
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter

Coupled Oscillators
Ivo Čáp, Klára Čápová, Milan Smetana and Štefan Borik

1. Introduction

A wave is the propagation of oscillations in space through the coupling between
individual oscillators. There is an obvious experiment to hit the right piano key,
which sounds the tuning-fork tuned to the same frequency as the key we hit.
Another example is breaking a fragile wine glass by the intense sound of the
frequency that corresponds to the resonant frequency of the glass.

The crystal of the substance is formed by the regular arrangement of individual
atoms, ions, or molecules that are bound together by electrical forces. Since the
crystal keeps its form, it means that there are attractive forces between the particles.
Each particle has its equilibrium position, which is given by the minimum potential
energy in the force field of the surrounding particles. The particles oscillate around
the equilibrium position concerning the homogeneity of the substance. Besides, the
frequencies of the self-oscillations of all particles are the same. When one particle
oscillates, energy transfers to the adjacent particle by resonance, and then the initial
excitation travels through space. This excitation propagating is called the wave.

First, we show the oscillations of a system consisting of two or three particles.
Then, we show the energy transfer between two particles and finally, the wave
propagation in an infinite chain of the same oscillators.

1.1 Molecular vibration spectra

Radiation passing through the material medium vibrates the particles of the sub-
stance that are in resonance with the radiation. The particles then absorb the energy
of the radiation, and thus, the radiation is attenuated. This phenomenon is used in
spectroscopy to identify the particles with common properties in a specific medium.

1.1.1 The frequency of vibrations of the diatomic molecule

One of the oscillators of a gaseous environment is a molecule. The molecules
consist of the individual atoms bound together. Thus, the system of bonded atoms
represents an oscillator. The simplest is a diatomic molecule.

Consider a molecule in which two atoms with masses of m1,m2 are bound by the
force F = � k (r - r0), where the k is the stiffness coefficient of the molecule, and the
r0 is the equilibrium distance of the centers of the atoms. If we denote r1 and r2 the
coordinates of atoms, in the coordinate system of a straight line passing through the
centers of atoms, the equations of motion of both atoms are.

m1€r1 ¼ �k r2 � r1ð Þ and m2€r2 ¼ �k r1 � r2ð Þ:

Subtracting the equation, we get.

€r1 � €r2 ¼ � k

m1
r2 � r1ð Þ � k

m2
r2 � r1ð Þ,
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or

€r ¼ � k m1 þm2ð Þ
m1m2

r: (1)

The solution to the equation is a harmonic function of r = rm sin ω t.
These are vibrations of a molecule with an angular frequency.

ω ¼
ffiffiffiffiffiffiffiffi

k

m ∗

r

, (2)

where m ∗ ¼ m1 m2

m1þm2
is the reduced mass of the particles.

The molecule, thus, represents a simple oscillating system.
If we apply an external periodic force, then we can achieve resonance when a

molecule or array of molecules absorbs the energy. This phenomenon finds its place
in spectroscopy. If we irradiate the gas consisting of the diatomic molecules with
electromagnetic radiation, the resonance wavelengths are attenuated in the trans-
mitted radiation.

Thus, we can determine the stiffness coefficient of the molecule by measuring
the resonance frequency.

Example 1 The vibration frequency of some molecules.
Oxygen O2:m = 16 � 1.67 � 10�27 kg, μ =m/2, k = 1133 N/m, hence f = 46.3 THz,

wavelength in vacuum λ = 6.47 μm.
Nitrogen N2: m = 17 � 1.67 � 10�27 kg, μ = m/2, k = 2287 N/m, hence f = 63.9

THz, wavelength in vacuum λ = 4.70 μm.
From this, we can see that the air in the atmosphere absorbs infrared radiation.
Example 2 Stiffness coefficient of the molecule.
The HCl molecule has the resonance frequency of f = 86.7 THz (wavelength

5.33 μm). For mH = 1.67 � 10�27 kg and mCl = 35 � 1.67 � 10�27 kg,
μ = 1.62 � 10�27 kg, we get the k ≈ 481 N/m.

