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Chapter

Dependent Dirichlet Processes for
Analysis of a Generalized Shared
Frailty Model
Chong Zhong, Zhihua Ma, Junshan Shen and Catherine Liu

Abstract

Bayesian paradigm takes advantage of well-fitting complicated survival models
and feasible computing in survival analysis owing to the superiority in tackling the
complex censoring scheme, compared with the frequentist paradigm. In this chap-
ter, we aim to display the latest tendency in Bayesian computing, in the sense of
automating the posterior sampling, through a Bayesian analysis of survival model-
ing for multivariate survival outcomes with the complicated data structure. Moti-
vated by relaxing the strong assumption of proportionality and the restriction of a
common baseline population, we propose a generalized shared frailty model which
includes both parametric and nonparametric frailty random effects to incorporate
both treatment-wise and temporal variation for multiple events. We develop a
survival-function version of the ANOVA dependent Dirichlet process to model the
dependency among the baseline survival functions. The posterior sampling is
implemented by the No-U-Turn sampler in Stan, a contemporary Bayesian com-
puting tool, automatically. The proposed model is validated by analysis of the
bladder cancer recurrences data. The estimation is consistent with existing results.
Our model and Bayesian inference provide evidence that the Bayesian paradigm
fosters complex modeling and feasible computing in survival analysis, and Stan
relaxes the posterior inference.

Keywords: ANOVA DDP, dependent treatments, multivariate survival outcomes,
recurrence, Stan

1. Introduction

The shared frailty model, coined by [1], has been widely used in the analysis of
multivariate survival outcomes that might be associated with subgroups or clusters.
Enormous work has been devoted to the development of the shared frailty model in
both Bayesian and frequency paradigms, and the reviews can be found in [2, 3]. As
an extension of the well-known Cox’s proportional hazard model, conditional on the
frailty effect, the traditional shared frailty model assumes a proportional hazards
structure, that is, the hazard ratio between two sets of covariate values is propor-
tional to their difference in relative risk scores over time [4]. Meanwhile, it fixes the
baseline hazard function among all clusters.

Traditional shared frailty models provide a good framework for expediently
mathematical tractability of the heterogeneity among multivariate observations,
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whereas in practice it needs modification and adaption to tolerate complex struc-
ture so as to incorporate cross information owing to the intra- and inter-subject
variability [5, 6]. Take the renowned data on recurrences of bladder cancer, for
instance [7]. There are three treatment arms, placebo, thiotepa, and pyridoxine.
Patients had multiple recurrences of tumors which were sparse beyond the fourth
recurrence. Figure 1 displays the Kaplan-Meier estimators of the survival-function
for the times of the first and the second recurrences under three treatments. One
observes that in Figure 1(a), the estimated survival curves at the first recurrence
are crossed, indicating a crossed hazard, and therefore, the proportional hazard
assumption is suspected [8]; in Figure 1(b), the survival curve of pyridoxine drops
below that of placebo from the fifth month at the second recurrence rather than
above from the 10th month on at the first recurrence. This indicates the functional
form of the survival curves varies between recurrences. Neglecting such character-
istics of non-proportionality and stratification of recurrences may yield inefficiency
by encumbering borrowing strength from potentially related information sources,
and consequently may jeopardize the prediction of the global survival times. More-
over, dependency might exist among the treatment strata and the stratification of
recurrences [5, 9].

Consequently, more complex modeling is needy to characterize the dependence
among the baseline hazard functions and treatment strata due to the temporal
effects of recurrences. Frequentist inference and computing are pretty challenging
and even infeasible within the most complex model setting. In Bayesian literature,
there exists work that allows the baseline survival/hazard function to vary on a
single level such as subgroups or the time axis ([10, 11]; among others). Neverthe-
less, rare work has taken bi-level varying baseline survival/hazard function into
account [12], not to mention that dependence among treatment strata [5].

