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Abstract

Biochar is a solid material derived from different feedstocks that is added to the 
soil for various agronomic and environmental purposes, such as nutrient sources 
and CO2 emission mitigators. In modern agriculture, the application of herbicides 
directly in the soil is common for pre-emergent weed control; however, biochars 
may interfere in the degradation processes of these agrochemicals, increasing or 
decreasing their persistence. Long persistence is desirable for some herbicides in 
determined cultivation systems, especially in monoculture, but persistence is unde-
sirable in crop rotation and/or succession systems because the subsequent cropping 
can be sensitive to the herbicide, causing carryover problems. Therefore, knowing 
the interactions of biochar-herbicide is essential, since these interactions depend 
on feedstock, pyrolysis conditions (production temperature), application rate, 
biochar aging, among other factors; and the physical-chemical characteristics of 
the herbicide. This chapter shows that the addition of biochar in the soil interferes 
in the persistence or remediation processes of the herbicide, and taking advantage 
of the agricultural and environmental benefits of biochars without compromising 
weed control requires a broad knowledge of the characteristics of biochar, soil, and 
herbicide and their interactions.

Keywords: bioavailability, sorption, weed control, pollution soil

1. Introduction

Herbicides are the pesticides most applied in modern agriculture for weed 
control worldwide, in pre-emergency, directly in the soil, or in post-emergence 
in leaves. Regardless of the application of herbicides, these reach the soil and may 
persist with residual effect (carryover) or contaminate the non-target organism 
and environment. The behavior of the herbicide in the soil is governed by the 
physico-chemical properties of the molecule and the soil and can have retention, 
transport, and transformation processes [1]. In transformation processes, the her-
bicide molecule is degraded into secondary compounds (metabolites) by physical 
( photodegradation), chemical, and biological processes (Figure 1) [2].
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Biological degradation is the most common way to dissipate the herbicides in 
the environment, and it is carried out mainly by the soil microbiota which use the 
herbicide molecules as an energy source and transforms it into compounds without 
herbicidal action, the process is also known as detoxification [3, 4]. The chemical 
complexity of the herbicide determines the higher or lower facility of microorgan-
isms to degrade the molecules, characterizing it in low or high persistence in the soil 
[5], being measured by degradation or dissipation half-life time (DT50) in labora-
tory or field conditions, respectively [2].

The degradation of herbicides in the soil by microorganisms can be aerobic 
(with oxygen) or anaerobic (without oxygen). In the presence of oxygen, the herbi-
cide is mineralized in CO2 and water. Without oxygen, the herbicide is mineralized 
in CH4, CO2, and water [6]. The efficiency of aerobic degradation of herbicides is 
higher than the anaerobic. The aerobic bacteria oxygen act as an oxidizing agent, 
and they are present in the region of the soil where there is a higher content of 
organic matter (OM) and an excellent soil-water-air ratio for the microbiota [7]. In 
conditions of absence of oxygen, the herbicide can become more persistent in the 
soil and its degradation pathways are different from microorganisms with aerobic 
metabolism [8].

The addition of organic materials, like biochar, in the soil directly influences 
the microbial community, responsible for herbicide degradation [9]. Biochar is a 
carbonaceous material produced by different feedstocks in pyrolysis conditions 
with the limited presence of oxygen. Naturally, biochar is found in the anthro-
pogenic soil, known as “Terra Preta de Índio”, i.e., Amazonian Dark Earths in 
the Amazon, which gave rise to synthetic biochar produced worldwide [10]. 
Pyrolyzed feedstocks and pyrolysis conditions determine the physico-chemical 
properties of biochar, such as nutrient content, porosity, specific surface area, 
among others.

Figure 1. 
Degradation process (chemical, biological, and photodegradation) of herbicides in the soil.
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In agricultural soils, the biochar has been added to increase porosity, water-
holding capacity, reduce acidity, sequester carbon, reduction of greenhouse gas 
emissions, plant growth promotion, improve soil fertility, and immobilize (reme-
diation) herbicides by increasing sorption and microbial diversity [11]. This chapter 
showed that is possible to recommend the addition of biochar in the soil to interfere 
in the persistence or remediation processes of the herbicide.