The NO molecule has the resonance frequency of f = 56.3 THz (wavelength
3.46 μm). For mN = 17 � 1.67 � 10�27 kg and mO = 16 � 1.67 � 10�27 kg,
μ = 13.76 � 10�27 kg, we get the k ≈ 1722 N/m.

The CO molecule has the resonance frequency of f = 66.3 THz (wavelength
4.52 μm). Pre mC = 12 � 1.67 � 10�27 kg and mO = 16 � 1.67 � 10�27 kg,
μ = 11.45 � 10�27 kg, we get the k ≈ 1987 N/m.

Example 3 Coupling stiffness coefficient.
The bonds of pairs of atoms in more complex molecules also show resonance

character. The binding force and hence the frequency of the oscillations vary for
different binding strengths, e.g., carbon bonds: -C � C- (λ = 4.73 μm),
=C=C = (λ = 5.90 μm), �C-C� (λ = 9.48 μm), heterogeneous bonds �C-H
(λ = 3.00 μm), -O-H (λ = 2.80 μm), -C � N (λ = 4.40 μm), =C=N- (λ = 6.30 μm).

1.1.2 Oscillations of multiatomic molecules

In the case of multiatomic molecules, vibrations of individual pairs of atoms, but
also other collective stationary modes will occur. The spectrum of such molecules is
more complex, and its theoretical calculation is complicated.

As a simple case, consider a CO2 molecule that has a simple linear geometry. The
O=C=O atoms are on one line, as opposed, e.g., to the two-dimensional H2O mole-
cule, in which the H-O-H atoms form a “V” structure with an opening angle of
104.5° and an O atom at the midpoint. Another example is the 3-dimensional
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molecule of NH3. A similar linear structure has an N2O molecule having the
arrangement of N � N+-O� or N� = N+ = O.

Consider the general case of a triple atom in a linear arrangement, see Figure 1.
The equations of motion are.

m1 €x1 ¼ k1 x2 � x1ð Þ,
m2 €x2 ¼ k2 x3 � x2ð Þ � k1 x2 � x1ð Þ, (3)

m3 €x3 ¼ �k2 x3 � x2ð Þ:

The stationary mode represents oscillations of the system in which all particles
vibrate at the same frequency and constant amplitudes. If we use phasor symbol-
ism, we get.

x1 tð Þ ¼ X1 ejω t, x2 tð Þ ¼ X2 ejω t, x3 tð Þ ¼ X3 ejω t:

After substituting into differential equations, we get a system of algebraic
equations.

�ω2m1 þ k1 �k1 0

�k1 �ω2m2 þ k2 þ k1 �k2

0 �k2 �ω2m3 þ k2

0

B

@

1

C

A
�

X1

X2

X3

0

B

@

1

C

A
¼ 0: (4)

The condition of nontrivial solution is zero value of the system determinant
(characteristic equation)

ω4 � ω2 k1
m1

þ k1 þ k2
m2

þ k2
m3

� �

þ m1 þm2 þm3

m3m2m1

� �

k1k2

� �

ω2 ¼ 0:

This is the equation of the third degree for ω2.
The first solution is ω2 = 0 and x1 = x2 = x3. It represents the translation of the

molecule by uniform motion.
The other two solutions are the solution of the quadratic equation for ω2

ω4 � ω2 k1
m1

þ k1 þ k2
m2

þ k2
m3

� �

þ m1 þm2 þm3

m3m2m1

� �

k1k2 ¼ 0,

which has two solutions.

ω2
1,2 ¼

1

2

k1
m1

þ k1 þ k2
m2

þ k2
m3

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4

k1
m1

þ k1 þ k2
m2

þ k2
m3

� �2

� m1 þm2 þm3

m3m2m1

� �

k1k2

s

:

(5)

Figure 1.
Linear system of two bound particles.
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Example 4 The CO2 molecule oscillations.
As an example, we will find the stationary mode frequencies of the linear

molecule O=C=O (carbon dioxide), for which the k1 = k2 a m1 = m3. If we substitute
it to the corresponding relation, we get.

