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Abstract

Limiting starch bioavailability by modifying food matrix dynamics has evolved 
over the decade, which further envisions low glycemic starch prototypes to tackle 
chronic hyperglycemia. The dense matrix of whole grain foods like millets and cereals 
act as a suitable model to understand the dynamics of binary food matrix interactions 
between starch-lipid, starch-protein & starch-fiber. The state and types of matrix 
component (lipid/protein/fiber) which interact at various scales alters the starch 
micro configuration and limits the digestibility, but the mechanism is largely been 
ignored. Various in-vitro and in-vivo studies have deciphered the varied dimen-
sions of physical interactions through depletion or augmentation studies to correlate 
towards a natural matrix and its low glycemic nature. The current chapter briefly 
encompasses the concept of food matrix types and binary interactions in mediating 
the glycemic amplitude of starch. We comprehensively elaborated and conceptually 
explained various approaches, which investigated the role of food matrices as com-
plex real food systems or as fundamental approaches to defining the mechanisms. It’s 
a fact that multiple food matrix interaction studies at a time are difficult but it’s criti-
cal to understand the molecular interaction of matrix components to correlate in-vivo 
processes, which will assist in designing novel food prototypes in the future.

Keywords: starch, digestibility, food matrix, binary interactions, glycemic response

1. Introduction

Starch is one of the major constituents of reserve food material, which serves as 
fuel for the human body. The calorific value of starch is 17.5 kJ/g, which is not only 
responsible for most of the metabolic functions but also acts as a crucial regulatory 
adjunct to control energy balance. Starch existed as the major dietary nutrient since 
time immemorial but the dietary transition with enriched refined products as well as 
carbaholic staples led to the unprecedented increase in the pre-diabetic and diabetic 
population with characteristic chronic hyperglycemia. Hence glycaemic response 
(GR) eliciting potential of food known as the glycemic index (GI) or glycemic poten-
tial (GP) are major aspects to understand as well as to fine-tune. In a food matrix, 
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starch bioavailability is modulated by the microstructure (cell wall, membrane, cell 
layers, granular size, etc.) as well as its dense composition (macro and micronutri-
ents) [1]. Based on the interacting components food matrix interactions are classified 
as binary (two-component), ternary (three-component), and quaternary (four-com-
ponent) [2–6]. Types of binary interactions and their effect on starch bioavailability 
are depicted in Figure 1.

Among these, a binary component has gained great importance and has been 
extensively characterized by component depletion or addition studies under in-vitro 
conditions [7, 8]. The observed low GP of whole grain foods like millets, pigmented 
rice has been well correlated with such matrix interactions present endogenously, 
while high GI has also been reported to lower by exogenous addition of such matrix 
components [9–11]. The state and types of matrix component (lipid/protein/fiber) 
which interacts at various scales have also been known to alter the starch micro 
configuration (repeat, reconstruct the sentence limiting the digestibility, result in 
lowering the glycemic response [9, 12].

Binary interactions have been majorly characterized using nutrient-sensing 
fluorescent probe-based confocal laser scanning microscopy (CLSM), where the 
proximity as well as encapsulating effect of matrix components limiting the starch 
hydrolytic metabolic enzymes have been observed [13, 14]. Further, the effect of 

Figure 1. 
Types of binary interactions and its effect on starch bioavailability. Binary interactions modulate physiochemical, 
structural, and biological attributes limiting starch digestibility as well as ultimate glycemic response.
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such interactions on starch functional aspects like hydration, enzymatic cleavage, 
or enthalpy have been delineated using differential scanning calorimetry (DSC). 
Scanning electron microscopy (SEM) assisted in revealing the structural altera-
tions associated with starch in the matrix after component depletion or addition. 
Rapid visco analysis (RVA) revealed that viscosity and pasting parameters were 
found inversely associated with in-vitro starch digestibility. The effect of matrix 
components in retaining the matrix, granule stability, preventing the expansion of 
granules as well as limiting the glycolytic enzyme attack has been endorsed using this 
technique [15, 16]. Other than affecting the swelling of starch granules by reducing 
the contact with carbolytic enzymes, the effect of such binary interactions in altering 
the molecular configuration (digestion sensitive A or B type to resistant V-type) of 
starch was envisioned and characterized using X-ray diffraction (XRD) and Fourier 
transform infrared microscope (FTIR).

