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1. Introduction  

Some problems can be efficiently solved only by teams consisting of cooperative 
autonomous players (robots). Many researchers have developed methods that do not 
require human designers to define specific behaviors of players for each problem. The work 
reported in this chapter focuses on the techniques of evolutionary computation, which has 
been regarded as one of the most promising approaches to solving such complex problems. 
However, in using evolutionary computation for generating players performing tasks 
cooperatively, one faces fundamental and difficult decisions, including the one regarding 
the so-called credit assignment problem (Haynes et al., 1995). For example, if we can only 
evaluate the global performance of each team, how do we divide up the team’s performance 
among the participating players? We believe that there are some correlations among design 
decisions, and therefore a comprehensive evaluation of them is essential, although several 
researchers have proposed evolutionary methods for evolving teams performing specific 
tasks. 
This chapter is organized as follows. In Section 2, we list three fundamental decisions and 
possible options in each decision in designing a method for evolving a cooperative team. We 
find that there are 18 typical combinations available. Then, in Section 3, we describe the 
ultimately simplified soccer game played on a one-dimensional field as a testbed for 
comparative evaluation of these 18 candidate methods. Section 4 reports on the results of the 
comparative evaluation of these methods, and Section 5 summarizes the work. 

2. Methods for Evolving a Team 

In general, three fundamental decisions are necessary when one designs an evolutionary 
computation method for generating players performing tasks cooperatively, and there may 
be several combinations of the options in these decisions. 
The first decision is: How many evolving populations are there? The answer is derived by 
considering whether or not the population structure depends on the number of teams in the 
game, or the number of player roles in the game (Fig. 1). Suppose that the game is played by 
2 teams each consisting of 3 players. We can assume an evolutionary computation with 2 
populations corresponding 2 teams, with 3 populations corresponding 3 players, or with 6 
populations corresponding to 2 teams of 3 players. So, the typical options for the number of 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

2 

the populations are 1, R, T and T*R (T: number of teams in the game, R; number of the 
player roles in the team). 

 

Figure 1. The four options for the population structure. a) The population represents all 
player roles in all teams. b) Each population represents one player role in all teams. c) Each 
population represents all player roles in each team. d) Each population represents one 
player role in each team 

The second decision is: What does each individual (genome) represent? Typical options are 
a player and a team. In the case where each genome represents a player, there can be two 
further options: all players in the team share one genome (“homogeneous players”) or all 
players are represented by different genomes (“heterogeneous players”). In the case where 
each genome represents a team, there can be two further options: whether or not the roles of 
the players represented in each genome are fixed. In the case where the roles of the player 
are fixed, for example, if a part of a genome represents a defender in the game, this part 
always represents a defender. 
The third decision is: How is the fitness function evaluated? One option is that fitness is 
evaluated for a team as a whole. In this case, if each genome represents a player, each player 
in a team is supposed to have the same fitness. The other option is that the fitness is 
evaluated for each player directly or indirectly. Direct evaluation of players in a cooperative 
team is sometimes a very difficult task, as in general altruistic behavior is important or 
essential in the establishment and maintenance of cooperation in population. Some methods 
for indirect evaluation have been proposed (Miconi, 2001). We adopt a method as this 
option in which the fitness of a player is defined as the decrease in the fitness of the team 
when the player is replaced by a predefined “primitive player” who has a minimum set of 
behavior rules. 
Therefore, there could be 18 available combinations for evolving players performing tasks 
cooperatively, as shown in Table 1.  
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Population structure  