ω2
1,2 ¼ k1

1

m1
þ 1

m2

� �

� 1

m2
, (6)

from where ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1
1
m1

þ 2
m2

� �

r

, and ω2 ¼
ffiffiffiffiffi

k1
m1

q

.

f1 = 40.92 THz (λ1 = 7.33 μm), k1 = 1766 N/m, f2 = 78.35 THz (λ2 = 3.83 μm).
The first oscillating mode with the angular frequency ω1 represents the simulta-

neous movement of the outer atoms x1 = x3 and the movement of the central atom
in the opposite direction. At the same time, the mass center remains at rest. In the
second mode ω2, the middle C atom is at rest, and the other O atoms oscillate
against each other (x1 = �x3). In the CO2 absorption spectrum, these absorption
lines correspond to two wavelengths of λ1 and λ2.

In the case of two or three-dimensional molecules, there are several stationary
modes. The complex structure of the spectrum of resonance frequencies is unique
to each molecule and thus allows identifying the substance by measuring the reso-
nance spectrum. This method represents spectral analysis. As can be seen from the
above examples, the vibration modes have frequencies that belong to the region of
infrared radiation (in the wavelength range from one to hundreds of μm).

Simple molecules of CO2, SO2, NxOy, and others, which enter the atmosphere as
a result of human activity, absorb thermal radiation and create a greenhouse effect.
These gases are so-called greenhouse gases.

The gases such as H2, O2, and N2 have non-polar molecules. These molecules
have zero dipole moment as opposed to the polar molecules of H2O, CO2, and
others. Therefore, they interact very weakly with electromagnetic radiation, and
they do not absorb the heat. Thus, the elementary atmospheric gases O2, N2 do not
cause a greenhouse effect.

1.2 Energy transfer in the system of the coupled oscillators

As stated earlier, the nature of the wave is the propagation of oscillations in
space. Let us consider a pair of coupled oscillators and then an extension to an
infinite line chain of oscillators.

1.2.1 Two coupled oscillation systems

Consider a mechanical model of a pair of particles of an equal mass of them bound
to each other and stationary walls by springs with a stiffness of the k, Figure 2.

Suppose that particles can deviate from equilibrium positions in the longitudinal
x-direction. Then, denote the displacements as x1 and x2. The following equations
describe the motion of the particles:

mˊ€x1 ¼ kˊ x2 � x1ð Þ � kˊx1 mˊ€x2 ¼ �ˊkˊ x2 � x1ð Þ � kˊx2, (7)

or

€x1 ¼ ω2
0 x2 � x1ð Þ � ω2

0 x1 €x2 ¼ �ω2
0 x2 � x1ð Þ � ω2

0 x2, (8)

where ω2
0 ¼ k=m.
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Consequently, we rewrite the equations to the form.

x
4ð Þ
1,2 þ 4ω2

0 €x1,2 þ 3 ω4
0 x1,2 ¼ 0,

which has a harmonic solution

x1 ¼ A11 sin ω1tþ α11ð Þ þ A12 sin ω2tþ α12ð Þ (9)

x2 ¼ A21 sin ω1tþ α21ð Þ þ A22 sin ω2tþ α22ð Þ, (10)

where ω1 ¼ ω0, and ω2 ¼
ffiffiffi

3
p

ω0.
The Aij and αij are constants, which values are determined by the initial condi-

tions such as displacements of the x10, x20 and velocities of the v10, v20 at the time of
t = 0 and Eq. (8).

1.2.1.1 Stationary modes

Stationary oscillations are oscillations with a single frequency and a constant
amplitude. There are two stationary modes in the system - one with a frequency of
ω1 and the other with a frequency of ω2.

For the first mode, we have.

x1 ¼ A11 sin ω1 tþ α11ð Þ and x2 ¼ A21 sin ω1 tþ α21ð Þ

and after substituting to the (8), we get.

2ω2
0 � ω2

1

	 


x1 ¼ ω2
0 x2 and thus, x1 ¼ x2: (11)

The first stationary mode is characterized in that both particles vibrate with the
same amplitude and the same phase, i.e., together.

The second stationary mode is then.

x1 ¼ A12 sin ω2 tþ α12ð Þ, and x2 ¼ A22 sin ω2 tþ α22ð Þ

and after substituting into the (8), we get.

