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Chapter

An Optimal Control Approach to
Portfolio Diversification on Large
Cap Stocks Traded in Tokyo Stock
Exchange
Muhammad Jaffar Sadiq Abdullah and Norizarina Ishak

Abstract

In this chapter, Markowitz mean-variance approach is proposed for examining
the best portfolio diversification strategy within three subperiods which are during
the global financial crisis (GFC), post-global financial crisis, and during the non-
crisis period. In our approach, we used 10 securities from five different industries to
represent a risk-mitigation parameter. In this way, the naive diversification strategy
is used to serve as a comparison for the approach used. During the computation
process, the correlation matrices revealed that the portfolio risk is not well diversi-
fied during non-crisis periods, meanwhile, the variance-covariance matrices indi-
cated that volatility can be minimized during portfolio construction. On this basis,
10 efficient portfolios were constructed and the optimal portfolios were selected in
each subperiods based on the risk-averse preference. Performance-wise that opti-
mal portfolio dominated the naïve strategy throughout the three subperiods tested.
All the optimal portfolios selected are yielding more returns compared to the naïve
portfolio.

Keywords: naïve diversification, mean-variance, Sharpe ratio, efficient frontier,
portfolio optimization

1. Introduction

Investment decision and capital allocation in the stock market is subjected to the
variability of risk and return. Thus, the investors, as well as the portfolio manager,
must find the best solutions to allocate the various assets efficiently. Constructing a
portfolio of a stock based on the investor’s risk tolerance is a difficult task. In this
situation, the portfolio manager needs to have some background knowledge in the
economy of the market and mathematical modeling to create a portfolio based on
the market participant’s appetite.

In the year 1952, Markowitz’s has introduced mean-variance portfolio optimiza-
tion, where the investors are called rational investors by analyzing the mean and
variance to determine the value of expected return and risk preference for investors
[1]. This modern portfolio theory suggested that an investor can perform diversifi-
cation in allocating assets in their portfolios by concerning how much risk they are
willing to bear due to the outcome uncertainty in the stock market.
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On the risk-return spectrum, some of the investor’s favor seeking an opportunity
to invest in the large-cap stock due to its stability and safer investment during turbu-
lent times. In this study, the Tokyo Stock Exchange (TSE) is chosen as a medium to
implement modern portfolio theory since the TSE has remained the focal point for
investors looking to invest in Asia's largest stock market, ranking third in the world
behind the New York Stock Exchange and NASDAQ in 2018 [2]. Japan has also been
recognized as a member of the G7, which includes the world's six major advanced
economies: Canada, France, Italy, the United Kingdom, the United States, and
Germany. However, in the last decade, Japan has undergone an economic crisis period
and the emergence of China has become a threat to Japan’s economy. At some point,
the systematic risk that occurred might affect the investor’s portfolio thus leaving the
greatest risk if there is no proper plan in constructing the best portfolio strategy.

Hence, the mean-variance portfolio optimization remains widely used among
investors in analyzing their portfolio investment due to its simplicity and ease of
derivation [3]. Therefore, there are many previous researchers had done their study
using this modern portfolio theory that was first introduced by Harry Markowitz.
Kulali [1] claimed that individuals are mainly aiming to select the best diversifica-
tion through these two related strategies as maximizing return or minimizing risk
despite given the characteristics of the country’s stock market.

So, is the optimal portfolio being always the best portfolio diversification strat-
egy? A lot of researchers have a debate regarding the issues of the mean-variance
approach versus the 1/N strategy. Few researchers such as [4–7] conducted to
determine the best portfolio strategy on the various samples of the equity market.
Similar results are found that naïve diversification has performed better compared
to the optimization model. Ramilton [8], on the other hand, refuted DeMiguel et al.
[6]’s claim that a naive portfolio is preferable to an ex-ante portfolio was preferable
over the ex-ante optimal portfolio. He found out that the optimal portfolios signif-
icantly outperform the naïve portfolio strategy in terms of the Sharpe ratio. Other
findings such as [9] explained that if the naïve model outperforms a more sophisti-
cated model, it is a clear indicator that the modeling of the data generating process
is not accurate enough. Other research [10–12] used the mean-variance model to
optimize asset allocation, therefore, the result showed the mean-variance model
outperformed the naïve diversification strategy.

The aim of this paper is briefly to construct the optimal portfolio by using by
Markowitz mean-variance model and compare to the naïve diversification strategy
in the context of large-cap stock in Tokyo Stock Exchange (TSE) over the three
subperiods which are during the global financial crisis (GFC) (2008–2010), the
post-global financial crisis (2011–2013), and the non-crisis period (2014–2018).