2. Biochar characteristics

Biochar is the carbon-rich product resulting from the pyrolysis of organic resi-
dues such as wood, animal wastes, crop residues, and biosolids [12]. The feedstock 
usually determines the chemical composition, quantity of macropores, and nutrient 
content in biochar. Pyrolysis conditions (such as temperature, heating rate, and 
residence time) determine the morphology and surface structure changes in feed-
stock and C/H content [11]. The dominant properties affecting herbicide sorption 
and degradation by biochar include porosity, specific surface area, pH, functional 
groups, carbon content and aromatic structure, and mineralogical composition [13].

More porous structures and higher specific surface area will result in higher 
sorption capacities and lower degradation of herbicides [13]. Higher pH of biochar 
can accelerate the hydrolysis of organophosphorus and carbamate herbicides in the 
soil through the alkali catalysis mechanism [14]. Surface functional groups includ-
ing carboxylic (–COOH), hydroxyl (–OH), lactonic, amide, and amine groups are 
essential for the sorption capacity of biochar [15, 16]. Carbon content and aromatic 
structure can increase herbicide sorption and reduce their bioavailability to be 
degraded [13]. The mineralogical composition can reduce the bioavailability of 
herbicides through surface chelation and/or surface acidity mechanisms [17].

Biochar amendment also affects the degradation of herbicides in the soil in 
several ways and the effects can be either stimulatory or suppressive [18]. Biochar 
may contain available nutrients that stimulate overall microbial activity and, 
thus, degradation of herbicides [19, 20]. However, the degradation of herbicides 
in biochar-amended soils is most commonly reduced because herbicide sorption 
increases [21]. Biochar also sorbs dissolved organic carbon (OC), which can con-
tribute to co-metabolic biodegradation [22]. Some changes in the degradation rate 
can be a result of indirect effects of biochar amendment, e.g., changes in soil pH, 
albedo, and aeration [18].

3. Microbial diversity in biochar-amended soils

Soil correction with biochar can affect the soil microbiota in different ways:  
(1) It can provide an increase in the microbiota [23, 24]; (2) It can negatively affect 
the resident microbiota by the amount of organic substances (volatile compounds) 
formed in the production of biochar [25, 26]; or (3) It may not effect the soil micro-
biota [27, 28]. The possible interaction mechanisms of biochar and soil microbiota 
are exemplified in Figure 2 [29, 30]. The physical–chemical structures of the 
biochar surface (macro and micropores, roughness, surface load, and hydrophobic-
ity) are a refuge for the soil microbiota [31, 32], where microorganisms can find 
nutrients and ions adsorbed in biochar particles useful for their growth [29, 33]. In 
addition, biochars can contain significant amounts of organic substances (volatile 
organic compounds and free radicals) [34, 35], improve the soil’s physical–chemical 
properties, which are important for microbial growth by modifying habitats (aera-
tion, water content, and pH) [36], affect the enzymatic activity of the soil [37, 38], 
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and increase the sorption of herbicides, reducing the bioavailability and toxicity of 
these agrochemicals for the soil microbiota [29, 39, 40].

Biochar-amended soil has a higher respiratory rate and microbial communi-
ties due to carbon mineralization by soil microorganisms [41]. Microbial biomass 
carbon and nitrogen increased by 18% and 63% with the application of 1% of 
sugarcane bagasse biochar [42]. The role of biochar nutrients in the biodegradation 
of coexisting dichlobenil and atrazine in soil by their respective bacterial degraders 
was evaluated. The degradation increased with increasing biochar content, due to 
nutritional stimulation on microbial activities [43]. The application of hardwood-
derived biochar increased atrazine mineralization by stimulating atrazine-adapted 
microflora compared to unamended soil [19]. Soil amended with biochar derived 
from wheat straw increased the abundance and diversity rate of bacteria and fungi 
beneficial to plants in the rhizosphere of wheat seedlings [24]. In addition, these 
microorganisms use fomesafen as a source of nutrients, which favors their prolifera-
tion from the soil [24]. The change and proliferation of the soil microbiota with the 
addition of biochar is related to the chemical characteristics of biochar (mainly pH 
and nutrient content) and physical properties (pore size, pore-volume, and specific 
surface area), OM content, and water retention that provide favorable conditions 
for soil microbiota [28]. Although soil microbial biomass is generally benefited with 
the addition of biochar, the response depends on the type of raw material, pyrolysis 
temperature, and biochar application rate, since these factors directly interfere with 
the physical–chemical characteristics of biochar and consequently on the response 
of the microbiota in herbicide degradation. The proposed mechanisms involved in 
biochar and microbiota interactions require further studies to elucidate the impact 
of biochar on soil microbial activity.