Among the binary interactions, the most relevant in limiting the glycemic ampli-
tude includes starch-lipid, starch-protein & starch-fiber dynamics.

1.1 Starch-lipid interactions

Even though well compartmentalized, starch and lipids do interact endogenously 
in real food systems. Lipid content ranges from 0.2–7% in cereals, with the least 
reported in rice and maximum reported in the case of oats & pearl millet [17]. A 
balanced distribution of neutral, glycol, and phospholipids along with free fatty acids 
have been reported in most of the food matrices, assist in energy as well as membrane 
structure & functions [17]. Curiosity towards food matrix interactions underlined 
a striking correlation between high lipid content [18] and low GR, which initiated 
binary (starch-lipid) interaction studies [7, 8]. Endogenous and exogenous lipid 
content have found to have low in-vitro starch digestibility along with superior resis-
tant starch (RS) fraction. The effect of endogenous and exogenous lipid types have 
recently shown to have an effect in increasing starch-lipid complexation enriching 
RS content in red rice [9, 10]. Ye et al. [11] suggested that among lipids and proteins, 
starch digestibility is most affected by lipids as it affects swelling of granules, reduces 
the contact with carbolytic enzymes as well as alters the molecular structure from 
A-type into resistant V-type pattern. The long hydrophobic tail of lipid entering the 
cavity-like structure of amylose enables starch to form a stable complex, thereby 
hindering the accessibility of starch to enzyme attack [11]. In the case of mung bean 
flour, in-vitro starch digestibility and GI were increased significantly when endog-
enous lipids were removed [19]. Previous studies by Panyoo et al. [12], Krishnan 
et al. [9] have mentioned that stable starch-lipid complex results in a twist in digest-
ibility phenotype into a digestion resistant fraction (RS-V), which caters to the gut 
microflora. As stated above, Copeland et al. [20]; Wang and Copeland [21] suggested 
this inclusion complex of starch-lipid also has an immense role in the food industry 
such as lowering solubility, swelling power, starch gelatinization, retrogradation, and 
enzyme action.

Starch-lipid complexes can exist inherently within the food matrix, or they may be 
produced by exogenous applications. A study by Obiro et al. [22]; reported that this 
complexation is mainly influenced by non-covalent interactions (hydrogen bonds, 
hydrophobic interactions, van der Waals interactions, and so on). Hydroxyl groups 
α-(1,4) are situated on the outer surface whereas methylene and oxygen groups 
present in the inner region of the complex strengthen the formation of starch-lipid 
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complexes. Considering all positive impacts of starch-lipid complex, there are few 
factors (chain length of amylose, amylopectin, fatty acids, degree of unsaturation) 
that mostly govern the degree of complexation [10]. Various researchers stated that 
amylose acts as the primary constituent to interact with lipid molecules, while few 
reports supported the role of amylopectin chain length to form the complex [23, 24]. 
It has been reported from various studies that starch-lipid complexability has been 
increased with the longer chain length/degree of polymerization (DP) which high-
lights the formation of crystalline structure [25]. In addition to the effect exerted 
by the chain length of starch components, processing conditions like cooking also 
affect starch-lipid interaction. Kaur et al. [8] suggested amylose-lipid complexation 
enhanced with amylose chain length and increased with cooking time. Experiments 
highlighted the stability of starch-lipid inclusion complex formation mainly based on 
the types of fatty acids accommodated inside the helical cavity [26]. Different reports 
exist on the type of fatty acid for stable starch-lipid complexation. One school of 
thought suggests that the stability of the S-L complex could be enhanced by increas-
ing the aliphatic chain length of fatty acids as well as melting temperature (from 
8–10). On the other hand, another dimension highlights that smaller carbon chain 
length fatty acids might be more soluble into the aqueous solution and less stable also 
[27, 28]. Tufvesson et al. reported C14 as the most stable conformation than C16 or 
C18 while other explained C16 or C18 is better in the case of complexability [28]. 
Therefore, saturated fatty acid (SFA) with increased chain length can easily form a 
stable complex which further affects enzymatic accessibility due to resistance against 
carbolytic enzymes. Studies over decades highlighted that only SFA can be able to 
form a strong stable S-L complex with increasing chain length in a temperature-
dependent manner whereas an inverse relationship has been found for unsaturated 
fatty acid (UFA) [26, 28]. A report from Zheng et al. [29] stated that chain length and 
degree of unsaturation have a role in the compact structure of starch-lipid formation. 
In addition to this, Kawai et al. [30] & Meng et al. [31] revealed starch-UFA complex 
showed resistance by formatting a stable complex to digestive enzyme action. The 
degree of complexability of FA in the case of maize starch ranged from 11.60–26.31% 
according to Sun et al. report [32]. Moreover, it has been explained from Sun et al. 
[32] RS is also enriched with the degree of unsaturation from 0 to 2%. In addition, 
thermal properties are also greatly affected by this S-L complex. Thermal complexes 
are mainly classified into two types of complexes as type I (90–115°C), type II 
(115–130°C) depending on the melting temperature. Studies from previous research 
have already highlighted that developed type II complex is more resistant to the diges-
tive enzymes as compared to type I complex [33]. But Sun et al. [32] unraveled that 
maize starch-linoleic acid (MS-LOA) primarily formed as type I complex while maize 
starch-stearic acid (MS-SA) belonged to type I & type II complex. The reason behind 
this could be the large steric hindrance associated with LOA than SA which showed 
less accessibility of enzymes and inhibits ultimate glucose release. Cheng et al. [34] 
also used molecular dynamics to study amylose and linoleic acid structural analysis 
and conformational changes during complexation. On the continuation with Cheng 
et al., recently another research group of Schahl et al. [35] revealed the molecular 
structural complex using 13 NMR spectroscopy where they have taken quantum DFT 
approach affected by amylose size fragment and specific intramolecular hydrogen 
bonds. Hence, all the V-type complexes produced due to the addition of lipids act as a 
stable resistant structure against all digestive enzymes which further lowers glycemic 
response.
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1.2 Starch-protein interactions