We propose a generalized shared frailty model (GSFM) for multiple events time
data that allows the baseline hazard function to change dually along with the types
of events and treatment strata, so as to strengthen the ability to borrow information
from many sources. The proposed GSFM postulates multiplier frailties including
both parametric and nonparametric ones, where the parametric frailty random
effect accounts for the within-subject association by treating each subject as a
cluster; and a nonparametric frailty effect represents dependency among treatment
strata and temporal recurrences. For the GSFM, we suggest a Bayesian solution to
estimate the regression coefficient vector, the variance parameter of the frailty

Figure 1.
The Kaplan-Meier estimator of survival functions for first recurrence time (a) and second recurrence (b) in the
bladder cancer data.
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term, and baseline survival functions stratified by treatments and recurrences. In a
Bayesian workflow, the posterior distribution is determined by the combination of
observational data in the form of the likelihood function and the prior distribution
represented based on the background knowledge. From a Bayesian perspective, we
model the dependent nonparametric prior through transferring the data context
aforementioned into the ANOVA dependent Dirichlet process (ANOVA DDP),
which will be further reviewed in Section 2. The construction of the No-U-Turn
sampler for Markov chain Monte Carlo (MCMC) sampling is automated by Stan
[13] with its R interface [14]. The posterior inference is conducted by Stan as well.

The rest of this chapter is organized as follows. In Section 2, under typical data
scenarios of dependence structure, we summarize several modified versions of the
dependent Dirichlet process (DDP) initiated from MacEachern’s regression spirit
that nests dependent predictors into the traditional Dirichlet process (DP). In Sec-
tion 3, we postulate the GSFM and transform the dependent dual-stratified multiple
events to the survival-function version of the ANOVA DDP. We have a short
comparison between Stan and Nimble, two contemporary Bayesian computing tools
based on our user experience. In Section 4, we demonstrate the validity of the
GSFM, its Bayesian inference, and analysis of the data on recurrences of bladder
cancer. A brief conclusion is contained in Section 5.

2. Review of MacEachern’s DDP

The DP is the most popular Bayesian nonparametric prior since the seminal
work of [15]. The belief in data background that there exists some kind of depen-
dence structure stimulates construction and selection of proper dependent prior.
Some dependent DPs are constructed for unsupervised purposes such as clustering
[16, 17]. The DDP prior adopted in our proposed model is supervised and predictor-
dependent, originated from [18, 19], named as MacEachern’s DDP in two recent
review papers, which are interpretive and comprehensive [20, 21]. The key idea
behind MacEachern’s DDP is that the distributions of the random measures are
marginally DP distributed, validated by in our Subsections 3.2 and 3.3. Therefore,
we here confine how MacEachern’s DDP (henceforth we use the DDP to denote the
MacEachern’s DDP if the context is clear) came into being expanded from the DP;
and compare various modified versions of the DDP under various dependency
structures. We focus on two fundamental elements of Sethuraman’s construction of
DP [22], the weight and the atom, following the insight of [21].

2.1 DP vs. DDP

The DP is a distribution on distributions whereas the DDP aims to construct a
prior for a collection of distributions ℱ ¼ Fxjx∈Xf g indexed by covariate x. In
general, there are several representations of the DP such as Polya Urn, Levy mea-
sure, and stick-breaking representations [23]. Here, we use Sethuraman’s stick-
breaking construction to connect the DP with the DDP. The stick-breaking con-
struction is a kind of infinite sum representation that divides the DP into two
countable series, the stick-breaking weights (SBW) and the atoms. Generally, a DP
is expressed as a process with two components, the mass parameter determining the
weights and the base measure to generate atoms. Through the stick-breaking con-
struction, the DDP can be easily extended from the DP. We list their comparison in
Table 1, where we can find that the dependency among the covariates set X is
realized by indexing the mass parameter and base measure with the covariate x∈X .
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More specifically, the dependency can be characterized through the dependency
among the weights and atoms in the DDP.