2. Materials and methods

This study mainly focuses on the model parameters in determining the portfolio
optimization construction by using mean-variance analysis on the large-cap stocks
in Tokyo Stock Exchange (TSE). Then, we determine the best portfolio diversifica-
tion strategy in the three subperiods tested.

2.1 Data

The historical stock prices of the Japanese stocks are collected from the
Bloomberg Terminal web page and treated as a primary source of data for this
study. About 571 data of the stock prices of each stock were picked from the last
trading day of every week and were then transformed to weekly return (adjusted
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price for Japanese Yen). The analysis based on the weekly return is conducted to
avoid the non-synchronous trading effect [4].

2.1.1 Stock selection

Tokyo Stock Exchange has remained the largest stock exchange in Asia in terms
of market capitalization. Thus, Table 1 shows about 10 large-cap stocks were
chosen randomly upon the stocks that listed in the TOPIX Core 30 + 70 Large and
are traded in Tokyo Stock Exchange. The selections of the stocks are the companies
that already been existed during the period of this study.

2.1.2 Time periods

The construction of the portfolio of the stocks will be based on 10 years. To look
for the workability and superiority of the portfolio strategy in a different
timeframe, the 10 years will be divided into three subperiods which are during the
global financial crisis (GFC) (2008–2010), the post-global financial crisis
(2011–2013), and during the non-crisis period (2014–2018).

2.2 Model framework of portfolio optimization

The rate of return determines whether the investors gain or lose money from
their investment [12]. In this study, we calculate the weekly stock return for stock i
at time t, as shown in the Eq. (1).

ri ¼
Sit� Sit� 1

Sit� 1
(1)

where Sit is the closing price of stock i at time t. Sit � 1 be the closing price at
time t � 1. We assume that stock i pays dividends.

We calculate the average return of stocks based on the following equation:

μi ¼ E rið Þ ¼
1

M

X

M

t¼1

rit (2)

Stocks code Company name Industry

1 7201.T Nissan Motor Co. Ltd. Automobiles and transportation equipment

2 7267.T Honda Motor Co. Ltd Automobiles and transportation equipment

3 8411.T Mizuho Financial Group, Inc. Bank

4 8306.T Mitsubishi UFJ Financial Group, Inc. Bank

5 8035.T Tokyo Electron Electric appliances and precision instruments

6 6702.T Fujitsu Electric appliances and precision instruments

7 8801.T Mitsui Fudosan Real estate

8 8802.T Mitsubishi Estate Real estate

9 9342.T Nippon Telegraph and Telephone

Corporation

Information and communication

10 9433.T KDDI Corporation Information and communication

Table 1.
Data description for large-cap stock (TOPIX Core 30 + 70 Large).
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where is an average return on stock i, is a market return of stocks i at time t,M is
the number of weeks. Then, García et al. [13] defines the expected return of a
portfolio is the weighted average of the expected returns of individual stocks. Thus,
the equation of expected return for n asset is as the following:

E rpð Þ ¼
X

n

i¼1

wiE rið Þ (3)

where is the proportion of the funds invested in stock i, n is the number of
stocks, and are the return of ith stock and the return of portfolio p, respectively.

Garcia et al. [10] consider risk as uncertainty through the variability of future
returns. So, we calculate the variance of stock i on the weekly return and the index
return using the historical volatility formula as in Eq. (4). The higher value in
variance for an expected return, the higher the dispersion of expected returns, and
the greater the risk of the investment [14].

σ
2
i ¼ Var rið Þ ¼

Pn
i¼1 ri � μið Þ2

M� 1
(4)

where,
Var rið Þ is a variance of weekly stock return,
ri is a weekly stock return,
μi is an average weekly return,
M is the sample size.
Ivanovic et al. [12] were able to measure how the stocks vary together by

determining the covariance of each stock. The dimensions of risk are organized in
the covariance matrix which is denoted by Ωn�n. This matrix contains variance in its
main diagonal and covariances between all pairs of stocks.

