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Chapter

Corrosion Resistance, Evaluation 
Methods, and Surface Treatments 
of Stainless Steels
Temitope Olumide Olugbade

Abstract

Stainless steels are widely recognized and find applications in many engineering 
industries and companies due to their excellent properties including high resistance 
to corrosion as a result of their minimum 10.5% chromium content, exceptional 
strength and durability, temperature resistance, high recyclability, and easy form-
ability. In the present book chapter, the basic concepts of stainless steel including 
its applications, classifications, and corrosion properties will first be discussed. 
Thereafter, their corrosion behaviour will then be explained. The various methods 
by which the corrosion resistance behaviour can be significantly improved includ-
ing surface treatments such as coatings/electrodepositions, alloying, mechanical 
treatment, and others will be discussed in detail.

Keywords: stainless steels, surface treatment, corrosion, passivation, chromium 
content, electrodeposition

1. Introduction

Stainless steels (iron-based alloys) are widely recognized due to their high 
machinability, hardness, mechanical strength, good heat resistance and excellent 
corrosion resistance [1–3]. Compared to other steels, the superior corrosion resis-
tance exhibited by many stainless steels can be attributed to the chromium content 
(about 10.5 wt.%) which initiated the formation of a stable layer of chromium 
oxide on the steel surface [2, 3] thereby preventing chemical reactions with the bulk 
material hence reducing corrosion attack to the minimum. Chromium is one of the 
major elements that play a vital role in the corrosion resistance of stainless steels. 
However, when exposed to water for a long period, their corrosion resistances 
reduce at elevated temperatures, hence the need to come up with more robust 
techniques for protecting the sample surface.

Even though they exhibit good corrosion resistance, efforts have continually 
been made to further improve the corrosion resistance behaviour of stainless 
steels. Heat treatment such as annealing due to the oxidation of steel surface [4–6], 
surface mechanical treatment [7–12], coatings/electrodepositions [13–16], alloying, 
machining/molding [17] and many more are presently in use to further improve the 
corrosion resistance behaviour of stainless steels. Other protection methods include 
epoxy coating, cathodic protection, and thicker concrete cover. For instance, 
surface modifications, as well as heat treatments of the modified sample surface 
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by low temperature annealing, were used to enhance the corrosion resistance of 
301, 17-4PH, 304 steels, 316, and mild steels [4, 5, 9, 12]. To sum it up, stability, 
compaction, chemical composition, thickness, and many more are the main factors 
influencing the corrosion resistance of stainless steels [18–20].

In the present study, the general overview of stainless steels including their 
properties and application is presented. The corrosion resistance of stainless steel 
and evaluation methods are evaluated. The surface treatment methods aimed at 
enhancing the overall corrosion and mechanical properties are then presented.

2. Corrosion resistance of stainless steel and evaluation methods

Due to the nature and change in the environment, many metallic materials are 
expected to possess a good corrosion resistance against corrosion attacks over time. 
However, the corrosion resistance ability of materials differs from each other, and 
corrosion does set in when the corrosion-resistant limit of a material is exceeded 
[21–23]. Hence, the major reason why many material scientists and corrosion 
experts always pay much attention on how to continuously protect the material 
surface from degradation and corrosion via surface treatment method, coatings, 
and other related techniques. For clarity’s sake, the corrosion behaviour can be 
studied when the material is exposed to an aggressive corrosive environment alone 
(polarization) [9, 16] or under the action of both tensile stress and corrosion reac-
tion (stress corrosion cracking—SCC) [18].

The conventional polarization tests are normally carried out using an electro-
chemical workstation consisting of the traditional three-electrode system; (1) refer-
ence electrode (RE), whose material can be made of saturated calomel electrode 
(SCE) or silver/silver chloride (Ag/AgCl), (2) counter electrode (CE), which can be 
Platinum (Pt), graphite, gold or carbon rod, and (3) working electrode (the testing 
material).

Generally, the corrosion resistance of metallic materials can be evaluated through 
electrochemical tests which can be done in the following ways (Figure 1(a–f)); 
(1) open circuit potential (OCP) study, (2) potentiodynamic polarization study, 
(3) potentiostatic polarization study including the current-time transient (CTT) 
study and double-log plot, (4) electrochemical impedance spectroscopy (EIS) 
analysis including the Nyquist plot, Bode impedance, and phase angle plots, and 
(5) Mott-Schottky analysis which is normally carried out to determine the semicon-
ducting characteristics of the passive film.

To a large extent, the OCP test determines the stability of samples in the elec-
trolyte before performing polarization and EIS tests. Here, it is believed that the 
higher the corrosion potential, the more stable the sample, and probably the better 
the corrosion resistance [5, 11], i.e., the sample “A” in Figure 1(a) possessed higher 
corrosion potential and is therefore expected to be more stable than sample “B”. The 
potentiodynamic polarization shows the corrosion behaviour in terms of corrosion 
current density (icorr) and corrosion potential (Ecorr) which can be determined from 
the corrosion graph using the Tafel extrapolation method. It is generally believed 
that the lower the icorr and higher the Ecorr, the more the formation of the passive 
film, hence the better the corrosion resistance [7–9].