The DDP can be widely applied to scenarios of various dependence data struc-
tures. We review modification versions of the DDP from three categories
depending on which part it modifies in the stick-breaking representation, weights,
atoms, or both. The first is to impose the dependency on the atoms but keep
common weights, leading to two typical representatives, ANOVA and Spatial
[9, 24, 25]. The ANOVA type DDP encoded the covariate dependence in the form of
regression for the atom processes. The Spatial DDP models for nonstrationary
spatial random fields with heterogeneous variance. The second category is to mod-
ify the weights to be dependent but keep the common atoms. The early and typical
work is the time series DDP [26]. They introduced a Markov Beta process on the
weights to account for the temporal dependency. The third category is to impose
dependency on both weights and atoms [27]. They constructed vector
autoregressive and autoregressive models for atoms and weights, respectively. We
summarize the aforementioned types of typical modifications in Figure 2.

3. Model and Bayesian inference

Consider a clinical trial with multiple event types, for example, the time of the
kth recurrence of a certain disease. In the trial, n subjects are divided into G strata of
treatment. Our goal is to describe the relationship between the time to the kth
recurrence of a subject, and its treatment stratum, as well as its vector of covariates
Z. For a certain subject, the time of recurrences, may be dependent since they occur
on the same individual and thus we assume an unobservable independent shared-
frailty random effectW to account for this dependence. On the other hand, we may
allow the conditional hazard affiliated with the script pair kj to imply distinct
survival distributions along with the temporal order of the recurrences of the
disease and for specific treatment. For the ith subject in the jth treatment stratum,
at the kth recurrence, given the value of frailty variable wi and its covariate vector
zkji, we propose the following frailty model,

λkj tjwi, zkji
� �

¼ wiλ0kj tð Þ exp βTzkji
� �

, k ¼ 1,⋯,K, j ¼ 1,⋯,G, i ¼ 1,⋯, n j: (1)

Model (1) is called the generalized shared frailty model in the sense that non-
proportionality among k-varying recurrences is allowed by the fact that the right-
hand baseline hazard has footnotes k and j. We allow dependency among treatment
strata in the model (1). Therefore, the baseline hazard function λ0kj acts as if a
nonparametric frailty random measure accounting for the dependency owing to the
recurrences and treatment schemes.

DP DDP

Random probability measure F � DP M, F0ð Þ F ¼ Fxjx∈X ,Mx,F0xf g

Sethuraman’s construction F �ð Þ ¼
P

∞

h¼1phδθh �ð Þ Fx �ð Þ ¼
P

∞

h¼1pxhδθxh �ð Þ

ph � SBW 1,Mð Þ pxh � SBW 1,Mxð Þ

θh � F0 θxh � F0x

Convolution H yð Þ ¼
Ð

k yjθð ÞdF θð Þ Hx yð Þ ¼
Ð

k yjθð ÞdFx θð Þ

Table 1.
Comparison of DP and DDP.
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Figure 2.
Workflows of representative expansions of DDP.
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Model (1) is an extension of the classical shared frailty model (4.1.1) on page 101
of [4] since the baseline hazard function there does not vary among the recurrences
and the treatment strata. Model (1) has the analog spirit to the frailty model (1) in
[10], whereas their treatment strata are independent.

3.1 Likelihood

The corresponding survival function of the model is given by: Skj tjwi, zkji
� �

¼

S0kj tð Þ
� � exp βTzkjiþvið Þ, where S0kj tð Þ ¼ exp �

Ð t
0λ0kj sð Þds

� �

denotes the baseline sur-
vival function of the kth recurrence for subjects in the jth treatment stratum, and
vi ¼ log wið Þ denotes logarithm transformation of the frailty effect. Let f0kj be the
corresponding baseline density function.