Proteins, mostly in the form of amino acids, and enzymes, are the predominant 
component in the food matrix, other than starch and fat [36]. Apart from the nutri-
tional quality, proteins act as the major microstructural framework in a food matrix 
and hence also act as a physical barrier towards starch hydrolysis [37]. An interesting 
correlation among the reduction in insulinemic and glycemic responses by increasing 
the protein content in starchy crops led to the possibility of starch-protein interplay. 
Among the protein types, albumin, glutenins, and globulins aid in the gluing of 
protein bodies into a matrix enveloping the starch granules, which act as a barrier for 
starch digestion [38]. The existence of a protein barrier encircling the starch granule 
was validated using the pronase enzyme which dissociates the protein matrix and 
results in a considerable increase in-vitro starch digestibility [39]. Annor et al. [40] 
reported that the hypoglycemic characteristic of Kodo millet was related to the pro-
tein encircling the starch granules. Ren et al. [41] also reported that there was a fast 
increment in in-vivo GI and in-vitro starch digestibility of foxtail millet flour due to 
the lack of starch-protein complex after deproteination. Various studies have reported 
that the presence of gluten has an impact on the pace of starch digestion, resulting in 
reduced glycemic response [42, 43]. Gluten develops a visco-elastic and thick network 
that entraps starch granules, as well as a compact and stable structure that prevents 
starch granules from expanding and leaching during cooking, resulting in reduced 
accessibility of enzyme and slow-release properties [44]. To study the impact of 
protein removal from wheat products (bread) on blood glucose, healthy individuals 
were given meals of white bread prepared either from normal or gluten-free flour. It 
was observed that there was a considerable increase in blood glucose after consuming 
bread prepared from gluten-free flour. This led to an increase in digestion rate in-vitro 
and declined the starch mal-absorption in vivo as studied via breath-H2 measure-
ments, but this impact was not restored when the gluten was later added back to the 
gluten-free flour. The possible mechanism behind this may be all-purpose wheat flour 
is made up of granules with a starch core enveloped by a protein network that inhibits 
the hydrolysis rate in the small intestine lumen [45]. Recently, Lu et al. [46] revealed 
that in the small intestine, amino acids generated from enzymatic hydrolysis of rice 
protein inhibited the porcine pancreatic α-amylase activity. The protein content of 
rice flour was shown to be negatively associated with rapidly digestible starch (RDS) 
and slowly digestible starch (SDS), while positively with RS [47], on the other hand, 
the total protein content of rice grain was found to be inversely correlated with in-
vivo GI [48].