Ωn�n ¼

σ
2
1 σ12 … σ1n

σ21 σ
2
2 ⋯ σ2n

⋮ ⋮ ⋱ ⋮

σn1 σn2 … σ
2
n

0

B

B

B

@

1

C

C

C

A

(5)

where,

σij ¼ Cov ri, r j
� �

¼

Pn
i¼1,j¼1 ri � μið Þ r j � μ j

� �

n� 1
(6)

Equation (6) can be interpreted as the sum of the distance for each value and
from the mean is divided by the number of observations minus one. Then, the
covariance enables us to calculate the correlation coefficient, shown as:

ρ ¼
σij

σiσ j
(7)

where σ is the standard deviation of each asset. This measure is useful to
determine the degree of portfolio risk [1].

In this study, the standard deviation is used to measure the risk of the portfolio.
The standard deviation of the portfolio is the most common statistical indicator of
an asset’s risk which measures the dispersion around the expected value [12]. By
means, the higher the risk, the higher value of standard deviation. Hence, the
equation for standard deviation is defined as follows:
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σp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
w2

i � σ
2
i

� �

þ 2
Xn

i¼1

Xn

j¼1
wi � σi �w j � σ j � ρ

� �

r

(8)

where,
σp is the standard deviation of a portfolio,
σi is the standard deviation of stocks,
wi is the weight of stocks in a portfolio,
ρ is the correlation coefficient between stock i and j.
Based on the parameters used in the Markowitz mean-variance model, we can

get different combinations of expected return and risk. Every possible asset combi-
nation is known as an attainable set that can be plotted in risk-return space, and the
collection of all such possible portfolios defines a region in this space. Figure 1
shows that the line along the upper edge of this region is known as the efficient
frontier. It is defined as the best return of a portfolio with the lowest risk.

2.3 Performance evaluation ratio

In this study, the Sharpe ratio will be used to measure the portfolio performance
that provides risk premium per unit of total risk, which is measured by the portfo-
lio’s standard deviation of return. The risk premium is defined as the difference
between portfolio return and the risk-free rate. It can be expressed in the following
equation:

Sp ¼
μp � R

σp
(9)

where R is the return on the risk-free asset.

3. Results and discussion

In this study, excel functions and data solvers are used for all calculations. The
construction of portfolio optimization using the Markowitz mean-variance
approach involves the following steps:

Step 1: Determining return and standard deviation of 10 stocks during three
subperiods (Tables 2–4).

Step 2: Creating correlations matrix (Tables 5–7).

Figure 1.
Efficient frontier [15].

5

An Optimal Control Approach to Portfolio Diversification on Large Cap Stocks Traded…
DOI: http://dx.doi.org/10.5772/intechopen.100613



Step 3: Creating variance-covariance matrices during three subperiods
(Tables 8–10).

Step 4: Calculating the volatility and return of the portfolio with equal weight
(Table 11).

Step 5: Calculating the volatility and return of the portfolio with difference
weights (Tables 12–14 (all three tables in the Appendices).

Step 6: Creating an efficient frontier (Figure 2A–C).
Table 2 reflects during GFC from 2008 to 2010, most of the stock were volatile

at high risk and yielding negative returns since the bearish market except Honda
Motor, Tokyo Electron, and Mitsui Fudosan which annual returns vary from 0.08 to
6.24%. The risks of 10 stocks vary from 30.05 to 51.63% and Mizuho Financial
Group, Inc. has the highest risk recorded during the crisis. As seen from Table 3, all

Stock Average weekly

return (GFC)

Weekly

variance

Weekly

standard

deviation

Average

annual

return

Annual

variance

Annual

standard

deviation

7201.T �0.0005 0.0035 0.0596 �0.0249 0.1845 0.4296

7267.T 0.0012 0.0036 0.0601 0.0624 0.1876 0.4331

8411.T �0.0052 0.0051 0.0716 �0.2713 0.2666 0.5163

8306.T �0.0033 0.0040 0.0633 �0.1693 0.2086 0.4567

8035.T 0.0008 0.0041 0.0643 0.0399 0.2152 0.4639

6702.T �0.0001 0.0031 0.0554 �0.0065 0.1594 0.3993

8801.T 0.0000 0.0044 0.0665 0.0008 0.2301 0.4796

8802.T �0.0012 0.0042 0.0648 �0.0622 0.2186 0.4676

9342.T �0.0013 0.0017 0.0417 �0.0684 0.0903 0.3005

9433.T �0.0023 0.0021 0.0458 �0.1177 0.1092 0.3305

Table 2.
Risk and return of stocks during global financial crisis (GFC) (2008–2010).