Given the data sample Ykji, δkji, zji
� �

, where Ykji ¼ min Ckji,Tkji

� �

,
δkji ¼ I Tkji ≤Ckji

� �

, with Tkji being the gap time between the (k � 1)th and kth
recurrence of the ith subject in the jth stratum and Ckij being the corresponding
censoring variable that is independent of Tkji given the covariate vector zkji, for
k ¼ 1,⋯,K, j ¼ 1,⋯,G, i ¼ 1,⋯, n j, and

PG
j¼1n j ¼ n. In the jth stratum, suppose

that there are nkj (nkj ≤ n j) subjects suffering from the kth recurrence. Then the
likelihood is written as:

Y

K

k¼1

Y

G

j¼1

Y

nkj

i¼1

exp βTzkji þ vi
� �

f 0kj ykji

� �

S0kj ykji

� �n o exp βTzkjiþvið Þ�1ð Þ
� 	δkji

� S0kj ykji

� �n o 1�δkjið Þ exp βTzkjiþvið Þ
:

3.2 Survival-function version of the ANOVA DDP

In the Bayesian workflow for the estimation, prior distributions are first deter-
mined. We here specify appropriate nonparametric priors for S0kj and f0kj. Since
they can be easily derived from one to the other, we here only introduce the priors
for S0kj.

We divide S0kj into K groups, and the kth group has G baseline survival
functions of different treatment strata at the kth time of recurrence. That is, for
a fixed k, Sk ¼ S0kj, j ¼ 1,⋯,G

� �

is a collection of baseline survival functions
with length G indexed by the categorical covariate j denoting the treatment
stratum. The next procedures come from the spirit of [9]. As a general example,
suppose two dugs A and B will be taken in treatment, with V and U levels of
doses, respectively. In this case, G = VU denotes the number of treatment
strata and let the level of the jth stratum be (v,w). We write the stick-breaking
form of S0kj such that S0kj tð Þ ¼

P

∞

h¼1phI t> θkjh
� �

. We impose an ANOVA
structure on θkjh:

θkjh ¼ mkh þ Akvh þ Bkwh, (2)

where mkh denotes the ANOVA effect shared by all the strata at the kth
recurrence, and the rest terms are the ANOVA effects of the jth stratum at the kth
recurrence. Let the three components be independently generated from three
distributions, and marginally on j, the baseline survival function S0kj follows a DP.
The aforementioned procedure implies that Sk is a survival-function version of the
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ANOVA DDP. If we consider a single event, that is, K = 1, with linear effects of a
regressor vector z involved in (2) such that θjh ¼ mh þ Avh þ Bwh þ βThZ, then it
reduces to the univariate survival regression model in [25].

Since any function in the stick-breaking form is discrete almost surely, we place
a convolution through the Dirichlet process mixture (DPM) model [28]. Particu-
larly, since the baseline survival functions are defined on the positive half-real line,
the convolution kernel in DPM should be positive such as log-normal, Gamma, and
Weibull. In this chapter, a log-normal kernel is considered. For different recur-
rences, we treat the relationship among Sks to be independent.

3.3 One-way ANOVA DDP

Considering the data of our interest, where only one drug and one level of dose is
used in each treatment stratum, we introduce the modeling of the survival-function
version of one-way ANOVA DDP. In this case, the prior for the Sk reduces to a one-
way ANOVA form since the dependency among the G treatment strata is explained
by only one ANOVA effect. Furthermore, if we set mkh ¼ 0, αkh ¼ θk1h,⋯, θkGhð ÞT

reduces to a G-variate variable denoting the locations of all G baseline distributions
and thus θkjh ¼ αTkhd j, where dj is the design vector of the jth stratum to select the
appropriate ANOVA effects corresponding to j.

With the above notations, we summarize the procedure to construct the
survival-function version of one-way ANOVA DDP prior in model (1) as follows:

1.Stick-breaking form. For k ¼ 1,⋯,K, let Hk be the collection of G distribution
functions s.t Hk ¼ Hkj, j ¼ 1,⋯,G

� �

. Hkj �ð Þ ¼
P

∞

h¼1pkhδθkjh �ð Þ.

