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Chapter

Computing on Vertices
in Data Mining
Leon Bobrowski

Abstract

The main challenges in data mining are related to large, multi-dimensional data
sets. There is a need to develop algorithms that are precise and efficient enough to deal
with big data problems. The Simplex algorithm from linear programming can be seen
as an example of a successful big data problem solving tool. According to the funda-
mental theorem of linear programming the solution of the optimization problem can
found in one of the vertices in the parameter space. The basis exchange algorithms
also search for the optimal solution among finite number of the vertices in the
parameter space. Basis exchange algorithms enable the design of complex layers of
classifiers or predictive models based on a small number of multivariate data vectors.

Keywords: data mining, basis exchange algorithms, small samples of multivariate
vectors, gene clustering, prognostic models

1. Introduction

Various data mining tools are proposed to extract patterns from data sets [1].
Large, multidimensional data sets impose high requirements as to the precision and
efficiency of calculations used to extract patterns (regularities) useful in practice [2].
In this context, there is still a need to develop new algorithms of data mining [3]. New
types of patterns are also obtained in result of combining different types of classifica-
tion or prognosis models [4].

The Simplex algorithm from linear programming is used as an effective big data
mining tool [5]. According to the basic theorem of linear programming, the solution to
the linear optimization problem with linear constraints can be found at one of the
vertices in the parameter space. Narrowing the search area to a finite number of
vertices is a source of the efficiency of the Simplex algorithm.

Basis exchange algorithms also look for an optimal solution among a finite number
of vertices in the parameter space [6]. The basis exchange algorithms are based on the
Gauss - Jordan transformation and, for this reason, are similar to the Simplex algo-
rithm. Controlling the basis exchange algorithm is related to the minimization of
convex and piecewise linear (CPL) criterion functions [7].

The perceptron and collinearity criterion functions belong to the family of CPL
functions The minimization of the perceptron criterion function allows to check the
linear separability of data sets and to design piecewise linear classifiers [8].
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Minimizing the collinearity criterion function makes it possible to detect collinear
(flat) patterns in data sets and to design multiple interaction models [9].

Data sets consisting of a small number of multivariate feature vectors generate
specific problems in data mining [10]. This type of data includes genetic data sets.
Minimizing the perceptron criterion function or the collinearity function enables
solving problems related to discrimination or regression also in the case of a small set
of multidimensional feature vectors by using complex layers of low dimensional linear
classifiers or prognostic models [11].

2. Linear separability vs. linear dependence

Let us assume that each of m objects Oj from a given database were represented by
the n-dimensional feature vector xj = [xj,1,...,xj,n]

T belonging to the feature space F[n]
(xj ∈ F[n]). The data set C consists of m such feature vectors xj:

C ¼ xj

� �

,where j ¼ 1, … ,m (1)

The components xj,i of the feature vector xj are numerical values (xj,i ∈ R or xj,I
∈{0, 1}) of the individual features Xi of the j-th object Oj. In this context, each
feature vector xj (xj ∈ F[n]) represents n features Xi belonging to the feature set
F(n) = {X1,… , Xn}.

The pairs {Gk
+,Gk

=} (k = 1, … , K) of the learning setsGk
+andGk

= (Gk
+
∩Gk

� = ∅)
are formed from some feature vectors xj selected from the data set C (1):

Gk
þ ¼ xj : j∈ Jk

þ
� �

, and Gk
� ¼ xj : j∈ Jk

�
� �

(2)

where Jk
+ and Jk

� are non-empty sets of indices j of vectors xj (Jk
+
∩ Jk

� = ∅).
The positive learning set Gk

+ is composed of mk
+ feature vectors xj (j ∈ Jk

+).
Similarly, the negative learning set Gk

� is composed of mk
� feature vectors xj (j ∈ Jk

�),
where mk

+ + mk
�
≤ m.