Stocks Average weekly

return (post-GFC)

Weekly

variance

Weekly

standard

deviation

Average

annual

return

Annual

variance

Annual

standard

deviation

7201.T 0.0017 0.0017 0.0414 0.0882 0.0891 0.2986

7267.T 0.0027 0.0017 0.0410 0.1405 0.0875 0.2958

8411.T 0.0031 0.0014 0.0380 0.1603 0.0752 0.2743

8306.T 0.0035 0.0015 0.0393 0.1845 0.0803 0.2834

8035.T 0.0018 0.0023 0.0476 0.0931 0.1177 0.3431

6702.T 0.0009 0.0022 0.0471 0.0453 0.1153 0.3395

8801.T 0.0065 0.0024 0.0490 0.3373 0.1249 0.3533

8802.T 0.0057 0.0023 0.0477 0.2968 0.1181 0.3436

9342.T 0.0030 0.0007 0.0271 0.1552 0.0383 0.1957

9433.T 0.0073 0.0016 0.0404 0.3799 0.0849 0.2914

Table 3.
Risk and return of stocks during post-global financial crisis (2011–2013).
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stocks are yielding positive returns ranging from 4.53 to 33.73% during the period of
post-GFC. Mitsui Fudosan lead the market with the highest annual return and the
lowest annual return is Fujitsu. Despite the fact that the annual returns show a
difference, both stocks are significantly risky, with risk levels ranging between
35.33 and 33.95%. Table 4 shows during the non-crisis period, about four stocks
have poor performance with a negative rate of return. The remaining stocks are
ranging from 0.00 to 21.7%. Tokyo Electron is dominating the market with the
highest return and the Mitsubishi UFJ Financial Group, Inc. is recovering with the
lowest return. The risks of each stock are varying from 19.8 to 35.3% which is
dominated by the Mitsui Fudosan. The lowest risk recorded is from Nippon Tele-
graph and Telephone Corporation. Thus, apart from the results of the risk and
return of the individual stock from the three subperiods, the variation of risks per
weekly and annual basis has indicated that there is a chance of high variability of
investment.

Stocks Average weekly

return (post-GFC)

Weekly

variance

Weekly

standard

deviation

Average

annual

return

Annual

variance

Annual

standard

deviation

7201.T 0.001 0.001 0.035 0.030 0.062 0.249

7267.T �0.001 0.002 0.041 �0.049 0.087 0.296

8411.T �0.001 0.001 0.038 �0.028 0.076 0.275

8306.T 0.000 0.002 0.040 0.000 0.082 0.286

8035.T 0.004 0.002 0.048 0.217 0.119 0.345

6702.T 0.002 0.002 0.048 0.101 0.121 0.349

8801.T �0.001 0.002 0.050 �0.041 0.129 0.359

8802.T �0.002 0.002 0.049 �0.079 0.125 0.353

9342.T 0.002 0.001 0.027 0.115 0.039 0.198

9433.T 0.001 0.002 0.040 0.071 0.084 0.290

Table 4.
Risk and return of stocks during non-crisis period (2014–2018).

7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

7201.T 1.0000

7267.T 0.7219 1.0000

8411.T 0.2307 0.3298 1.0000

8306.T 0.4480 0.5110 0.4336 1.0000

8035.T 0.6080 0.5780 0.3285 0.5550 1.0000

6702.T 0.4944 0.5349 0.3392 0.4581 0.5457 1.0000

8801.T 0.4380 0.4951 0.2525 0.6559 0.5903 0.3973 1.0000

8802.T 0.4247 0.4908 0.2504 0.6595 0.6089 0.4247 0.9345 1.0000

9342.T 0.1628 0.1932 0.6257 �0.0272 0.1526 0.0968 0.0145 0.0151 1.0000

9433.T 0.0116 0.1050 0.3155 0.0058 0.1032 0.1025 �0.0161 �0.0193 0.5407 1.0000

Table 5.
Correlation matrix during GFC (2008–2010).
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7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

7201.T 1.0000

7267.T 0.7103 1.0000

8411.T 0.7115 0.7206 1.0000

8306.T 0.6906 0.7406 0.9125 1.0000

8035.T 0.4873 0.4708 0.4467 0.4460 1.0000

6702.T 0.3999 0.5016 0.4878 0.5004 0.4169 1.0000

8801.T 0.5912 0.6267 0.6363 0.6740 0.3856 0.3891 1.0000

8802.T 0.5492 0.6149 0.6176 0.6445 0.3753 0.3685 0.8805 1.0000

9342.T 0.3704 0.3668 0.3275 0.3107 0.2708 0.1538 0.4520 0.4683 1.0000

9433.T 0.3592 0.3631 0.3555 0.3454 0.2831 0.1806 0.4431 0.5035 0.6966 1.0000

Table 7.
Correlation matrix during the non-crisis period (2014–2018).