2.Convolution step. Let αkh ¼ θk1h,⋯, θkGhð ÞT, and dj be the jth design vector of
length G with the jth element being 1 and others being 0. Let H0k ¼

H0k1,⋯,H0kGð Þ be the collection of base measures, S0kj tð Þ ¼
Ð

SLN tjαTk d j, σ2
� �

dHk α, σð Þ, where SLN denotes the survival function of the log-
normal distribution, and Hk � DP Mk,H0kð Þ.

3.Determine the mass parameter and the base measure. For simplicity, we set
Mk = 1 for all k, which is a commonly used default value of the mass parameter
[29], H0k θ, σð Þ ¼ N 0, IGð Þ � Cauchy 0, 5ð Þþ, where Cauchy+ denotes the
half_Cauchy distribution.

Step 1 is a standard stick-breaking representation for DP. Step 2 is kernel mix-
ture of DP whereas the kernel is a survival function rather than a cumulative
distribution function. The realization of Step 2 is quite straightforward in Stan as it
provides the function lognormal_lccdf to be used as the kernel of the survival
function of the log-normal family.

In Step 3, we specify the base measure as the prior for the location and shape
parameters of the log-normal kernel directly rather than adding another hyper prior
distribution like [25] did. The main reason is to simplify the computation in Stan.
Particularly, inspired by [30, 31], we use the half-Cauchy distribution as the non-
informative prior for the variance parameter instead of the inverse Gamma prior. In
our practice, the choice of half-Cauchy prior significantly improves the speed of
convergence and mixture performance of the MCMC chains in our real data analysis
and simulation. Another interesting point we met in numerical studies is that the
informativeness of the base measure for θ. Here, we do not assign the non-
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informative distribution but a weakly informative one is considered since we find
such a weakly informative prior provides better MCMC performance than that of
non-informative one with a higher effective sample size and better mixture perfor-
mance. In our other research experience, the weakly informative prior for the vari-
ance parameter in the mixing component of the DPM seems to be more preferable.

3.4 Other priors and MCMC

In terms of the prior for the parametric prior wi, we choose to log-normal prior
that vi ¼ log wið Þ and vi � N 0, τ2ð Þ, where τ>0 is an unknown parameter. We
further assign a half Cauchy prior for τ s.t τ � Cauchyþ 0, 5ð Þ as a non-informative
prior. The prior for the vector of regression coefficients is β � N 0, 1000Ið Þ as a non-
informative prior.

We use the truncated Dirichlet process to replace the infinite summand in the
DP. The selection of the truncation point is often ad-hoc. Since in Stan the NUTS
cannot sampler discrete parameters, we have to fit the truncation number and the
mass parameter before the MCMC procedure. In general, the truncation number is
set to be large enough s.t the truncated part is negligible. Gelman et al. [32]
suggests using a truncation number L that is greater than 5M + 5. In our
computation, we set L = 12.

The MCMC sampling for the posterior distribution is realized in Stan. Stan and
its R version are widely used in statistical modeling and high-performance statistical
computing, especially in Bayesian. Stan realizes the MCMC sampling through the
No-U-Turn sampler (NUTS). Stan automates the deriving of the fully conditional
posterior distribution and NUTS is able to obtain high effective sample size [33].

3.5 Stan and NIMBLE: Programming styles

The MCMC sampling procedure is implemented in Stan and we also tried to
implement the model in NIMBLE, another contemporary Bayesian computing tool
in R. Stan and NIMBLE are two contemporary Bayesian computing tools that have
drawn arising interest for Bayesian analysis but still remain under active develop-
ment [34, 35]. The main advantage of Stan and NIMBLE is that they provide clear
automatic posterior sampling procedures based on their specific sampling algo-
rithms without particular justification. Therefore, users can be released from com-
plicated probabilistic deriving and implementation. There has been a buzz group
discussion about the comparison between Stan and NIMBLE in environments like
[36, 37]. One comparison of their built-in samplers is demonstrated through
implementing weakly informative and informative estimation within the trimmed
mean regression model setting [38]. Here we contribute a naive comparison on their
programming styles based on the first two authors’ experience in coding this project
and using Stan and NIMBLE, respectively.