2ω2
0 � ω2

2

	 


x1 ¼ ω2
0 x2 and thus, x1 ¼ �x2: (12)

The second stationary mode characterizes two particles oscillating with the same
amplitude but the opposite phase, which means opposite direction to each other.

Note: If the particles have an electric charge, then the dipole moment of the pair does
not change at the mechanical oscillations of the first mode, while the second mode changes
the electrical dipole moment of the pair. For this reason, the first oscillating mode only
weakly interacts with the external EM field, while the second mode interacts with the EM

Figure 2.
System of coupled oscillators.
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relatively strongly. The resonant excitation of mechanical oscillations by the EM field
leads to the absorption of electromagnetic power, especially at the resonant frequency of
ω2, which is represented by a significant minimum in the spectral transmission
characteristic of the substance.

1.2.1.2 Stationary mode interference

Any movement of the described system is a superposition of stationary modes.

x1 ¼ A1 sin ω1 tþ α1ð Þ þ A2 sin ω2 tþ α2ð Þ
x2 ¼ A1 sin ω1 tþ α1ð Þ � A2 sin ω2 tþ α2ð Þ:

The oscillation character depends on the initial conditions such as the displace-
ment of x10, x20, v10 a v20 and the particle velocities at the time t = 0.

As an example, we assume the case, when the first particle is shifted from the
equilibrium and the second one is quiescent. The initial conditions are x10 = xm,
x20 = 0, v10 = v20 = 0. After substituting the initial conditions, we get.

x10 ¼ A1 sin α1 þ A2 sin α2 ¼ xm

v10 ¼ ω1A1 cos α1 þ ω2A2 cos α2 ¼ 0

x20 ¼ A1 sin α1 � A2 sin α2 ¼ 0

v20 ¼ ω1A1 cos α1 � ω2A2 cos α2 ¼ 0 ,

from where, we obtain amplitudes of A1 = A2 = A = xm/2 and phases
α1 = α2 = π/2 rad.

x1 ¼ A cos ω1 tþ cos ω2 tð Þ ¼ xm cos

ffiffiffi

3
p

� 1

2
ω0 t

� �

cos

ffiffiffi

3
p

þ 1

2
ω0 t

� �

x2 ¼ A cos ω1 t� cos ω2 tð Þ ¼ xm sin

ffiffiffi

3
p

� 1

2
ω0 t

� �

sin

ffiffiffi

3
p

þ 1

2
ω0 t

� �

:

(13)

Time courses of displacements are in Figure 3.

Figure 3.
Displacement of coupled oscillators for ω0 = 1 rad�s�1.
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It is seen from relations (13) and Figure 3 that oscillations are periodically
transmitted from one body to another and backward. In the figure, the envelope
curves of both oscillators are indicated by a dashed line. As a result of the coupling,
there is a periodic exchange of energy between oscillators. At the time of t = 0 s, the
first particle has the entire energy of the oscillations. On the other hand, in time of.

t1 ¼
2π
ffiffiffi

3
p

� 1
	 


ω0

≈ 8:6 s for ω0 ¼ 1:0 s�1
	 


,

the whole energy is transferred to the second particle.
Example 2.5 Oscillation energy transfer rate.
Let us assume the aluminum ions from Example 1.5 have the angular frequency

of ω0 ≈ 6.1 � 1013 rad/s and a mutual distance a ≈ 2.8 � 10�10 m. If we suppose the
time of transfer t1 ≈ 1.4 � 10�13 s, the transfer rate is v = a / t1 ≈ 2.0 � 103 m/s,
which corresponds to the order of the ultrasound velocity in aluminum
(5.1 � 103 m�s�1).

As we see from a simple example, the energy of oscillations in a substance is
transmitted due to mutual bonds, which are manifested externally as a coherent
propagation of mechanical waves, e.g., sound and ultrasound, or incoherent heat
propagation.