depends 
on Number of 

 T? R? populations 

Each genome represents Unit of fitness evaluation is Code name 

by direct evaluation  1-PHe-PD 
a player 

by indirect evaluation  1-PHe-PI heterogeneous players 

a team (same fitness in a team)  1-PHe-T 
a player 

homogeneous players a team (same fitness in a team)  1-PHo-T 

fixed player-roles a team  1-TFi-T 

No 1 

a team 
unfixed player-roles a team  1-TUn-T 

by direct evaluation  R-PHe-PD 
a player 

by indirect evaluation  R-PHe-PI 

No 

Yes R a player heterogeneous players 

a team (same fitness in a team)  R-PHe-T 

by direct evaluation  T-PHe-PD 
a player 

by indirect evaluation  T-PHe-PI heterogeneous players 

a team (same fitness in a team)  T-PHe-T 
a player 

homogeneous players a team (same fitness in a team)  T-PHo-T 

fixed player-roles a team  T-TFi-T 

No T 

a team 
unfixed player-roles a team  T-TUn-T 

by direct evaluation  TR-PHe-PD 
a player 

by indirect evaluation  TR-PHe-PI 

Yes 

Yes T*R a player heterogeneous players 

a team (same fitness in a team)  TR-PHe-T 

Table 1. Classification of the methods for evolving a team (T, number of teams in a game; R, 
number of player roles in a team) 

Many researchers treated this issue, although most of them focused on one or two methods 
of 18 combinations. Some significant studies are classified into one of these combinations as 
follows: 1-PHo-T is the simplest method, in which there is one population and all players in 
a team share one genome. Quinn et al. (Quinn et al., 2002) adopted this method, and 
successfully evolved  robots that work as a team, adopting and maintaining distinct but 
interdependent roles, based on their relative positions in order to achieve a formation 
movement task, although they were homogenous. Miconi (Miconi, 2001) adopted 1-PHe-PI, 
in which the fitness of each individual was determined as the decrease in fitness when that 
individual was not present in the team in the context of on-line evolution. Luke (Luke, 1998) 
evolved teams of soccer players through an adapted version of genetic programming: 
homogenous teams (1-PHo-T) and heterogeneous teams (1-TFi-T). Potter and De Jong 
(Potter & De Jong, 1994) proposed cooperative evolutionary algorithms, which can be 
classified into R-PHe-T, and tested them in the domain of function optimization, in which 
each population contained values for one parameter, and the fitness of a parameter was 
obtained by combining the current best parameters of the remaining populations. Our 
previous study (Asai & Arita, 2003) compared [1-PHe-PD], [1-PHe-T], [1-TFi-T], [R-PHe-PD] 
and [R-PHe-T] using a multirobot model in which not only control of behaviors, but also 
morphology (including selection and the arrangement of sensors/motors), evolved via 
ontogenesis. 
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3. Ultimately Simplified Soccer Game 

The ultimately simplified soccer game is defined as a testbed for comparative evaluation of 
these 18 candidate methods. It is a 2 vs 2 player game played on a one-dimensional cellular 
field (T=R=2 in Fig. 1), as shown in Fig. 2 (field: 1-20). The players are homogeneous except 
in their starting positions (left team: player 1 (field 8), player 2 (field 5); Right team: player 1 
(field 13), player 2 (field 16)), and each player makes a run, dribbles the ball, makes a shot at 
goal, or passes the ball to the other player of their own team. One of the actions is decided 
on based on the relative locations of all players and the ball (72 patterns). Action is taken in 
turn between 2 teams. Each step in the game is composed of 4 actions by all players. 

 

Figure 2. The ultimately simplified soccer game 

Multiple players can not be in one cell. The ball is always in a cell where a player resides. A 
moving action of a player with the ball means dribbling. Players move to either of the 
neighboring cells, but when a player moves to a cell with another player, the neighboring 
player is skipped over (a player cannot skip more than one other player). In this case, if the 
players are in opposite teams and one of them has the ball, the ball moves to the other 
player with a set probability (Psteal). If there is an opponent player between the passer and 
the receiver, the ball-passing becomes a failure with a set probability (Pcut), and in this case 
the ball moves to the cell where the opponent player resides. The success rate for shooting is 
antiproportional to the length between the player’s position and the goal irrespective of the 
presence of the opposing players. If a goal is scored, the game restarts with the initial player 
locations. If there is a failure, the game restarts after the ball moves to the opposite player 
nearer to the goal post.  
We expect two types of altruistic behavior which could lead to the emergence of cooperation 
in the game. One is passing the ball to the other player in the same team instead of dribbling 
the ball or taking a shot at the goal. The other type is running in the direction away from the 
goal. The former type of altruistic behavior is analyzed in Section 4.3. 