In addition, the anodic polarization process can be categorized into four regions, 
as illustrated in Figure 1(b); (1) activation zone, where the icorr gradually increases 
with Ecorr, (2) activation-passivation transition zone, where the icorr decreases 
gradually and started forming passivation film, (3) passivation zone, which 
involves further decrease in icorr, signifying the formation of more passivation 
film, and (4) transpassive zone, signifying the degradation of the passive film with 



3

Corrosion Resistance, Evaluation Methods, and Surface Treatments of Stainless Steels
DOI: http://dx.doi.org/10.5772/intechopen.101430

a rapid increase in icorr. In EIS analysis, the samples with better charge-transfer 
resistance, higher impedance, and phase angle are believed to have a stabilized and 
more protecting passive film, hence possessing better corrosion resistance [10, 12]. 
For instance, sample “A” in Figure 1(c–e) is better than sample “B” in terms of 
corrosion resistance since it has a larger diameter of the semi-circle, higher phase 
angle, and impedance.

Corrosion fatigue is a common phenomenon that frequently occurs when 
materials are often exposed to simultaneous actions of corrosive environment and 
repeated stress, which leads to a markedly decrease in fatigue strength. In addition, 
unlike stress corrosion cracking which causes intergranular cracking and mostly 

Figure 1. 
Illustration of the corrosion properties of metallic materials; (a) open circuit potential (OCP), (b) 
potentiodynamic polarization, (c) Nyquist plot, (d) Bode phase angle plot, (e) Bode impedance plot, and (f) 
Mott-Schottky plot.
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occurs in harmful environments, corrosion fatigue which causes transgranular 
cracking, can occur at any time and cannot be avoided in some cases [4, 5, 12].

Furthermore, Mott-Schottky analysis determines the electronic properties of 
the passive film by measuring the capacitance as a function of potential, which 
ultimately determines the semiconducting characteristics of the passive film. It is 
generally believed that a negative slope represents a p-type semiconductor while a 
positive slope signifies an n-type semiconductor. When a positive slope is obtained, 
it means there is no change in the semiconducting characteristics of the passive 
film, hence an enhancement in the stability of the passive film which can eventually 
increase the corrosion resistance. As illustrated in Figure 1(f ), the section denoted 
by “A” represents the flat band potential zone while the portion denoted by “B” 
represents the n-type semiconductivity zone.

3.  Surface treatments: enhancing the overall corrosion and mechanical 
properties

The overall corrosion and mechanical properties of stainless steels can be 
enhanced by subjecting them to different types of surface treatments including 
anodization, electrodeposition, dip-coating, micro-arc oxidation (MAO), and 
surface mechanical treatments. Anodization is a surface modification technique 
involving the passage of constant current and voltage through the cathode and 
anode resulting in the deposition of the natural oxide layers on the material surface 
[24] with an improved thickness and properties thereby turning the metal sur-
face into an excellent finish which is anodic oxide in nature, corrosion-resistant, 
durable, and wear/abrasion-resistant.

As a form of surface treatments (anticorrosion processing methods), electro-
deposition is a conventional phenomenon, and the combination of reduction and 
oxidation reactions whereby dissolved metals and alloys cations are cathodically 
reduced by the passage of electric current in electrolytes leading to the formation 
of a thin layer coating on electrodes [25]. By this, thin layers of functional materi-
als including alloys and metals can be electrolytically deposited on the surface of 
Mg alloys (acting as the cathode in the electrolytic cell) to improve the corrosion 
properties and the overall mechanical behaviour.

The dip-coating process can be highlighted in five ways depending on the 
immersion time and speed as well as the withdrawal speed, (a) dipping the sub-
strate into the desired solution, (b) removal of the dipped substrate from the solu-
tion, (c) deposition of the film on the substrate after removal, (d) removal of excess 
liquid from the material surface, and (e) dispersal of the solvent from the liquid 
film. Meanwhile, micro-arc oxidation is the electrochemical oxidation process 
through which hard, dense, and protective ceramic oxide coatings are formed on 
metal surfaces for corrosion protection under the influence of various processing 
conditions and parameters [26–28].

4. Conclusion

Despite their good corrosion resistance, stainless steels still experience failure, 
especially when exposed to an aggressive environment for a prolonged period of time. 
This can be corrected by adopting the right surface treatment methods including alloy-
ing, heat treatment, coating/electrodeposition, and surface mechanical treatment. 
The corrosion resistance of stainless steels often depends on the stability, compaction, 
chemical composition, thickness of the passive film generated on the material surface.
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