1.2.2 Propagation of oscillations in a long particle chain

Substances consist of a great number of less or more ordered fundamental
particles, which can be molecules, atoms, or ions. Solids and liquids are formed by
particles whose attraction to each other is sufficiently large to form a compact body.
Each particle of solid or liquid substance has its equilibrium position, which is
caused by the force of the surrounding particles. These forces are mainly electrical.
The equilibrium position corresponds to the minimum potential energy, and around
the minimum of the potential energy, each particle performs an oscillating move-
ment. As a simplified crystal model, we will use an infinite chain of bound particles
arranged in a single line.

1.2.2.1 Propagation of longitudinal oscillations along the chain

We see the line chain model in Figure 4 suppose that at the beginning, only the
leftmost particle is put into oscillating motion, and the remaining particles of the
chain are quiescent. Let us further consider that an external time-dependent force
keeps the extreme left particle in a steady oscillating motion with time dependence.

x0 tð Þ ¼ x0m sinω t: (14)

The vibrations of the extreme left particle are gradually transferred to the other
particles of the chain via bonds. After some time, all the particles of the system
oscillate in harmonic oscillating motion with the same angular frequency of ω, but
different amplitudes and different phases.

Figure 4.
Linear chain of coupled oscillators.
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Consider three adjacent particles with indexes i - 1, i, i + 1, indicated by a dotted
fill in the figure.

The equation of motion of the i-th particle has the form.

m€xi ¼ �k xi � xi�1ð Þ � k xi � xiþ1ð Þ, for i>0,

which can be expressed as.

€xi ¼ �2ω2
0 xi þ ω2

0 xi�1 þ ω2
0 xiþ1, (15)

where ω0 ¼
ffiffiffi

k
m

q

.

If the particle chain is very long (theoretically infinite), then, the relationship
between neighboring particles does not depend on i index.

We can use phasor annotation for the harmonic solution of the equation:

xi tð Þ ¼ Xi e
jω t:

Subsequently, we express the relationship between complex particle displace-
ments by the constant using complex exponential form.

xiþ1 tð Þ
xi tð Þ

¼ e�γ, resp: xiþ1 tð Þ ¼ Xi e
�γ ejω t, (16)

where γ = β + j α.
Substituting to (15) we get.

2ω2
0 � ω2 ¼ ω2

0 eγ þ e�γð Þ ¼ 2ω2
0 cosh γ,

and from there.

cosh γ ¼ 1� ω2

2 ω2
0

: (17)

Let us consider cosh γ=cosh β cos α + jsin α sinh β. As right side of the (17) is real,
the imaginary part of cosh γ is zero. Thus, we get sin α = 0 or sinh β = 0.

In the case that sinh β = 0, then β = 0, cosh β = 1 and cosh γ = cos α:

cos α ¼ 1� ω2

2 ω2
0

, or tan α ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ω2
0 � ω2

p : (18)

From �1 ≤ cos α ≤ 1, we get the corresponding interval of angular frequencies:

0≤ω≤
ffiffiffi

2
p

ω0 ¼ ωm, (19)

where ωm ¼
ffiffiffiffiffi

2 k
m

q

is the cut-off angular frequency.

From (16), we get xiþ1 tð Þ ¼ xi tð Þ e�j α and thus, for amplitudes xi + 1 = xi.
All particles oscillate with the same amplitude, but the neighboring particles

have different phase shift α of their oscillations. Thus, there is propagating the
undamped traveling harmonic wave along the chain.

The phase shift α corresponds to a time shift of Δt = α / ω. If the distance
between the adjacent particles is a, the phase velocity is
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v ¼ a

Δ t
¼ a

α
ω ¼ ω a

arctan ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
m�ω2

p : (20)

For small angular frequencies ω << ωm, we can use an approximation for x << 1,

and thus, v0 ≈ a ωm ¼ a
ffiffiffiffiffi

2 k
m

q

¼ aω0

ffiffiffi

2
p

:

The low-frequency waves propagate along the chain having a constant phase
velocity of v0.

In the case of ω > ωm, then cosh γ < �1. As comes from cosh x ≥ 1, we can fulfill
(17), if sin a = 0 and cos a = �1.

The (17) gets then.

cosh β ¼ ω2

2 ω2
0

� 1, and α ¼ π rad: (21)

The relationship between the displacements of two adjacent particles has the
form.

xiþ1 ¼ �xi e�β: (22)

The adjacent particles oscillate with opposite phases and the amplitude of the
oscillation exponentially decreases along the chain. Thus, the exponentially damped
standing wave is arising in the chain.