Stock 7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

7201.T 0.0035 0.0026 0.0016 0.0017 0.0023 0.0016 0.0017 0.0016 0.0004 0.0007

7267.T 0.0026 0.0036 0.0020 0.0019 0.0022 0.0018 0.0020 0.0019 0.0005 0.0009

8411.T 0.0016 0.0020 0.0051 0.0039 0.0024 0.0020 0.0029 0.0027 0.0010 0.0008

8306.T 0.0017 0.0019 0.0039 0.0040 0.0023 0.0016 0.0027 0.0027 0.0008 0.0009

8035.T 0.0023 0.0022 0.0024 0.0023 0.0041 0.0019 0.0025 0.0025 0.0005 0.0010

6702.T 0.0016 0.0018 0.0020 0.0016 0.0019 0.0031 0.0014 0.0015 0.0009 0.0008

8801.T 0.0017 0.0020 0.0029 0.0027 0.0025 0.0014 0.0044 0.0041 0.0008 0.0014

8802.T 0.0016 0.0019 0.0027 0.0027 0.0025 0.0015 0.0041 0.0042 0.0008 0.0012

9342.T 0.0004 0.0005 0.0010 0.0008 0.0005 0.0009 0.0008 0.0008 0.0017 0.0012

9433.T 0.0007 0.0009 0.0008 0.0009 0.0010 0.0008 0.0014 0.0012 0.0012 0.0021

Table 8.
Variance-covariance matrix during GFC.

7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

7201.T 1.0000

7267.T 0.7637 1.0000

8411.T 0.5127 0.6103 1.0000

8306.T 0.5722 0.6906 0.8291 1.0000

8035.T 0.5211 0.5929 0.4321 0.4715 1.0000

6702.T 0.5485 0.6442 0.5812 0.5465 0.4767 1.0000

8801.T 0.4850 0.5510 0.5963 0.7078 0.4016 0.4785 1.0000

8802.T 0.4617 0.5707 0.5644 0.6776 0.3914 0.4632 0.9088 1.0000

9342.T 0.4512 0.4152 0.5442 0.5402 0.4066 0.4524 0.3644 0.2784 1.0000

9433.T 0.0571 0.1661 0.1578 0.1544 �0.0024 0.0445 0.1061 0.1138 �0.0014 1.0000

Table 6.
Correlation matrix during post-GFC (2010–2013).
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Correlation between assets determines the degree of portfolio risk [11]. Negative
or small correlation between assets, the risk of the portfolio is low whereas the
positive or large correlation between the assets, the risk of the portfolio is high. As
seen in Table 5, only 9342.T–8306.T, 9433.T–8801.T, and 9433.T–8802.T have a
negative correlation between the stocks and others are greater than zero. Table 6
reflects that only two pairs of stocks which are 9433.T–8035.T and 9433.T–9342.T
have a negative correlation and Table 7 has all positive correlation between the

Stock 7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

7201.T 0.0020 0.0014 0.0014 0.0018 0.0014 0.0011 0.0014 0.0012 0.0006 0.0007

7267.T 0.0014 0.0021 0.0014 0.0020 0.0013 0.0014 0.0016 0.0015 0.0006 0.0007

8411.T 0.0014 0.0014 0.0020 0.0023 0.0012 0.0013 0.0015 0.0014 0.0005 0.0007

8306.T 0.0018 0.0020 0.0023 0.0034 0.0016 0.0017 0.0021 0.0019 0.0007 0.0009

8035.T 0.0014 0.0013 0.0012 0.0016 0.0040 0.0016 0.0013 0.0012 0.0006 0.0008

6702.T 0.0011 0.0014 0.0013 0.0017 0.0016 0.0035 0.0013 0.0011 0.0004 0.0005

8801.T 0.0014 0.0016 0.0015 0.0021 0.0013 0.0013 0.0030 0.0025 0.0010 0.0011

8802.T 0.0012 0.0015 0.0014 0.0019 0.0012 0.0011 0.0025 0.0027 0.0009 0.0012

9342.T 0.0006 0.0006 0.0005 0.0007 0.0006 0.0004 0.0010 0.0009 0.0015 0.0012

9433.T 0.0007 0.0007 0.0007 0.0009 0.0008 0.0005 0.0011 0.0012 0.0012 0.0021

Table 10.
Variance-covariance matrix during non-crisis period.