Possibility of the learning sets Gk
+ and Gk

� (2) separation using a hyperplane
H(wk, θk) in the feature space F[n] is investigated in pattern recognition [1]:

H wk, θkð Þ ¼ x : wk
Tx ¼ θk

� �

(3)

where wk = [wk,1,..., wk,n]
T
∈ R

n is the weight vector, θk ∈ R1 is the threshold, and
wk

Tx = Σi wk,i xi is the scalar product.
Definition 1: The learning sets Gk

+ and Gk
� (1) are linearly separable in the feature

space F[n], if and only if there exists a weight vectorwk (wk ∈ R
n), and a threshold θk

(θk ∈ R1) that the hyperplane H(wk, θk) (3) separates these sets [7]:

∃wk, θkð Þ ∀xj ∈Gk
þ

� �

wk
Txj ≥ θk þ 1 and (4)

∀xj ∈Gk
�

� �

wk
Txj ≤ θk � 1

According to the above inequalities, all vectors xj from the learning set Gk
+ (2) are

located on the positive side of the hyperplane H(wk, θk) (3), and all vectors xj from
the set Gk

� lie on the negative side of this hyperplane.
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The hyperplane H(wk, θk) (3) separates (4) the sets Gk
+ and Gk

� (1) with the
following margin δL2(wk) based on the Euclidean (L2) norm which is used in the
Support Vector Machines (SVM) method [12]:

δL2 wkð Þ ¼ 2= wkk kL2 ¼ 2= wk
Twk

� �1=2
(5)

where || wk ||L2 = (wk
Twk)

1/2 is the Euclidean length of the weight vector wk.
The margin δL1(wk) with the L1 norm related to the hyperplane H(wk, θk) (2),

which separates (10) the learning sets Gk
+ and Gk

� (2) was determined by analogy to
(5) as [11]:

δL1 wkð Þ ¼ 2= wkk kL1 ¼ 2= jwk,1jþ…þj wk,njð Þ (6)

where || wk ||L1 = |wk,1| + ... +| wk,n| is the L1 length of the weight vector wk.
The margins δ L2(wk) (5) or δ L1(wk) (6) are maximized to improve the generaliza-

tion properties of linear classifiers designed from the learning sets Gk
+ and Gk

� (2) [7].
The following set of mk

0 = mk
+ + mk

� linear equations can be formulated on the
basis of the linear separability inequalities (4):

∀j∈ Jk
þð Þ xj

Twk ¼ θk þ 1 and (7)

∀j∈ Jk
�ð Þ xj

Twk ¼ θk � 1

If we assume that the threshold θk can be determined latter, then we have n
unknown weights wk,i (wk = [wk,1,..., wk,n]

T) in an underdetermined system of
mk

0 = mk
+ + mk

� (mk
0 ≤ mk < n) linear Eqs. (7). In order to obtain a system of n linear

Eqs. (7) with n unknown weights wk,i, additional linear equations based on selected n -
mk

0 unit vectors ei (i ∈ Ik) were taken into account [6]:

∀i∈ Ikð Þ ei
Twk ¼ 0 (8)

The parameter vertexwk = [wk,1,..., wk,n]
T can be determined by the linear Eqs. (7)

and (8) if the feature vectors xj forming the learning sets Gk
+ and Gk

� (2) are linearly
independent [7].

The feature vector xj0 (xj0 ∈ Gk
+
∪ Gk

� (2)) is a linear combination of some other
vectors xj(i) ( j(i) 6¼ j0) from the learning sets (2), if there are such parameters
α j0,i (αj0,i 6¼ 0) that the following relation holds:

xj0 ¼ αj0,1 xj 1ð Þ þ … þ αj0,l xj lð Þ (9)

Definition 2: Feature vectors xj making up the learning sets Gk
+ and Gk

� (2) are
linearly independent if neither of these vectors xj0 (xj0 ∈ Gk

+
∪ Gk

�) can be expressed
as a linear combination (9) of l (l ∈{1,… , m - 1}) other vectors xj(l) from the learning
sets.