1.2.2.2 Wave energy transfer in chain of particles

To investigate oscillation propagation along the particle chain, it is important to
observe the transfer of energy in this bound system. Let us assume that an external
source generates oscillations according to (14). We denote these particle oscillations
as x0.

For subcritical frequencies ω < ωk, the power of the source is.

P ¼ Fv0

¼ k x0 � x1ð Þ ωx0 cosω t ¼ kωx20 cosωt sin ω t� sin ωt� að Þ½ �

¼ ω
kx20m
2

1� cos að Þ sin 2ωtþ sin a 1þ cos 2ω tð Þ½ �

The power has time-dependent parts and constant parts. The constant part
represents a steady energy flow.

Ph i ¼ ω
kx20m
2

sin a ¼
ffiffiffiffiffiffiffiffi

km
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω

2 ω0

� �2
s

ω2 x20m: (23)

At angular frequencies of ω < ωm, the chain can transfer energy without any
losses.

In the case of supercritical angular frequencies of ω > ωk, the power is.

P ¼ Fv0

¼ k x0 � x1ð Þ ωx0 cosω t ¼ kωx20m cosω t sinω t 1þ e�b
	 


¼ ω
kx20m
2

1þ e�b
	 


sin 2ω t:

(24)
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We can see that the power mean value is Ph i = 0. At supercritical frequencies of
ω > ωm, the chain cannot transfer energy, and thus, the power of the source is
reactive.

1.2.2.3 Heat transfer in substances

A substance consists of many particles (atoms, ions, molecules) interacting with
each other. If any of them oscillate, the oscillations spread to the surrounding
medium, and energy is transmitted. If the surface particles of the body vibrate
coherently (together with the same phase), the wave propagates through the
medium as described in paragraph 1.2.2.1. In this way, a coherent wave arises in the
medium. However, if the particles vibrate randomly (uncoordinated), there is also
energy transfer, but the disturbance propagation process is not a coherent wave.
Such transfer of energy from higher energy particles to lower energy particles is
called thermal transfer. Since the energy of the particles is related to the tempera-
ture at a given location of the substance, we observe the transfer of energy from the
higher temperature locations to the lower temperature locations. This phenomenon
is called heat conduction in the substance. The interaction of particles in different
substances varies, and therefore some substances conduct heat better (thermal
conductors), others worse (thermal insulators). The power density is proportional
to the temperature gradient.

P

S
¼ �λ

∂T

∂x
, (25)

where the λ is the specific thermal conductivity of the substance.
High thermal conductivity is typical for substances consisting of an ordered

structure of small particles, especially metals. In contrast, disordered structures and
substances consisting of large molecules (glass, plastics, etc.) are mostly thermal
insulators. E.g., pure metal is a good conductor of heat, but steel, which contains
many different impurities and structure failures, has a significantly lower thermal
conductivity. As an example, compare an aluminum spoon and a stainless-steel
spoon immersed in a hot tea - the aluminum end is soon hot, but the stainless-steel
end remains cool.

1.2.3 Oscillation’s propagation in a long LC chain

The electrical system analogous to the long chain of bound particles is a chain
consisting of a homogeneous series of LC segments. The harmonic voltage u0 = U0

sin ω t is connected to the input, Figure 5.
If a chain is very long (theoretically infinite), its properties do not change when

we add another segment to it. If the input impedance is Z, it does not change by
adding an LC segment to the beginning, Figure 6.

Figure 5.
Long-chain of identical LC segments.
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Z ¼ jωLþ
Z 1

jωC

Z þ 1
jωC

: (26)

Then we get Z ¼ jωL
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
C � ωL

2

	 
2
q

, while Zj j ¼
ffiffiffi

L
C

q

¼ R.

Complex voltage transfer of the Z loaded segment is then.