Period Portfolio return Portfolio variance Portfolio standard deviation

During GFC �0.0012 0.0019 0.0435

Post-GFC 0.0036 0.0010 0.0310

Non-crisis 0.0006 0.0014 0.0372

Table 11.
Portfolio with equal weight (naïve diversification).

Stock 7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

7201.T 0.0017 0.0013 0.0008 0.0009 0.0010 0.0011 0.0010 0.0009 0.0005 0.0003

7267.T 0.0013 0.0017 0.0010 0.0011 0.0012 0.0013 0.0011 0.0011 0.0005 0.0004

8411.T 0.0008 0.0010 0.0015 0.0012 0.0008 0.0010 0.0011 0.0010 0.0006 0.0005

8306.T 0.0009 0.0011 0.0012 0.0016 0.0009 0.0010 0.0014 0.0013 0.0006 0.0005

8035.T 0.0010 0.0012 0.0008 0.0009 0.0023 0.0011 0.0009 0.0009 0.0005 0.0006

6702.T 0.0011 0.0013 0.0010 0.0010 0.0011 0.0022 0.0011 0.0011 0.0006 0.0004

8801.T 0.0010 0.0011 0.0011 0.0014 0.0009 0.0011 0.0024 0.0021 0.0005 0.0005

8802.T 0.0009 0.0011 0.0010 0.0013 0.0009 0.0011 0.0021 0.0023 0.0003 0.0005

9342.T 0.0005 0.0005 0.0006 0.0006 0.0005 0.0006 0.0005 0.0003 0.0007 0.0005

9433.T 0.0003 0.0004 0.0005 0.0005 0.0006 0.0004 0.0005 0.0005 0.0005 0.0016

Table 9.
Variance-covariance matrix during post-GFC.
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stocks and not low enough. In that sense, only during the non-crisis period the
portfolio constructed will not be well diversified.

When there are more than two assets, covariance can best be calculated by using
matrix algebra based on Eq. (6). The covariance calculation which involved the
excess return of stocks and the number of observations in each subperiod allows us
to compute by using few functions in excel such as @MMULT(… ) and TRANS-
POSE(… ). The procedure has already allowed us to determine the variance-
covariance matrix as per Tables 8–10. The values of the variance-covariance matri-
ces have shown that in the three subperiods tested, all the stocks are move in the
same direction with a lower degree. Thus, this indicates that the volatility can be
reduced during the construction of the portfolios.

The variance-covariance matrix helps in a simple way of measuring portfolio
variance. At this step, the portfolio return and portfolio variance can be calculated.
In this sense, the naïve allocation of weight whereby the equal proportion in the
portfolio is used to calculate the portfolio return and portfolio variance. Since we
have 10 stocks, each stock will have about 1/10 or 10% weight.

So, Table 11 shows that the portfolio returns and portfolio variance of the naïve
diversification strategy. Among the three subperiods, during GFC, the portfolio
indicates poor performance by having a negative return of �0.12% and the highest
standard deviation of 4.35%. In contrast, the portfolio return is recorded high
during post-GFC which is about 0.36% with the lowest standard deviation of 3.10%.

Note that, Markowitz’s mean-variance model stated that the investor must be
rational and risk-averse [16]. Thus, in constructing the efficient portfolios, two
conditions need to be satisfied which are maximum return for varying levels of risk
and minimum risk for varying levels of expected return. In the context of three
subperiods tested, this study proposed rational investors for looking at optimal
portfolio with a minimum level of risk. Thus, this optimal portfolio analysis can be
shown as the subject function according to the formula:

Minσ2
X

n

j¼1

wiw jCovij (10)

where wi and w j are weights of stocks in the portfolio and Covij is the covari-
ance value between stock i and j.

Then, three main constrains in Markowitz mean-variance portfolio optimization
are included for the optimization problem. The formulas are written as:

X

n

i¼1

wiE rið Þ³≥E ∗ (11)

X

n

i¼1

wi ¼ 1 (12)

and

wi≥0; i ¼ 1, :… ,N (13)

where E Rið Þ is the target expected return, E ∗ is an expected return and wi is the
weight of the stock i. The third constraint is added to restrict the short sell to
happen.

