately retain their shape with only a slight increase of ΔTd 

with G (ΔTd /G ≅ 0.1-0.15 ns for tp = 4 ns and ΔTd /G ≅ 0.03 ns for tp = 0.5 ns, as is shown in 

inset of Fig. 9(a), solid and dashed lines respectively). In both cases Gef for the leading peak 

decreases substantially, by a factor ~10. For G between 4 and 6 there is substantial growth of 

the power in the tail of the pulses and for G > 8 the maximum of the pulse shifts to the tail 

(see Figs. 8(a) and 8(b)). This is because of the long decay of the acoustic wave excited by the 

short Stokes pulse interacting with the CW pump. The dependence of ΔTd on G for G > 8 

then follows the linear relation ΔTd ≅ (9G – 25) ns (thick solid line in Fig. 9(a)). The pulse 

broadening factor is then ~20 for tp = 4 ns (solid line in Fig. 9(b) at G > 6) and ~200 for tp = 

0.5 ns.  

It is interesting to note that analytical results presented in Figs. 7 and 8, which are obtained 

in the small signal limit, give dependencies of pulse delay and broadening on G quite 

similar to these obtained numerically both for long pulses, tp/τ ≅ 15 and 5 in (Zhu et al, 

2005), and for short pulses, 0.1 < tp/τ < 2 in (Kalosha et al., 2006). There are however some 

quantitative differences, which are important to highlight. The numerical modelling in (Zhu 

et al., 2005) gives ΔTd = τG/2 dependence for tp/τ ≅ 15, while calculations here predict this 
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only for tp/τ in the region ~2.5±0.5, while for tp/τ > 5 the slope ΔTd /G is a factor 1.2-1.3 

steeper. Also the shape of the ΔTd upon G dependence for tp/τ ≅ 5 in ((Zhu et al, 2005)) is 

similar to that in these calculations but for tp/τ ≅ 1. As to the numerical results presented in 

(Kalosha et al., 2006), the difference with findings here is most probably because all their 

results were obtained for an input Stokes power well above that for onset of pump depletion 

(input Stokes power is of 1 mW compared with pump power of ≤ 20 mW). 

To understand the underlying nature of the behaviour described above consider through 

Eq. (28) the temporal and spectral characteristics of the complex dielectric function variation 

in the medium, Δε = (∂ε/∂ρ)ρ = Δε’ + iΔε’’, induced by the interaction of the pump and 

Stokes signals; Δε(ω) results in the SBS gain and Δε’(ω) is responsible for modification of the 

refractive index, Δn(ω) ≅ Δε’(ω)/2n0, of the medium, where n0 is the refractive index of a 

medium without SBS. In the limit of small gain, G < 1, the Bessel function I0(x) in Eq. (28) 

may be set to unity, and analysis is greatly simplified. While this approximation does not 

allow us to describe gain narrowing of the SBS spectrum typical for higher G, it still captures 

reasonably well the trends in the temporal and spectral features of ρ, which determine those 

of the SBS gain and modified refractive index.  

When I0(x) = 1, the integral in Eq. (28) can be taken for ES0(t) given by Eq. (30). It results in 

the following analytic expression for ρ(t), 
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wave amplitude follow from the Fourier transform of Eq.(31),  
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The temporal dynamics of the induced acoustic wave amplitudes and their spectra for 

values of tp/τ considered above are shown in Fig. 10 (the dynamics for tp = 0.5 ns is not 

shown on the timescale of Fig. 10(a)). The curves in Fig. 10(a) represent different 

characteristic types of SBS interaction: curves 1 give an example of quasi-steady state 

interaction when tp/τ >> 1, curves 3 demonstrate transient type interaction when tp/τ << 1, 

and curves 2 are for an intermediate case when tp/τ ≅ 1.  

In the first case of a long Stokes pulse, that is tp/τ >> 1, the shape of the acoustic wave pulse 

shown in Fig. 10(a) as the solid curve 1 almost reproduces the shape of the input Stokes 

pulse (dotted curve 1). The spectrum of the excited acoustic wave in this case, Fig. 10(b), 

reproduces the spectrum of the input Stokes pulse, shown by the solid and dashed curves 1 

respectively. These are both narrower than the Lorentzian-shaped spectrum corresponding 

to τ = 18 ns (dotted curve 5).  

This is to be expected since Eq. (2) is in essence the equation for the amplitude of a driven 

damped oscillator; for such a system the spectrum of the induced oscillations is fully 
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determined by the spectrum of the driving force when it is narrower than the reciprocal 

decay time of the oscillator. 