4. Influence of biochar amendment in soil on the herbicide degradation

Herbicides are applied to the soil to control weeds during a certain time after 
application; however, long persistence may affect the subsequent crop, a process 
known as carryover. Therefore, the process of degradation of the herbicide is 

Figure 2. 
Interactions between biochar and soil microbiota and environmental effects. Source: Adapted from Zhu  
et al. [29].
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important for the dissipation of herbicides in the soil when the intention is the 
remediation of the product. However, under agronomic conditions in which a 
residual effect of the herbicide on the soil is desired for weed control, the addition 
of biochar can reduce the persistence of the product, consequently reducing its 
effectiveness in management [2, 9, 44].

The degradation of herbicide molecules into secondary compounds (metabo-
lites) can occur by biotic (biological degradation) or abiotic (hydrolysis, reduction, 
oxidation, and photolysis) processes [45]. Biodegradation, carried out by the soil 
microbiota (bacteria, fungi, protozoa, and actinomycetes), is the main decom-
position pathway for most herbicides [13, 46]. Microorganisms can use herbicide 
molecules as an energy source and transform them into compounds without 
herbicide action, a process known as catabolism, or through co-metabolism, in 
which herbicide degradation requires the presence of a growth substrate that is used 
as primary carbon and energy source [3, 47], i.e., microorganism does not obtain 
energy or benefit from the herbicide degradation. The transformation process is 
usually mediated by non-specific enzymes that are capable to transform various 
organic compounds [4]. Herbicides have varied susceptibility to microbial degra-
dation depending on the complexity of the molecule that influences low or high 
persistence in the soil [5].

Microbial degradation generally reduces the DT50 of herbicides in the soil; 
however, the addition of biochar, according to studies performed, may increase 
or decrease the DT50 values, depending on the herbicide and pyrolyzed feedstock 
(Table 1). The high sorption capacity for herbicides in the biochar-amended soil 
decreases herbicide degradation, providing a higher DT50 than the unamended 
soil [46, 49]. For example, less atrazine degradation was observed in amended 
soils with sugarcane bagasse biochar (0.5% w/w) (Table 1), increasing in 15 days 
the DT50 of the herbicide in relation to unamended soil [49]. Flumioxazin DT50 
increased by ~10 days when bamboo biochar (10% w/w) was added compared to 
unamended soil (Table 1) [51]. The DT50 of 2-methyl-4-chlorophenoxyaceticacid 
(MCPA) increased from 5.2 days (unamended soil) to 21.5 days in amended soil 
with 1% of wheat straw biochar [59].

The application of biochar can also increase soil microbial activity, improving 
herbicide degradation [29, 60]. The increase in microbial biomass may be due to the 
addition of available organic substrates, which are the main energy source readily 
available to soil microorganisms [55]. The high content of dissolved OC in the soil 
MO can reduce herbicide sorption by biochar particles, as dissolved OC competes 
with herbicide molecules to occupy available biochar sorption sites [61]. Biochar 
also sorbs dissolved OC, which can contribute to co-metabolic biodegradation 
[22]. Some changes in degradation rate may result from indirect effects of biochar 
amendment, e.g., changes in soil pH and aeration [18]. The highest degradation of 
oxyfluorfen was observed in amended soils with different rates of application of 
rice husk biochar, decreasing DT50 between 2 and 23 days compared to unamended 
soil (Table 1) [50]. Alachlor mineralization increased up to 50% using biochar 
derived from soybean stoves, sugarcane bagasse, and wood chips compared to 
unamended soil (Table 1) [58].

Photolysis and hydrolysis are the main abiotic processes involved in herbicide 
degradation [48, 62]. Photolysis or photodegradation occurs when herbicides are 
exposed to sunlight [63] and can be direct (a herbicide molecule absorbs light 
energy, is later excited and transformed) or indirect (species photochemically 
produced in the soil matrix react with the herbicide molecule triggering its degra-
dation) [64]. Water degrades herbicides by dividing large molecules into smaller 
molecules, breaking them in the process called hydrolysis [65]. The hydrolysis of 
herbicides in the soil can be influenced by several factors such as dissolved ion 
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Location 

(Country)

Soil texture (%) Feedstock Application 

rate (%)b

Pyrolysis 

temperature (°C)