Hence, Excel Solver is used to optimizing the weight by including all the con-
straints according to Eqs. (10)–(13). About 10 iterations were done in Solver to
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generate 10 portfolios. The 10 portfolios that are generated produce 10 different
sets of weights for the level of return which minimizes the standard deviation of the
portfolio. All the results are shown in Tables 12–14 (in Appendices) indicate the
composition of stocks, portfolio return, and portfolio risk. All the set of possible
expected return and risk combinations is then called attainable set [1]. The attain-
able set is plotted on the risk-return space as shown in Figure 2A–C.

Figure 2A–C demonstrate the efficient frontier with minimum variance portfo-
lios. Ivanova et al. [11] states that given expected return, investors could choose an
optimal portfolio based on risk preference since all the efficient portfolios are
located over the efficient frontier curve. Many portfolios are existed on the efficient
frontier curve with different risk and return combinations. Then, the optimal port-
folio is selected on the efficient frontier curve in each subperiods then compare with
the portfolio return and risk for naïve diversification strategy.

Table 15 reflects the analysis on the risk, return and performance of the portfo-
lio constructed by using naïve diversification strategy and Markowitz mean-
variance portfolio optimization. In the three subperiods tested, the optimal portfolio
outperformed the naïve diversification strategy.

In terms of portfolio risk-return, optimal portfolios selected during global
financial crisis tend to have a high standard deviation of 4.71% compared to naïve
diversification which is about 4.35%, respectively. But, the portfolio with equal
weight yields an abnormal return of �0.12% compared to the optimal portfolio of
0.06%. This is not a surprising result since the turbulence of economic recession
contributes to the high-risk investment. During the post-GFC, again the optimal
portfolio yields a higher return with 0.5% with lower risk at 2.67% compared to the
naïve strategy. Furthermore, there is not much difference in standard deviation for
both strategies in the non-crisis period, but the optimal portfolio still dominates
with a high return at 2.5% and low risk at 3.44%.

Sharpe ratio classifies during financial crisis both strategies produce negative
Sharpe ratio which indicates the portfolio’s return is less than the risk-free rate.
Thus, the interpretation of the negative Sharpe ratio will be put aside since it does
not convey any useful meaning. For the rest two periods, the Sharpe ratio is
undoubtedly the highest for the optimal portfolio compare to the naïve portfolio.
This shows the reward-to-volatility ratio when investing in the optimal portfolio 6
and portfolio 7 are 0.1032 and 0.0582.

4. Conclusion

This study was aimed to help investors to plan for the best investment strategy
in maximizing return with the given level of risk or minimizing risk. In this study,
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Figure 2.
(a) Efficient frontier of portfolios during GFC, (b) efficient frontier of portfolios during post-GFC, and
(c) efficient frontier of portfolios during the non-crisis period.
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there are subperiods been tested for this whole study, during the global financial
crisis (GFC) 2008–2010, the post-financial crisis 2011–2013 and non-financial crisis
2014–2018. Then, we followed the Markowitz mean-variance model which
involved the best possible combination of expected return and risk to construct
efficient portfolios in each period. The portfolio which did not contain short sale
was achieved by a data solver. We made a choice to choose the optimal portfolio
from this efficient set based on rational investors.

Meantime, we also constructed a portfolio with equal weight as a control param-
eter to determine the best diversification strategy. It was figured out during the
period of study; the optimal portfolio was chosen from the efficient frontier formed
by Markowitz model perform better than the portfolio with equal weight in all three
subperiods. The result reiterates the previous study conducted by [1, 9, 11]. Hence,
the Markowitz framework is successful since the variance-covariance and correlation
played an important role in determining the optimal portfolio. So, if the Japanese and
foreign investors know properly how to apply the Markowitz mean-variance model
in their investment. We believe this is the best solution in many alternatives.

But, the limitation of this study is there is no out-of-sample data tested. For
future research, a robust optimization approach can be considered with the out-of-
sample data tested to construct the optimal portfolio. The portfolio also needs to be
rebalanced again to ensure a more accurate result.
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Portfolio return Portfolio standard deviation Weight of stock

7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

Portfolio 1 �0.0004 0.0366 0.0441 0.2204 0 0 0.1213 0.0578 0.0071 0 0.5418 0.0075