Ak ¼ Ukþ1

Uk
¼ Z

Z 1� ω2CLð Þ þ jωL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
C � ωL

2

	 
2
q

� jωL
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
C � ωL

2

	 
2
q

þ jωL
2

: (27)

If we define a cut-off angular frequency of ωm and characteristic resistance of
R0 as,

ωm ¼ 2
ffiffiffiffiffiffiffiffi

LC
p , and R0 ¼

ffiffiffiffi

L

C

r

, (28)

then, we can express the impedance of the chain and complex voltage transfer as.

Z ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω2

ω2
m

s

þ j
ω

ωm

 !

, and Ak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω
ωm

� �2
r

� j ω
ωm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω
ωm

� �2
r

þ j ω
ωm

: (29)

If ω < ωm (low-frequency oscillations), the absolute value of voltage transfer
and voltage phase shift on one segment are.

Akj j ¼ 1, and φk ¼ �2 arctan
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
m � ω2

p : (30)

The voltage of the n-th segment in chain is then.

un tð Þ ¼ U0 sin ω tþ n φkð Þ: (31)

It follows from this result that the voltage amplitude along the chain remains
constant and the phase shift gradually increases: φn = n φk. Assuming harmonic
excitation at the input, the harmonic undamped wave propagates along the chain.

If we know the segment length d and we express the phase difference as φk = ω

Δt, then, we can determine the velocity of the phase propagation (phase velocity of
the wave):

v ¼ d

Δ t
¼ d

�φk=ω
¼ ω d

2 arctan ω
ffiffiffiffiffiffiffiffiffiffiffi

ω2
m�ω2

p : (32)

Figure 6.
Equivalent circuit using the total impedance of Z.
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For very low frequencies of excitation ω << ωm (taken an approximation arctan
x ≈ x for x << 1), the velocity is constant and equals

v0 ≈
d

2
ωm ¼ d

ffiffiffiffiffiffiffi

LC
p : (33)

For frequencies ω ! ωm the velocity v ! ωd

π
.

Normalized dependency of velocity v versus angular frequency ω is in Figure 7.
Low frequency oscillations having the angular frequency of ω << ωm propagate

along the chain as an undamped harmonic wave with constant velocity of v0, for
ω ! ωm the velocity decreases to the vm.

At ω > ωm we get.

Z ¼ j R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2

ω2
m

� 1

s

þ ω

ωm

 !

, and Ak ¼ �
ω
ωm

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
ωm

� �2
� 1

r

ω
ωm

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
ωm

� �2
� 1

r ¼ �b:

(34)

Absolute value of voltage transfer isAk ¼ b ¼ e�β
< 1, while β ¼ � ln b>0.

The impedance has inductive character (reactive character). Voltage transfer is
less than one, which means that the voltage along the chain exponentially decreases.

un tð Þ ¼ �U0 e�n β sin ω t: (35)

Since the complex voltage transfer is a negative real number, adjacent segments
oscillate with the opposite phase, but the phase constant of the segment does not
change. It is, therefore, a damped standing wave.

When a harmonic voltage source is connected to the chain, its complex power
supplied to the chain is.

S ¼ U0 � I ∗ ¼ U2
0

Z ∗
¼ U2

0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω2

ω2
m

s

� j
ω

ωm

 !

¼ P þ j Q :

For frequencies ω < ωm the complex power of source consists of the active
power part of P and the reactive part of Q.

Figure 7.
The v/v0 normalized velocity as a function of normalized angular frequency of ω/ωm.
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P ¼ U2
0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω2

ω2
m

s

, and Q ¼ U2
0

R

ω

ωm
: (36)

Thus, the chain transfers the power (permanently draws energy from the
source).

For frequencies ω > ωm.

P ¼ 0, and Q ¼ U2
0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2

ω2
m

� 1

s

� ω

ωm

 !

: (37)

The chain is unable to transmit energy. The power source is only reactive, i.e.,
the mean value of the energy supplied by the source into the chain is zero.

We can see from these two cases that the oscillating events of mechanical and
electrical are analogous, and thus there is electro-mechanical duality. One of the
practical possibilities of using this feature is to model mechanical systems using
electrical circuits. In the field of biomedicine, we can consider an example of blood
flow modeling in blood vessels using electrical circuits [1].
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