Other than endogenous factors, processing (thermic/mechanical) has been found 
to have an effect in altering the level of interaction between protein-starch molecules, 
influencing the overall digestibility [49]. Pasini et al. [50] found that in-vitro diges-
tion of wheat protein has been considerably reduced at elevated cooking temperatures 
(>180°C) due to the development of high molecular weight protein aggregates which 
are stabilized by strong irreversible linkages, distinct from hydrophobic and/or 
disulfide bonds that could be prevalent at low temperatures (100°C). Furthermore, it 
has been found that “appropriate” kneading/mixing promotes the development of a 
protein matrix (gluten) via disulfide linkages. Moreover, if extreme kneading/mixing 
is performed, the matrix loses strength as the linkages break and glutenin particles are 
fragmented into smaller fragments, which helps digestive enzymes access the starch 
and thus increases the starch digestibility [51].
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Protein-enriched food formulations have also been found to impact the overall GI 
and thus assist in developing diabetic-friendly foods. Formulations based on proso 
millet starch and different protein mixtures (15% zein + 10% whey protein iso-
late + 15% soy protein isolate) reported that protein types reduced the RDS levels and 
enhanced RS levels from 4.49% to 11.73%. The blend comprising of corn starch (10%) 
and whey protein isolate had a considerably higher concentration of RS and low RDS 
as compared to pure corn starch. This could be due to the increased protein matrix 
enveloping starch networks, preventing amylolytic attack. When soy protein was 
added to maize starch, RDS was reduced while SDS and RS were increased [52]. The 
addition of 51% rice protein in wheat starch along with cellulose reduced RDS level, 
whereas the addition of protein from pea proteins (82%), maize (95%), soy (94%), 
and wheat (86%) did not affect RDS levels [13]. Bio-mimicking interactions in corn 
grains using microencapsulation of corn starch by zein protein have been reported 
with lowered starch digestibility [53]. Furthermore, starch coupled with amino acids 
or protein via the Maillard process has been demonstrated to limit the starch swell-
ing, solubility as well as digestion rate [54], however, potential negative effects due to 
glycated product consumption must be examined in detail [55].

1.3 Starch-fiber interactions

Dietary fiber (DF), which consists primarily of non-starch polysaccharides found 
in plant cell walls, is an essential part of the food matrix [56]. DF types present in any 
food matrix are classified based on their water solubility and fermentability. Lignin, 
cellulose, and hemicelluloses are the major water-insoluble DF that get less fermented 
while the water-soluble DF includes pectin, mucilage, and gums and gets fermented 
properly in the small intestine [57]. Among the types, insoluble DF has been reported 
to be more useful in decreasing the GI as compared to their soluble fraction [58] as 
most of the common cereals contained a low level of naturally occurring soluble DF 
[59]. The endogenous fibers encircle the starch granules forming a starch-fiber net-
work in the matrix, bio-mimicking an intact microstructure (plant cell/tissue) result 
in reduced enzyme accessibility and altered digestibility. Dense matrix composition in 
fiber content has been positively correlated to minimal postprandial GR after con-
sumption in the case of barley, wheat, psyllium husk, and oats. This has been majorly 
attributed to the effect of insoluble DF in reducing starch bio accessibility as well as 
bioavailability [60, 61]. On the other hand, soluble DF like inulin has been found to 
form a protective barrier surrounding the starch granules, reducing starch swelling 
and release of amylose thus resulting in low viscosity values. This reduced the acces-
sibility of starch-degrading enzymes that affect the in vivo starch digestibility and GI 
[62]. Among the studied types, β-glucan and guar gum have been reported to reduce 
the enzyme diffusion kinetics and thus the rate of carbohydrate digestion, eventually 
resulting in to slow down the gastric emptying and lower the liberation and absorp-
tion of glucose in the small intestine [63, 64]. The endogenous presence of β-glucans 
(native-form) in oats have been found to have an enveloping role towards starch and 
protein, thus reducing the enzyme accessibility, in turn, lowered starch digestibility 
and postprandial glycemia [65].

Endogenous presence, as well as exogenous addition of cellulose (insoluble fiber), 
has considerably reduced the α-amylase activity via mixed-type inhibition result-
ing in lowered in-vitro starch digestion [66]. The reduction of α-amylase activity 
was found to be positively linked with cellulose content, and α-amylase was found 
to be non-specifically linked on the surface of cellulose, reducing starch hydrolysis. 
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Interaction study between pectin and digestive enzyme (amyloglucosidase) showed a 
similar pattern, where pectin resulted in the conformational alteration in an enzyme 
that impeded substrate access and slower digestion rate of long amylopectin chains 
[67]. Luo and Zhang [68] aimed to mimic the microstructure of endosperm tissue by 
constructing a starch in a whole-grain-like structural form using calcium-induced 
alginate gelation in the presence of β-glucan and starch.