Herbicide DT50 (biochar-

amended soil)

DT50 (unamended 

soil)

References

Sand Silt Clay OMa

Australia n.a. n.a. 36.1 2.4 Wheat straw 0.5 450 Atrazine 61.5d 76.5d Nag et al. [44]

1 57.9d

n.a. n.a. 28 4.0 0.5 65.9d 68.6d

1 52.0d

Australia n.a. n.a. 36.1 2.4 Wheat straw 0.5 450 Trifluralin 73.6d 75.4d Nag et al. [44]

1 71.1d

n.a. n.a. 28 4.0 0.5 63.2d 66.4d

1 61.2d

Brazil n.a. n.a. n.a. n.a. Industrial-
production of 

charcoal

3 350-550 Sulfometuron-
methyl

52.1 36.6 Alvarez et al. 
[48]

6 55.4

China n.a. n.a. n.a. 3.2 Sugarcane bagasse 0.2 500 Atrazine 38.5 28.1 Huang et al. 
[49]

0.5 45.0

2.0 0.2 35.5 23.7

0.5 41.2

3.6 0.2 41.2 39.8

0.5 54.8
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Location 

(Country)

Soil texture (%) Feedstock Application 

rate (%)b

Pyrolysis 

temperature (°C)

Herbicide DT50 (biochar-

amended soil)

DT50 (unamended 

soil)

References

Sand Silt Clay OMa

China 21.4 51.4 27.2 2.8 Coal 1.5 n.a.c Isoproturon 53.3 54.6 Si et al. [46]

5 60.8

8 71.4

27.9 33.6 38.5 1.5 1.5 67.9 16

5 102

8 136

44.9 39.5 15.6 1.2 1.5 58.2 15.2

5 88.9

8 107

China 32.1 24.7 43.2 0.84 Rice husk 0.5 500 Oxyfluorfen 59 65 Wu et al. [50]

1 57

2 53

73.2 12.3 14.5 0.98 0.5 104 108

1 85

2 77

55 23.1 21.9 2.2 0.5 43 45

1 42

2 35
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Location 

(Country)

Soil texture (%) Feedstock Application 

rate (%)b

Pyrolysis 

temperature (°C)

Herbicide DT50 (biochar-

amended soil)

DT50 (unamended 

soil)

References

Sand Silt Clay OMa

China 77.4 4.4 18.2 1.5 Cornstalk 10 500 Flumioxazin 15.4 11.1 Chen et al. [51]

Rice husk 500 16.7

Bamboo 700 23.2

21 17 62 1.7 Cornstalk 500 18.5 11.5

Rice husk 500 22.3

Bamboo 700 25.4

6.8 55.3 37.9 3.8 Cornstalk 500 20.5 15.4

Rice husk 500 22.6

Bamboo 700 29.2

3.7 64.7 31.6 4.3 Cornstalk 500 21.0 20.8

Rice husk 500 24.7

Bamboo 700 30.7

Germany 30.1 62.5 7.8 1.2 Hardwood 0.1 500 Atrazine 74.0d 72.4d Jablonowski et 
al. [19]

1 72.4d

5 68.0d

24.4 25.2 50.3 3.1 0.1 53.0d 42.6d

1 49.8d

5 44.4d
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Location 

(Country)

Soil texture (%) Feedstock Application 

rate (%)b

Pyrolysis 

temperature (°C)

Herbicide DT50 (biochar-

amended soil)

DT50 (unamended 

soil)

References

Sand Silt Clay OMa

India 56.6 29.6 13.8 n.a. Rice straw 0.25 350 Bispyribac-
sodium

10.7 27.1 Sharma et al. 
[39]

0.5 11.5

1 12.1

0.25 550 8.8

0.5 9.9

1 11.2

Latvia 89.2 8.9 1.9 n.a. Wood chips 5.3 725 MCPA 1986f 94.5f Muter et al. 
[52]

4.1 3854f 11.1f

Wheat straw 5.3 1636f 94.5f

4.1 15.3f 11.1f

Malaysia 40 21.5 37.9 0.99 Oil palm empty 
fruit bunches

1 300 Imazapic 46.2 34.6 Yavari et al. 
[53]

Imazapyr 53.3 38.5

Rice husk Imazapic 40.7 34.6

Imazapyr 46.3 38.5
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Location 

(Country)

Soil texture (%) Feedstock Application 

rate (%)b

Pyrolysis 

temperature (°C)