A Bayesian paradigm is made up of three main steps, the prior, likelihood, and
the posterior. MCMC generates samples to approximate the posterior distribution.
Therefore, what one needs to set in a Bayesian computing tool is the prior and
likelihood, let alone Stan or NIMBLE. Nevertheless, Stan and NIMBLE take differ-
ent programming styles in writing likelihood. In Stan, the default way to present the
log-likelihood is the syntax target and users can add log contribution to it freely,
which is similar to the natural language and straightforward to users whatever level
of mathematical background. In NIMBLE, the default way is to transfer the likeli-
hood into some standard distributions given by NIMBLE, which may not be
friendly for users who have a relatively less mathematical background.
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We take fitting the finite mixture of the Gaussian model as an example. For a
fixed positive integer L, the distribution of Y is given by FY sð Þ ¼

PL
l¼1plN sjμl, σ

2
l

� �

and the log-likelihood is logL p, μ, σjYð Þ ¼
Pn

i¼1

PL
l¼1 log pl

� �

þ logϕ yijμ1, σl
� �� �

,
where ϕ denotes the density function of normal distribution. The code for Stan and
NIMBLE to implement this model is listed in Listing 1.1 and 1.2, respectively. In
Listing 1.1 we clearly find that the contribution to the syntax target is just the sum of
log(pl) and the logarithm of the density of normal distribution denoted by
normal_lpdf. The rest is to assign a Dirichlet prior to the weights pl and other
parameters. However, in the NIMBLE code shown in Listing 1.2, we have to transfer
the likelihood into some sampling procedures by IMAGING that there are L clusters
of random numbers, the random numbers are i.i.d Gaussian within each cluster,
and the probability a random number is drawn from the lth cluster is pl. Thereafter,
the Dirichlet prior is assigned to pls. Such imagine matches the Bayesian philosophy
but when the likelihood function becomes to be quite complicated, to understand
this sampling procedure may not be easy anymore, especially for practitioners not
coming from a mathematics or statistics background.

Listing 1.1: Stan code for modeling mixture of Gaussian distribution

1 data {
2 int<lower=1> N;
3 vector[N] y;
4 int<lower=1> L;
5 }
6 parameters {
7 simplex[L] p;
8 vector[L] mu;
9 vector<lower=0>[L] sigma;

10 }
11 model {
12 p � dirichlet(rep_vector(1, L));
13 mu � normal(0, 100);
14 sigma � cauchy(0, 2.5);
15 for(i in 1:N) {
16 vector[L] lp_i;
17 for(l in 1:L) {
18 lp_i[l] = log(p[l]) + normal_lpdf(y[i]|mu[l], sigma[l]);
19 }
20 target += log_sum_exp(lp_i);
21 }
22 }

Listing 1.2: NIMBLE code for modeling mixture of Gaussian distribution

1 NimbleCode <- nimbleCode ({
2 for (i in 1:N) {
3 y[i] � dnorm(mu_y[z[i]], tau = tau_y[z[i]])
4 z[i] � dcat(p[1,L])
5 }
6 for (j in 1:L) {
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7 mu_y[j] � dnorm(0, 0.01)
8 tau_y[j] � dgamma(0.01, 0.01)
9 }

10 p[1:L] � ddirch(alpha0[1,L])
11 })
12 NimbleData <- list(y = y)
13 NimbleConsts <- list(L = L, N = length(NimbleData$y), alpha0 = rep(1, L))
14 NimbleInits <- list(mu_y = rnorm(NimbleConsts$L), tau_y = rgamma

(NimbleConsts$L),p = rep(1/NimbleConsts$L, NimbleConsts$L))