 
 

 

Fig. 10. a), Dynamics and b), spectra of the normalised acoustic wave amplitude (solid lines) 
for Stokes pulses of the shape given by Eq. (30) (dashed lines) with tp = 200(1), 18(2), 4(3)  

and 0.5 ns(4), τ = 18 ns. The dotted line 5 in b), is the Lorentzian spectrum with τ = 18 ns. 
Curves in b) show half spectra of pulses at LHS and of corresponding medium’s response at 
RHS. 

In the case of shorter Stokes pulses, tp/τ ≤ 1, (dashed curves 2 and 3 in Fig. 10(a)) the 

spectrum of the driving force, that is that of the input Stokes pulse, is broad band, (dashed 

curves 2 and 3 and also curve 4 for tp = 0.5 ns pulse in Fig. 10(b)). As seen the dynamics of 

the medium’s response (solid curves 2 and 3 in Fig. 10(a)) and its spectra (solid curves 2, 3 

and 4 in Fig. 10(b)) differ substantially from those of the Stokes pulses and their spectra. In 

the temporal domain the maximum amplitude of the induced ρ(t) decreases with decrease 

of pulse duration and a long tail appears after a Stokes pulse, which decays exponentially 

with a decay time of τ. The spectra of ρ(t) in these cases are narrower, increasingly so for 

shorter pulses, than the spectra of the driving force (input Stokes pulse). Their width is then 

determined predominantly by the reciprocal decay time of the oscillator (dotted curve 5 in 

Fig. 10(b)) as is to be expected for a damped oscillator, which is driven by a broad-band 

force. Reduction of amplitude of the induced ρ(t) with decrease of pulse duration results in 

reduced amplitude of the output Stokes pulse and its effective G as shown in Fig. 9(c). 

The imaginary part of ρ(ω) described by Eq. (13) gives the refractive index of the medium 

modified by the SBS interaction, n(ω) = n0 + Δn(ω) ≅ n0 + (∂ε/∂ρ)ρ(ω)/2n0 and its 

corresponding group index, ng(ω) = n0 + ω[dΔn(ω)/dω] (Okawachi et al., 2005, Zhu et al., 

2005). Spectra of the Stokes pulses and the group indices induced by these pulses are shown 

in Fig. 11 for the four different tp/τ. It is important to remember (see section 3.2, Eqs (23) and 

(24)) that the group index profile is frequency shifted from the centre frequency of the 

Stokes pulse by ~1.7⋅104ΩB and therefore has negligible effect on the Stokes pulse delay. In 

the literature on SL via SBS, it is assumed that their centre frequencies coincide. However 

even if this were so it is clear from Fig. 11 that the spectral width of a Stokes pulse is bigger 

than that of the SBS induced group index regardless of tp/τ. As such, in this hypothetical 

case, while some, central, part of the input spectrum may experience a group delay, other 

parts of the spectrum will experience group advancement or neither delay or advancement 

(see Figs. 11(c) and 11(d)). 
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It therefore follows that regardless of the pulse length of the input Stokes pulse the pulse 

delays associated with SBS amplification of a Stokes pulse, as described above, cannot be 

attributed to SBS induced group delay. They are predominantly a consequence of the 

phenomenon of SBS build-up. 

 

 

Fig. 11. Relation between the spectra of a Stokes pulse and of the group index induced by 
this pulse for tp = 200 a), 18 b), 4 c), and 0.5 ns d). Horizontal scales are in GHz. 

5. Conclusions 

The results presented in this chapter raise the question of whether slow light, as first 

discussed in (Zeldovich, 1972), can be realised. To answer this recall the nature of the group 

delay effect. It is a linear phenomenon exhibited by a pulse propagating through a medium 

with normal dispersion of refractive index (Brillouin, 1960). The effect is greatly enhanced in 

the vicinity of a medium’s resonance, which for a gain medium is normally dispersive. For 

SBS the maximum of this resonantly enhanced dispersion is centred around the Brillioun 

frequency, ΩB, and it is all but negligible at the Stokes frequency. As such the acoustic 

resonance can have next to no effect in enhancing or modifying the natural group index in 

the medium for the Stokes signal. Consequently pulse delay associated with Stokes pulse 

induced SBS cannot be attributed to SBS induced group delay. It is predominantly a 

consequence of the phenomenon of SBS build-up, which arises from the inertia of the 

medium in responding to the optical fields. Also, spectral broadening of the pump radiation 

by any reasonable amount has next to no effect on the SBS spectral bandwidth of the excited 

acoustic wave in the medium, which is commonly believed to determine the SBS gain 

bandwidth (Thevenaz, 2008).  
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