Herbicide DT50 (biochar-

amended soil)

DT50 (unamended 

soil)

References

Sand Silt Clay OMa

Russia 3.1 30.4 66.5 n.a. Woods (Betula sp. 
and Piceaabies)

1 400 Diuron 47 40 Zhelezova et 
al. [18]

10 42

20 56

30 45

1 Glyphosate 187 17

10 151

20 131

30 51

83.7 8.8 7.5 n.a. 1 Diuron 58 112

10 33

20 35

30 40

1 Glyphosate 83 182

10 66

20 78

30 53
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Location 

(Country)

Soil texture (%) Feedstock Application 

rate (%)b

Pyrolysis 

temperature (°C)

Herbicide DT50 (biochar-

amended soil)

DT50 (unamended 

soil)

References

Sand Silt Clay OMa

Spain 24 47 30 1.3 Hardwood 
(Caryatomentosa)

2 350 Clomazone 97 29 Gámiz et al. 
[54]

400 77

700 99

Hardwood 
(Caryaillinoinensis)

350 107

400 65

700 67

Hardwood 
(Caryatomentosa)

350 Bispyribac-
sodium

n.a. 21

400 n.a.

700 84

Hardwood 
(Caryaillinoinensis)

350 n.a.

400 n.a.

700 33
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Location 

(Country)

Soil texture (%) Feedstock Application 

rate (%)b

Pyrolysis 

temperature (°C)

Herbicide DT50 (biochar-

amended soil)

DT50 (unamended 

soil)

References

Sand Silt Clay OMa

Spain 43 32 23 0.9 Olive mill waste 2.5 n.a. Metribuzin 39 22 López-Piñeiro 
et al. [55]5 48

Olive mill waste 
plus leaves

2.5 13

5 17

53 32 14 0.6 Olive mill waste 2.5 49 35

5 52

Olive mill waste 
plus leaves

2.5 19

5 22

43 14 42 0.9 Olive mill waste 2.5 40 29

5 43

Olive mill waste 
plus leaves

2.5 18

5 16

USA n.a. n.a. n.a. 0.7 Sugarcane bagasse 0.2 350 Metribuzin 54 25 White Junior 
et al. [56]Sugarcane bagasse 0.1 700 25

n.a. n.a. n.a. 0.8 Sugarcane bagasse 0.2 350 74 57

Sugarcane bagasse 0.1 700 39

n.a. n.a. n.a. 1.2 Pine wood 0.4 400 39 28

USA 22 55 23 >2 Mixed sawing 5 500 Acetochlor 34.5 9.7 Spokas et al. 
[57]

USA n.a. n.a. n.a. n.a. Soybean waste 10 500 Alachlor 4.6e 10.4e Mendes et al. 
[58]Sugarcane bagasse 350 3.4e

Wood bark (grape) 500 3.8e

aOrganic Matter; bApplication rate in relation to soil mass (ww−1); cData not available; dDegradation (%); eMineralization (%) to CO2; fHerbicide concentration after incubation period (μg kg−1).

Table 1. 
Effect of biochar amendment in soil on the degradation half-live time (DT50 - days) of different herbicides.
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concentration, soil pH, and content of clays and metal oxides capable of catalyzing 
this herbicide degradation process [14, 66].

The application of biochar can influence the degradation of herbicides by 
hydrolysis and photolysis, since persistent free radicals existing or photogenerated 
in biochars can react with the herbicide by the activation of other free radicals such 
as hydroxyl, sulfate, anion, and superoxide [67, 68]. In addition, the increase in soil 
pH, the presence of active groups on the mineral surface of biochar, and the high 
sorption of herbicides have a direct effect on the chemical degradation processes of 
herbicides [64, 66]. Atrazine was hydrolyzed by 27.9% in the presence of biochar 
derived from pig manure (700°C) after 12 h due to the mineral surface and dis-
solved metal ions released from biochars that catalyze hydrolysis [66]. In contrast, 
imazapic and imazapyr were resistant to degradation by hydrolysis in amended soil 
with biochar derived from empty fruit bunch of oil palm and rice husk, and their 
DT50’s increased by ~6 to 12 days because the photodegradation rate diminished [53] 
(Table 1). The addition of biochar to the soil at 1 or 5% inhibited the photodegrada-
tion of metribuzin and its metabolites deamino (DA), deaminodiketo (DADK), and 
diketometribuzin (DK), which increased their DT50’s due to the immobilization of 
these compounds the surface layer of the biochar [64]. Therefore, the application 
of biochar has a direct impact on herbicide degradation processes and should be 
constantly examined for its application in the soil.