4. Application: Bladder cancer recurrences

We apply the GSFM to analyze the bladder cancer recurrences data set
contained in R package survival. Totally 118 subjects in the clinical trial are divided
into three treatment strata including placebo, pyridoxine (vitamin B6), and thio-
tepa. Each subject may experience k (from 1 to 9) times of recurrences and may die
from or not from the recurrence of bladder cancer. We do not discriminate the
death from cancer and the recurrence, and the death from other causes is treated as
censoring status. Our interest is the gap time between the (k � 1)th and the kth
recurrences. Besides the treatment schemes, two clinical covariates are considered:
the number of tumors at the beginning (x1) and the size of the largest tumor (x2)
within a subject. The values of these two covariates are evaluated at the beginning
of each recurrence interval. This data set was once analyzed for the time between
the first to the second recurrence as a univariate time-to-event outcome [39]. In this
chapter, we consider both the first and the second recurrences and thus K = 2 here.
The two covariates are scaled by divided by 100. To simplify the computation, the
follow-up time is transferred from months to years to get lower scalars.

4.1 Model-checking for baseline survival functions

Before further inference, we need to check whether the proposed model is
appropriate. As an alternative, a shared frailty model is fit by R package
spBayeSurv. In the shared frailty model, the treatment strata are considered as
indicator covariates in the parametric term. We run four independent MCMC
chains for 5000 times with the first 2000 times burn-in and aggregate the rest
chains together as the posterior samples under the GSFM. All chains are well mixed
and convergent under the GSFM. For the shared frailty model, we run the MCMC
16,000 times with the first 6000 times burn-in through R function survregbayes
using the “IID” Gaussian frailty under “PH”model name. Other settings are default.

The plots of the estimated baseline survival functions under different models
stratified by treatment strata can be viewed in Figure 3. From that, we find the
baseline survival functions estimated under the GSFM show similar trends as that of
the K-M estimator in each recurrence and reflect the crossing survival curves at the
first recurrence like the K-M estimator. However, the curves estimated by the
shared frailty model are not crossed and cannot change along with recurrences.
Therefore, the proposed GSFM is appropriate for the data.

4.2 Parametric estimation I: Real data

We use the mean of posterior samples (median for τ) as the estimator of param-
eter and we list the estimation of the vector of regression coefficients β and standard
deviation parameter τ in Table 2.
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From Table 2 we find that as the number of tumors at the start point increases,
the hazard for recurrences increases as well whereas the larger size of the largest
tumor will decrease the hazard. This conclusion is similar to that in [39] who
analyzed the first recurrence as univariate time-to-event data by a transformation
model.

Besides the parametric estimation result, we also report two metrics about the
MCMC performance here. The first one is the effective sample size (ESS), an
approximation to the number of “independent” draws in MCMC sampling. It shows
that the ESS of all parameters is greater than 400, which is considered to be
adequate by [40]. The ESS of τ is significantly lower than that of β, a possible reason
is that the frailty random effect might be time-dependent wi(t) rather than a time-
fixed effect. Another metric of interest is the average time needed to generate each
effective sample, called MCMC Pace. Stan development team emphasized the
importance of MCMC Pace, and the definition is given by the team of NIMBLE in
[41] as the time consuming of generating one effective sample. The MCMC Pace to
generate τ is much higher than that of β, and we conjecture the possible reason is
that the posterior distribution has a long upper tail leading to outliers in posterior
samples, which slows down the speed to generate effective samples.

4.3 Parametric estimation II: Simulation

Another simulation study is considered to evaluate the performance of para-
metric estimation of the MCMC procedure. Our simulation aims to simulate the
occurrences of multiple events on the same individual. We take K = 2 and G = 3
denote the number of types of events and the number of treatment strata,

Figure 3.
The estimated baseline survival curves for the first (a) and second (b) recurrence; the black curves are estimated
under the proposed generalized shared frailty model, and the pink curves are estimated under the traditional
shared frailty model; the real lines, placebo; the dash lines, pyridoxine; the dotted lines, thiotepa.

Est SD ESS PACE

No. tumors 13.849 11.051 1495 0.145

Tumor size �14.196 12.341 1114 0.194

τ 1.793 0.383 456 0.474

Est, point estimation; SD, posterior standard deviation; ESS, effective sample size; PACE, the MCMC Pace.