If the numbermk
0 =mk

+ +mk
� of elements xj of the learning setsGk

+ andGk
� (2) is

smaller than the dimension n of the feature space F[n] (mk
+ + mk

�
≤ n), then the

parameter vertex wk(θk) can be defined by the linear equations in the following
matrix form [13]:

Bk wk θkð Þ ¼ 1k θkð Þ (10)
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where

1k θkð Þ ¼ θk þ 1, … , θk þ 1, θk � 1, … :, θk � 1, 0, :… , 0½ �T (11)

and

Bk ¼ x1, … ,xmk’, ei mk’þ1ð Þ, … :, ei nð Þ

� �T
(12)

The first mk
+ components of the vector 1k(θk) are equal to θk + 1, the next mk

�

components equal to θk - 1, and the last n -mk
+ � mk

� components are equal to 0. The
first mk

+ rows of the square matrix Bk (12) are formed by the feature vectors xj (j ∈
Jk
+) from the set Gk

+ (2), the next mk
� rows are formed by vectors xj (j ∈ Jk

�) from
the set Gk

� (2), and the last n -mk
+ � mk

� rows are made up of unit vectors ej (i ∈ Ik):
If the matrix Bk (12) is non-singular, then there exists the inverse matrix Bk

�1:

Bk
�1 ¼ r1, … , rmk’, ri mk’þ1ð Þ, … :, ri nð Þ

� �

(13)

In this case, the parameter vertex wk(θk) (10) can be defined by the following
equation:

wk θkð Þ ¼ Bk
�11k θkð Þ ¼ θk þ 1ð Þ rk

þ þ θk � 1ð Þ rk
� ¼ (14)

¼ θk rk
þ þ rk

�ð Þ þ rk
þ � rk

�ð Þ

where the vector rk
+ is the sum of the firstmk

+ columns ri of the inverse matrix Bk
�1

(13), and the vector rk
� is the sum of the successive mk

� columns ri of this matrix.
The last n - (mk

+ + mk
�) components wk.i(θk) of the vector

wk(θk) = [wk,1(θk),… , wk,n(θk)]
T (14) linked to the zero components of the vector

1k(θk) (11) are equal to zero:

∀i∈ mk
þ þmk

� þ 1, … , nf gð Þ wk:i θkð Þ ¼ 0 (15)

The conditions wk.i(θk) = 0 (15) result from the equations ei
Twk(θk) = 0 (8) at the

vertex wk(θk) (14).
Length ||wk(θk)||L1 of the weight vector wk(θk) (14) in the L1 norm is the sum of

mk
0 = mk

+ + mk
� components |wk,i(θk)|:

wk θkð Þk kL1 ¼ ∣wk,1 θkð Þ∣þ … þ ∣wk,mk0 θkð Þ∣ (16)

In accordance with the Eq. (14), components |wk,i(θk)| can be determined as
follows:

∀i∈ 1, … ,mk
þ þmk

�f gð Þ ∣wk,i θkð Þ∣ ¼ ∣ θk rk,i
þ þ rk,i

�ð Þ þ rk,i
þ � rk,i

�ð Þ ∣ (17)

The length ||wk(θk)||L1 (16) of the vector wk(θk) (14) with the L1 norm is mini-
mized to increase the margin δL1(wk(θk)) (6). The length ||wk(θk)||L1 (16) can be
minimized by selecting the optimal threshold value θk* on the basis of the Eq. (14).

∀θkð Þ δL1 wk θk
∗ð Þð Þ≥ δL1 wk θkð Þð Þ (18)

where the optimal vertex wk(θk*) is defined by the Eq. (14).

4
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Theorem 1: The learning sets Gk
+ and Gk

� (2) formed by m (m ≤ n) linearly
independent (9) feature vectors xj are linearly separable (4) in the feature space F[n]
(xj ∈ F[n]).

Proof: If the learning sets Gk
+ and Gk

� (2) are formed by m linearly independent
feature.

vectors xj then the non-singular matrix Bk = [x1,… , xm, ei(m + 1),… ., ei(n)]
T (12)

containing these m vectors xj and n - m unit vectors ei (i ∈ Ik) can be defined [10]. In
this case, the inverse matrix Bk

�1 (13) exists and can determine the vertex wk(θk)
(14). The vertex equation Bk wk(θk) = 1k(θk) (10) can be reformulated for the feature
vectors xj (2) as follows:

∀xj ∈Gk
þ

� �

wk θkð ÞTxj ¼ θk þ 1 and ∀xj ∈Gk
�

� �

wk θkð ÞTxj ¼ θk–1 (19)

The solution of the Eqs. (19) satisfies the linear separability inequalities (4).
It is possible to enlarge the learning sets Gk