5. Factors affecting herbicide degradation in biochar-amended soils

The impact on the degradation of herbicides due to their high sorption in the 
biochar particles depends on the rate of biochar applied to the soil. The applica-
tion of different rates of application of hardwood biochar in Rhodic Ferralsol soil 
increased atrazine degradation by 49% (0.1% of biochar), 51% (1.0% of biochar), 
and 62% (5.0% of biochar) after 88 days of incubation (Table 1) [19]. DT50 of 
isoproturon in unamended Alfisol was 16 days, however, when biochar was added 
at 1.5 and 5%, DT50 increased to 67 and 136 days, respectively (Table 1) [46], i.e., 
the persistence of isoproturon is prolonged as the rate of biochar added to the soil 
increases. DT50 of fomesafen increased from 34.6 days in unamended soil to 51, 83, 
and 160 days in amended soils with rice husk biochar at 0.5, 1, and 2%, respectively 
[61]. The increased persistence of fomesafen can be explained by the higher sorb 
capacity of biochar and, therefore, little bioavailability of the herbicide for micro-
bial degradation.

Pyrolysis temperature defines the physicochemical characteristics of bio-
chars [69]. Generally, biochar produced at relatively high pyrolysis temperatures 
(>500°C) presents an increase in specific surface area, microporosity, and hydro-
phobicity, improving herbicide sorption [70]. However, even with higher herbicide 
sorption capacity, degradation at high pyrolysis temperatures may be more intensi-
fied than low temperatures. The addition of sugarcane bagasse biochar produced 
at 700°C in clay soil decreased the DT50 of metribuzin from 57 (unamended soil) 
to 39 days, but when biochar was produced at 350°C, DT50 went from 57 to 74 days 
(Table 1) [56]. These conflicting results could be due to the impact of ash on the 
alkalinity of the soil amended with biochar produced at 700°C (20.3% of ash), 
which increased the soil pH and improved the conditions for the degradation of 
metribuzin, and to the greater amount of dissolved OC from biochar produced 
at 350°C (3.78 mg g−1), which is more preferred by microorganisms as substrate, 
increasing the persistence of the herbicide. The variation in pyrolysis temperature 
of eucalyptus wood residue biochar affected the total hexazinone unavailable 
(mineralized + non-extractable residue) being higher for 850°C (46%) and 950°C 
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(49%) compared to biochar pyrolised at 650°C (33%) and 750°C (42%) [71]. The 
addition of biochar did not alter the mineralization of hexazinone, but it did reduce 
the bioavailability of this herbicide in the soil due to the greater amount of non-
extracted residue, reducing the risk of environmental contamination [71].

Aging alters the properties of biochar, affecting the degradation of herbicides, 
however, these changes are not fully elucidated [72]. Glyphosate showed no varia-
tion in degradation in two tropical soils (Ultisol and Alfisol) amended with euca-
lyptus biochar aged [73]. The aging of soil-wood biochar mixtures (Betula sp. and 
Piceaabies) decreased glyphosate and diuron sorption compared to fresh biochar 
amended soil [18]. In addition, herbicide degradation was not affected by changes 
or biochar aging in the soils studied [18]. The degradation of S-metolachlor was not 
affected with the addition of three macadamia nutshell biochars aged [74]. The per-
sistence of mesotrione in different soils amended with fresh and aged biochar was 
similar to unamended soils [75]. In contrast, the extractable amounts of picloram 
were 20 and 50% lower for soils amended with fresh and aged oak wood biochar, 
respectively, in relation to unamended soil [76]. The addition of 10% fresh biochar 
from the olive oil industry increased the DT50 of metribuzin from 20 (unamended 
soil) to 30.2 days, however, the DT50 decreased to 6.4 days with the addition of aged 
biochar, possibly because microorganisms in soil aged with biochar used metribuzin 
as a source of carbon and energy instead of the labile fraction of soil OM (Table 1) 
[55]. The effects of biochar on herbicide degradation in soils should not be general-
ized due to the different characteristics of biochars and the complexity of the soil 
system. The variation of temperature and application rate of biochar can bring dif-
ferent degradation responses for each herbicide studied. Furthermore, the aging of 
biochar in the soil can influence the bioavailability of herbicides in soil solution by 
altering the sorption capacity of the biochar; therefore, the conditions of pyrolysis, 
type of feedstock as well as aging must be taken into consideration when planning 
its use in agriculture and for soil remediation purposes [18].