4. Evaluation 

4.1 Expression of the Players 

Each player selects next action deterministically based on the positional relationship of the 
players and the ball. In doing so, two opponent players are not distinguished. So to be 
precise, the genetic information of each player decides the next action of that player based 
on one of 48 patterns, where each pattern is associated with one of the four actions: 
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running/dribbling to the right; running/dribbling to the left; feeding (passing) the ball to 
the other player of their own team; taking a shot at goal. Therefore, each player is 
represented by 96 bits of genetic information. 

4.2 Evaluation Setting 

The evaluation is conducted in two steps: an evolution step and an evaluation step. In the 
evolution step, populations are evolved for 2000 generations using 18 methods 
independently. Each population has 40 individuals in all methods. A round-robin 
tournament of an ultimately-simplified game of 200 steps is held to evaluate the fitness in 
each generation. 
The parameters Psteal and Pcut are set to 0.8 and 0.4, respectively in both steps. These 
parameters were determined based on preliminary experiments mainly using [T-Pho-T], [T-
Tfi-T] and [TR-Phe-T]. The evolution of the players depended significantly on both 
parameters. In short, a large Psteal or a small Pcut evolved the passer-type players. In contrast, 
a small Psteal or a large Pcut evolved the dribbler-type players. We found that the above 
settings could generate many different kinds of players. 
With the <team-evaluated> option, the fitness is calculated as the number of goals the 
team scored minus the number of goals the opponent team scored. With the <direct-
player-evaluated> option, the fitness is calculated as the number of goals the player 
scored minus the opponent team’s goals divided by 2. Then tournament selection 
(repeatedly selecting the individuals with a higher fitness as parents by comparing two 
randomly chosen individuals), crossover with a 60% probability and one-point mutation 
with a 3% probability are adopted as genetic operators. With the <indirect-player-
evaluated> option, we use a primitive player designed a priori as follows. When a player 
keeps the ball, if they are behind the other team player they pass the ball to the other 
player, otherwise they shoot. When a player does not keep the ball, if they are behind the 
other team player, they move back, otherwise they move toward the goal. In the 
evaluation step, the best team is selected in each of the last 50 generations in the evolution 
step, and selected 50 times 18 selected teams conduct another round-robin tournament of 
1000 step games. 

4.3 Evaluation Results 

Fig. 3 shows the winning ratio of the teams evolved by 18 methods, each of which is the 
average winning ratio of the best 10 teams from 50 teams in the all-play-all tournament 
described above. Table 2 (the left-hand column in the results) also shows these results. Each 
pair of bars in Fig. 3 shows the results of the strategies with same options in genome 
representation and fitness evaluation except for the population structure option (upper 
white bars, <1/R-populations> options; lower black bars, <T /T*R-populations> options). 
It can be seen that the top three methods in this evaluation are <1-population, team-
represented with fixed player-roles, team-evaluated>, <T*R-populations, heterogeneous-
player-represented, team-evaluated>, and <1-population, homogeneous-player-represented, 
team-evaluated>. The winning ratios are 74.6%, 74.1% and 73.5%, respectively. An 
additional evaluation using a team consisting of two primitive players showed that its 
winning ratio was 16.0%. This ratio could be a measure for the performance of these 
methods. 
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Regarding the population structure, the <1/R-populations> option performed better than 
the <T/T*R-populations> option in general. This might be because of ill-balanced evolution, 
over-specialization, or circularity. The adoption of an asymmetric game as a testbed would 
make this tendency weaker. Regarding genome representation, the <homogeneous-player-
represented> option performed well in general. Also, the <team-represented with fixed 
player-roles> option performed well, although the <team-represented with unfixed player-
roles> option performed badly. Regarding fitness evaluation, the <team-evaluated> option 
performed well in general, as the fact that five of the top six methods adopt this option has 
shown. The performance of the <indirect-player-valuated> option depended largely on the 
other options. 
We observed an interesting separation of roles between the two players in the teams with a 
high winning ratio. For example, in some teams the forward player tended to play near the 
goal and the backward player tended to move in order to intercept the ball, and in some 
teams both players seemed to use man-to-man defence. 