Table 2.
The parametric estimation and the MCMC performance for the bladder cancer recurrences data.

11

Dependent Dirichlet Processes for Analysis of a Generalized Shared Frailty Model
DOI: http://dx.doi.org/10.5772/intechopen.101502



respectively. The simulation includes two independent covariates, xi � Bin 1, 0:5ð Þ
and x2 � N 0, 1ð Þ to incorporate indicator variable and continuous variable as well.
For k ¼ 1, 2, j ¼ 1, 2, 3, the baseline survival functions S0kj are set as:

• S011 ¼ 1� 0:5 LN �0:25, 1ð Þ þ LN 0:25, 1ð Þð Þ;

• S012 ¼ 1� 0:5 LN �0:5, 1ð Þ þ LN 0:65, 1ð Þð Þ;

• S013 ¼ 1� 0:5 LN �0:65, 1ð Þ þ LN 1:25, 1ð Þð Þ;

• S021 ¼ 1� LN 0, 1ð Þ; S022 ¼ 1� LN �0:5, 1ð Þ; S023 ¼ 1� LN 0:5, 1ð Þ

When k = 1, the three baseline survival functions are crossed whereas when
k = 2, the three curves are not. The vector of regression coefficients is β ¼ 1, 1ð ÞT

and the log frailty random effect vi � N 0, 1ð Þ independently. The survival time is
generated following model (1). The censoring variable of each event is generated
from Unif(4,6) independently, leading to a censoring rate of about 28%. We set the
number of subjects to be 90 and they are equally divided into three treatment strata.
We repeat the simulation for 150 times.

Table 3 summarizes the results for regression parameters β and the standard
deviation of frailty effect τ, including the averaged bias (BIAS), the root of mean
square error (RMSE), posterior estimated standard deviation (ESD) of each point
estimate (posterior mean for β and median for τ), the standard deviation (across 150
replicated simulations) of the point estimate (SDE), and the coverage probability
(CP) of the 95% credible interval (given by Wald-type credible interval). The
results show that the point estimates of β and τ have quite little bias with low RMSE,
ESD values are close to the corresponding SDEs, and the CP values are close to the
nominal 95%.

5. Discussion

In this chapter, we show the power of Bayesian computing illustrated by suc-
cessfully applying the ANOVA DDP model as the nonparametric prior for a rela-
tively complicated shared frailty model. Our survival-function version of the
ANOVA DDP, modified based on the ANOVA DDP directly in Subsection 3.3, is
constructed for the shared frailty model, but can reduce to modeling the univariate
dependent survival functions by involving the continuous covariates into the pre-
dictor space of the ANOVA DDP. Hence, our work is an extension of [25] to some
extent. However, the proposed GSFM is different from the Linear DDP model for a
single group which is a generalization of the accelerated failure time model [42, 43].

Parameter BIAS RMSE ESD SDE CP

β1 = 1 �0.062 0.042 0.222 0.196 96.7

β2 = 1 �0.025 0.023 0.148 0.152 92.7

τ = 1 �0.078 0.056 0.213 0.224 96.7

BIAS, averaged bias among the 150 simulations; RMSE, the root of mean square error of the estimation; ESD,
averaged posterior estimated standard deviation; SDE, the standard deviation of point estimate; CP, the coverage
probability of 95% credible interval.

Table 3.
Simulation results for the parametric terms.
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Furthermore, although we point out that there exists potentially dual dependence
for dual stratification of treatment strata and recurrences, we just simply allow
dependence in treatment strata and assume that the recurrences are independent in
our methodology demonstration. The dependence across recurrences per subject is
dealt with only by the parametric frailty random effect in the proposed shared
frailty model. It is more reasonable to be incorporated into the baseline survival
functions so that the interaction effects between recurrence and treatment may be
accounted for. Under the one-level stratification, Hanson et al. [5] modeled such
serial correlation among baseline hazard functions by constructing the so-called
dependent tail free process as the prior. It is non-trivial to accommodate dual
temporal and stratified dependency as a future research plan.
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