6. Simultaneous use of herbicides and biochar

In an agricultural context, the property of biochar that offers potential for 
herbicide sorption (environmental remediation) can also decrease the efficacy of 
herbicides applied to the soil, influencing their bioavailability and susceptibility to 
leaching and consequently their degradation [77]. The bioavailability of diuron and 
microbial degradation was reduced in soils amended with rice straw biochar, which 
decreased the effectiveness of diuron to jungle rice (Echinocloa colona) control 
[78]. The addition of wheat straw biochar to the soil inactivated the herbicides 
atrazine and trifluralin, resulting in increased seed germination and biomass of 
annual ryegrass (Lolium rigidum). In this study, the efficacy of the herbicides for 
ryegrass control was achieved when the application doses were four times higher 
than recommended [44]. In a bioassay with Echinochloa colona, injuries 9 days after 
planting decreased with increasing application rates of rice straw biochar indicating 
that sorption of clomazone increased and directly influenced the bioavailability 
of herbicide in the soil [79]. The control efficiency of S-metolachlor was evaluated 
on green foxtail (Setaria viridis) in soil amended with wood biochar at different 
application rates (0, 0.5, 1, and 2%) [80]. S. viridis control at the highest application 
rate (2%) was lower than the other application rates evaluated, however, better than 
the control treatments (no herbicide) [80].

The biochar applied to soil also influences the soil physicochemical properties 
and the improved nutritional availability of these directly impacts crop growth 
and consequently weed growth [81]. Soil amended with walnut shell biochar 
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(5 Mg ha−1) for 4 years was evaluated for weed control [82]. Weed density was dra-
matically higher in biochar-amended soils (60-78%) compared to unamended soil, 
being related to increased nutrient availability and improvements in soil physico-
chemical properties such as cation exchange capacity (CEC), density and porosity, 
increased soil aeration, and water retention. The application of 2 Mg ha−1 of cow 
bonechar prevented weed control by indaziflam which is related to the increase of 
soil fertility, especially the phosphorus and carbon content, and to the increase of 
pH because it is a basic material [83]. In addition, goosegrass (Eleusine indica) and 
crabgrass (Digitaria horizontalis) accounted for about 99.7% of the entire weed 
community infestation [83].

On the other hand, the decrease in efficacy depends on the characteristics of the 
herbicide evaluated. The dose of pretilachlor to inhibit 50% of E. colona emergence 
and biomass was higher in soil amended with rice-husk biochar, however, the 
effectiveness of pendimethalin in controlling E. colona was not influenced by the 
application rate of biochar [84]. The effectiveness on metribuzin in soils amended 
with biochar was evaluated by White Junior et al. [56]. The addition rates of biochar 
did not alter Palmer (Amaranthus palmeri) emergence, and it is possible that the 
residual activity was sufficient to reduce germination at any rate of biochar [56].

The addition of biochar to soil increases the sorption of different herbicides and 
reduces their effectiveness, which may result in the need for higher herbicide appli-
cation rates, additional application times, or more weed control operations required 
[85]. Residual herbicides, applied in pre-emergence, can not provide good weed 
control regardless of soil type after biochar application. This does not necessarily 
mean that biochar should be avoided, however, when biochar is applied to the soil, 
management practices need to be adjusted to obtain appropriate weed control [86].

7. Conclusions

Modifying soil characteristics with biochar is a world-renowned emerging 
practice for either environmental and/or agronomic purposes, and the benefits 
these carbonaceous materials brig to the soil are clear. However, the pyrolysis 
conditions for biochar production directly interfere with the physical–chemical 
properties of the produced material, which govern the biochar-herbicide interac-
tions. If the objective is to apply the herbicide in pre-emergence after the addition 
of biochar in the soil, care should be taken, as biochar can decrease or increase 
the persistence of the chemical product, interfering in the effectiveness of weed 
control over time. On the other hand, if the objective is herbicide remediation in 
contaminated soils, the interference of biochar in the bioavailability of the herbi-
cide in the soil solution to increase soil microbiological diversity should be known.
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