 

Figure 3. The average winning ratio of the best 10 teams evolved by each of 18 methods 

Next we examined the relationship between altruistic behavior which could lead to 
cooperative behavior and the winning ratio. Here we focus on the following behavior 
pattern. A player with the ball passes to the other team player, who receives the ball without 
being intercepted and then successfully shoots a goal immediately or after dribbling. We 
termed this series of actions as an “assisted goal” (Fig. 4). Table 2 shows the assist ratio, 
which is the ratio of assisted goals to all goals, and the winning ratio of the teams evolved by 
18 methods. We see from this table that good performing teams also have a tendency to 
have a high assist ratio. In contrast, it is not necessarily the case that teams with a high assist 
ratio have a tendency to have a high winning ratio. This means that assisting behaviour 
defined above is a necessary requirement for the teams to perform well. 
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Figure 4. Two types of “assisted goals” 

 

Table 2. Average winning ratio and assist ratio 

It is a remarkable fact that the <indirect-player-evaluated> option made the assist ratio 
higher. For this option, we adopted a method in which the fitness of a player is the decrease 
in the fitness of team when the player is replaced by a primitive player. This method should 
generate a strong interaction between two players because it tends to result in large decrease 
when the player is replaced. Therefore, the teams generated by the indirect evaluation 
method have a higher assist ratio despite having a relatively low winning ratio. 

5. Conclusion 

This chapter has focused on the methods for evolving a cooperative team by conducting a 
comparative evaluation of 18 methods. We have found that some methods performed well, 
while there are complex correlations among design decisions. Also, further analysis has 
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shown that cooperative behavior can be evolved, and can be a necessary requirement for the 
teams to perform well even in such a simple game. These results could provide insights into 
the evolutionary design of multi-robot systems working in cooperative tasks. 
Evolutionary computation mimics the biological evolution of living organisms. We believe 
that the credit assignment problem, which is the focus of this chapter, could be solved more 
efficiently by developing the biological knowledge on the mechanism of the evolution of 
altruistic behavior, specifically on multi-level selection, a modern version of group selection 
(Ichinose & Arita, 2008). 
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This book presented techniques and experimental results which have been pursued for the purpose of

evolutionary robotics. Evolutionary robotics is a new method for the automatic creation of autonomous robots.

When executing tasks by autonomous robots, we can make the robot learn what to do so as to complete the

task from interactions with its environment, but not manually pre-program for all situations. Many researchers

have been studying the techniques for evolutionary robotics by using Evolutionary Computation (EC), such as

Genetic Algorithms (GA) or Genetic Programming (GP). Their goal is to clarify the applicability of the

evolutionary approach to the real-robot learning, especially, in view of the adaptive robot behavior as well as

the robustness to noisy and dynamic environments. For this purpose, authors in this book explain a variety of

real robots in different fields. For instance, in a multi-robot system, several robots simultaneously work to

achieve a common goal via interaction; their behaviors can only emerge as a result of evolution and

interaction. How to learn such behaviors is a central issue of Distributed Artificial Intelligence (DAI), which has

recently attracted much attention. This book addresses the issue in the context of a multi-robot system, in

which multiple robots are evolved using EC to solve a cooperative task. Since directly using EC to generate a

program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.
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