Processing strategies, as well as formulations with exogenous addition of fiber 
types, have also been found to reduce the in-vitro starch digestibility and GI of foods 
[69]. The addition of fibers like xanthan gum, glucomannan, and agar in rice lowered 
the starch digestibility in-vitro and in-vivo [70, 71]. However, no relationship was 
observed between native fiber content (0.5%) and in-vivo starch digestibility in 
rice, even though the fiber level was certainly too less to have any influence on starch 
digestion [48]. Reduction in blood glucose [72] and in-vitro starch digestibility [73] 
was observed in wheat products after adding β-glucan. β-Glucan has been assumed 
to improve viscosity, which could have lowered the rate of gastric emptying [72] and 
lowered the rate of diffusion of starch digestive enzymes. Vegetables like Moringa 
oleifera leaves and okra were found to reduce the glycemic response of various foods. 
When 10% okara was added to rice noodles, blood glucose levels significantly reduced 
[74]. Broccoli fiber addition in a potato diet has proved to assist in decreasing the GI 
by increasing RS content [75]. However, a 30% decrease in GI in the same sample 
was observed when studied in-vivo. Hardacre et al. [76] showed that fibers with 
comparable viscosities resulted in variation of in- vitro starch digestion and hypoth-
esized that few fibers may inhibit certain enzymes in a non-competitive manner as a 
chemical barrier. An interesting observation reported by Sciarini et al. [69] was that, 
the addition of up to 5% soluble (Inulin) and insoluble fibers (oat fiber and type IV 
RS) enhanced the starch digestibility in GF bread, while further increase resulted in 
a reduction in starch digestibility. The initial observed increase could be due to the 
altered bread crumb structure while a higher percentage of fiber could have estab-
lished a staple starch-fiber network and thus reducing the digestibility. The impact of 
RS addition in pasta structure on native starch digestibility was studied by Gelencser 
et al. [77]. They reported that kinetic characteristics were not considerably variable 
between the control and RS-added samples, whereas the starch digestibility was 
considerably low in the RS-added samples, signifying a decrease in absolute glucose 
release during amylolysis. The addition of RSII (7.5%) and RSIV (10%) in pasta 
showed a decrease in in-vitro starch digestibility and GI [78]. Furthermore, larger DF 
concentrations also might play role in confining the starch inside the pores, prevent-
ing its hydrolysis. Mkandawire et al. [79] discovered that adding up to 50% cellulose 
(w/w starch) to sorghum flours had no significant impact on the RS level. DF, on the 
other hand, enhanced the solution viscosity in-vivo, and therefore may slow starch 
degradation by restricting enzyme mobility, as gums do, and hence slowing digestion 
rate in total [63].

In this direction, several animal studies have been carried out to study the effect of 
adding fiber on starch bioavailability or glucose release. The supplement of insoluble 
cereal DF from oat leads to enhanced insulin sensitivity in obese mice [80]. Further 
studies conducted by Weickert et al. [81] revealed that oat DF and purified wheat can 
enhance the postprandial insulin secretion hormones which further improved the 
postprandial carbohydrate metabolism. The high level (500 mg/kg body weight) of 
oat β-glucan or 4% barley β-glucan resulted in considerable enhancement of insulin 
resistance in insulin-resistant mice model and the impact was concentration-depen-
dent [82, 83]. β-Glucan was found to inhibit the intestinal disaccharides’ activities 
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in-vitro and in-vivo, which led to slow starch digestion rate [84]. In the diabetic mice 
model, β-glucan considerably repaired and increased the integrity of pancreatic islet 
β-cell and tissue structures [85]. Overall, the type and concentration of fiber have a 
customized effect on the food matrix. Comprehensive list of various food compo-
nents added to starch and their effect on starch digestibility is tabulated in Table 1.