Portfolio 2 �0.0003 0.0370 0.0158 0.2558 0 0 0.1360 0.0576 0.0050 0 0.5298 0

Portfolio 3 �0.0002 0.0376 0 0.2927 0 0 0.1503 0.0552 0.0002 0 0.5017 0

Portfolio 4 �0.0001 0.0383 0 0.3268 0 0 0.1602 0.0500 0 0 0.4630 0

Portfolio 5 0.0000 0.0392 0 0.3607 0 0 0.1701 0.0450 0 0 0.4242 0

Portfolio 6 0.0002 0.0413 0 0.4285 0 0 0.1899 0.0351 0 0 0.3465 0

Portfolio 7 0.0004 0.0440 0 0.4964 0 0 0.2097 0.0252 0 0 0.2688 0

Portfolio 8 0.0006 0.0471 0 0.5642 0 0 0.2294 0.0152 0 0 0.1911 0

Portfolio 9 0.0008 0.0505 0 0.6321 0 0 0.2492 0.0053 0 0 0.1134 0

Portfolio 10 0.0010 0.0541 0 0.6988 0 0 0.2676 0 0 0 0.0335 0

Table 12.
Composition of weight and risk of different expected return portfolios during GFC period.
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Portfolio return Portfolio standard deviation Weight of stock

7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

Portfolio 1 0.0009 0.0464 0.0350 0 0 0 0 0.9650 0 0 0 0

Portfolio 2 0.0010 0.0437 0.1561 0 0 0 0 0.8439 0 0 0 0

Portfolio 3 0.0020 0.0299 0.2235 0 0 0 0.0862 0.2812 0 0 0.4091 0

Portfolio 4 0.0030 0.02588 0.1318 0 0.0182 0 0.0377 0.0341 0 0.0425 0.6933 0.0426

Portfolio 5 0.0040 0.0252 0.0710 0 0 0 0 0 0 0.1197 0.6170 0.1813

Portfolio 6 0.0050 0.0267 0 0 0 0 0 0 0.0743 0.1165 0.4765 0.3327

Portfolio 7 0.0055 0.0281 0 0 0 0 0 0 0.1656 0.0522 0.3673 0.4150

Portfolio 8 0.0060 0.03 0 0 0 0 0 0 0.2467 0 0.2555 0.4978

Portfolio 9 0.0065 0.0322 0 0 0 0 0 0 0.2842 0 0.1326 0.5832

Portfolio 10 0.0070 0.0347 0 0 0 0 0 0 0.3216 0 0.0098 0.6686

Table 13.
Composition of weight and risk of different expected return portfolios during post-GFC period.
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Portfolio return Portfolio standard deviation Weight of stock

7201.T 7267.T 8411.T 8306.T 8035.T 6702.T 8801.T 8802.T 9342.T 9433.T

Portfolio 1 0.0006 0.0331 0.0579 0.1859 0.2419 0 0 0.0389 0 0.0465 0.3273 0.1016

Portfolio 2 0.0008 0.0327 0.0774 0.1554 0.2273 0 0 0.0585 0 0.0195 0.3602 0.1018

Portfolio 3 0.0009 0.0325 0.0869 0.1401 0.2198 0 0 0.0683 0 0.0062 0.3767 0.1020

Portfolio 4 0.0010 0.0323 0.0985 0.1192 0.2085 0 0 0.0795 0 0 0.3946 0.0997

Portfolio 5 0.0015 0.0322 0.1379 0.0138 0.1478 0 0.0305 0.1212 0 0 0.4687 0.0801

Portfolio 6 0.0020 0.0328 0.1324 0 0.0393 0 0.0969 0.1442 0 0 0.5373 0.0499

Portfolio 7 0.0025 0.0344 0.0331 0 0 0 0.1938 0.1506 0 0 0.6226 0

Portfolio 8 0.0030 0.0385 0 0 0 0 0.4072 0.0402 0 0 0.5525 0

Portfolio 9 0.0035 0.0468 0 0 0 0 0.6586 0 0 0 0.3414 0

Portfolio 10 0.0040 0.0587 0 0 0 0 0.9157 0 0 0 0.0843 0

Table 14.
Composition of weight and risk of different expected return portfolios during non-crisis period.
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Period Diversification

strategy

Portfolio

return

Portfolio standard

deviation

Sharpe

ratio

During GFC

(2008–2009)

Naïve strategy �0.0012 0.0435 �0.1047

Optimal portfolio 8 0.0006 0.0471 �0.0349

Post-GFC (2011–2013) Naïve strategy 0.0036 0.031 0.0437

Optimal Portfolio 6 0.005 0.0267 0.1032

Non-crisis period

(2014–2018)

Naïve strategy 0.0006 0.0372 0.0027

Optimal portfolio 7 0.0025 0.0344 0.0582

Table 15.
Comparison of portfolio risk, return, and performance evaluation.
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