S. no. Food component added Added to starch Impact 

on starch 

digestibility

Reference

Lipid

1. Cooking fats (ghee, coconut oil, 

virgin coconut oil, rice bran oil) 

(2.5%)

Rice starch (white, 

black, red)

↓ [9]

2. Linoleic acid (0.75%) Arrowhead tubers 

starch

↓ [86]

3. Ascorbyl palmitate (10%) High amylose maize 

starch, potato starch

↓ [87]

4. Trans-oleic acid, cis-oleic acid, 

cis linoleic acid (1%, 3%, 5%)

Rice starch ↓ [87]

5. Palmitic acid (0.5%) Waxy rice starch ↓ [88]

6. Oleic acid (1%, 2%, 3%) & 

linoleic acid (2%, 4%, 6%)

Rice starch ↓ [89]

7. Linoleic acid, monomyristyl 

glycerol (0%, 0.5%, 1%, 1.5%, 

2%, 3%, 5%)

Maize starch ↓ [90]

8. Oleic acid (4%) Native rice starch ↓ [91]

9. Palm oil (5%, 10%) Arrowroot starches ↓ [92]

10. Lauric acid (1.5%) Wheat starch ↓ [93]

11. Oleic acid (0.05%) Native potato starch ↓ [94]

12. Dodecanoic acid, tetradecanoic 

acid, octadecanoic acid (1%, 

3%, 5%)

Native rice starch ↓ [95]

13. Decanoic acid, palmitic acid 

(10%)

Native maize starch ↓ [32]

14. Lauric acid, stearic acid and 

glycerides (glycerol monolaurate, 

glycerol monostearate) (0.18%)

Wheat starch ↓ [93]

15. Palmitic acid (0.3%) Maize starch ↓ [1]

Protein

16. Rice globulin (2%) Rice starch ↓ [15]

17. Common bean (15%, 30%, 45%) Wheat semolina ↓ [96]

18. Gluten (2%) Wheat flour ↓ [97]

19. Beans (10%, 20%, 30%) Semolina flour ↓ [98]

20. White beans (15%, 30%, 45%) Rice flour ↓ [99]

21. Rice protein (51%) Wheat starch ↓ [52]
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2. Conclusion

Binary interactions among the nutrient types and starch mediate the glycemic 
amplitude of real food systems. Among the binary interactions (starch-lipid, starch-
protein, starch-fiber), the role has been extensively characterized in limiting the 
enzyme penetrance, altering the molecular configuration, starch digestibility, and 
thus in turn GR. Understanding such binary interactions, not only shares a logical 
explanation for the low GI of whole-grain foods but also the immense role of such 
cereals in diabetic-friendly foods. Even though the existing rationale supports the 
fact that multiple food matrix interaction studies at a time are difficult, it’s indeed 
vital to study ternary (three-way) and quaternary (four-way) interactions and their 

S. no. Food component added Added to starch Impact 

on starch 

digestibility

Reference

22. Alfalfa seed (15%, 30%, 45%) Rice flour ↓ [100]

23. Hydrolyzed protein (12%) Wheat flour ↓ [13]

24. Gluten (20%) Wheat starch ↓ [101]

25. Whey protein isolate (2.5%, 

4.5%, 10%)

Native corn starch ↓ [102]

26. Rice globulin (2.5%) Rice flour No effect on 

digestibility

[103]

27. Soybean peptide (5%, 10%, 

15%)

Corn or potato starch ↓ [104]

28. Chickpea protein (8%) Rice flour ↓ [105]

Fiber

29. Oat fiber (10%) GF bread ↓ [70]

30. Oat fiber (>5%) Pasta ↓ [106]

31. Inulin (12%) GF bread ↓ [107]

32. Cellulose (50%) Potato starch ↓ [79]

33. Cellulose (9–83%) Maize starch ↓ [66]

34. Lentinus β-glucan (20%) Wheat flour ↓ [73]

35. Glucomannan (0.1–0.2%) Rice starch ↓ [70]

36. Xanthun gum (0.4%) Rice starch ↓ [71]

37. RSIV (Novelose 480) (10%) Pasta ↓ [108]

38. RSIV (Novelose 480) (10%) GF bread ↓ [69]

39. RSII (Native HA maize starch) 

(20%)

GF bread ↓ [109]

40. RSII (Hi-maizeTm 260) (20%) Pasta ↓ [106]

41. RSII (FibersymTm70) (20%) Pasta ↓ [77]

42. Okara (10%) Rice noodles ↓ [74]

Table 1. 
List of various food components added to starch and their effect on starch digestibility.
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