+ and Gk
� (2) in such a way, which

maintains their linear separability (4).
Lemma 1: Increasing the positive learning set Gk

+ (2) by such a new vector xj0 (xj0∉
Gk

+), which is a linear combination with the parameters αj0,i (9) of some feature
vectors xj(l) (2) from this set (xj(l) ∈ Gk

+) preserves the linear separability (4) of the
learning sets if the parameters αj0,i fulfill the following condition:

αj0,1 þ … þ αj0,l ≥ 1 (20)

If the assumptions of the lemma are met, then

wk
Txj0 ¼ wk

T αj0,1 xj 1ð Þ þ … þ αj0,l xj lð Þ
� �

¼ (21)

¼ αj0,1 wk
Txj 1ð Þ þ … þ αj0,l wk

Txj lð Þ ¼ αj0,1 θk þ 1ð Þ þ … þ αj0,l θk þ 1ð Þ≥ θk þ 1

The above inequality means that linear separability connditions (4) still apply after
the increasing of the learning set Gk

+ (2).
Lemma 2: Increasing the negative learning set Gk

� (2) by such a new vector
xj0 (xj0 ∉ Gk

�), which is a linear combination with the parameters αj0,i (9) of some
feature vectors xj(l) (2) from this set (xj(l) ∈ Gk

�) preserves the linear separability (4)
of the learning sets if the parameters αj0, i fulfill the following condition:

αj0,1 þ … þ αj0,l ≤ � 1 (22)

Justification Lemma 2 may be based on inequality similar to (21).

3. Perceptron criterion function

The minimization the perceptron criterion function allows to assess the degree of
linear separabilty (4) of the learning sets Gk

+ and Gk
� (2) in different feature sub-

spaces F[n0] (F[n0] ⊂ F[n + 1]) [6]. When defining the perceptron criterion function,
it is convenient to use the following augmented feature vectors yj (yj ∈ F[n + 1]) and
augmented weight vectors vk (vk ∈ R

n + 1) [1]:

∀j∈ Jþk 2ð Þ
� �

yj ¼ xj
T, 1

� �T
, (23)

5
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∀j∈ J�k 2ð Þ
� �

yj ¼ � xj
T, 1

� �T

and

vk ¼ wk
T,�θk

� �T
¼ wk,1, … , wk,n,�θk½ �T (24)

The augmented vectors yj are constructed (23) on the basis of the learning sets Gk
+

and Gk
� (2). These learning sets are extracted from the data set C (1) according to

some additional knowledge. The linear separability (4) of the learning sets Gk
+ and

Gk
� (2) can be reformulated using the following set of m inequalities with the aug-

mented vectors yj (23) [7]:

∃vkð Þ ∀j∈ Jþk ∪ J�k 2ð Þ
� �

vk
Tyj ≥ 1 (25)

The dual hyperplanes hj
p in the parameter space Rn + 1 (v ∈ R

n + 1) are defined on
the basis of the augmented vectors yj [6]:

∀j∈ Jþk ∪ J�k 2ð Þ
� �

hj
p ¼ v : yj

Tv ¼ 1
n o

(26)

Dual hyperplanes hj
p (26) divide the parameter space Rn + 1 (v ∈ R

n + 1) into a finite
number L of disconnected regions (convex polyhedra) Dl

p (l = 1,… , L) [7]:

Dl
p ¼ v : ∀j∈ Jl

þð Þ yj
Tv≥ 1 and ∀j∈ Jl

�ð Þ yj
Tv< 1

n o

(27)

where Jl
+ and Jl

� are disjointed subsets (Jl
+
∩ Jl

+ = ∅) of indices j of feature vectors
xj making up the learning sets Gk

+ and Gk
� (2).

The perceptron penalty functions φj
p(v) are defined as follows for each of

augmented feature vectors yj (23) [6]:

∀j∈ Jkð Þ

φj
p vð Þ ¼

1� yj
Tv if yj

Tv< 1

0 if yj
Tv≥ 1

(28)

The j - th penalty function φj
p(v) (28) is greater than zero if and only if the weight

vector v is located on the wrong side (yj
Tv < 1) of the j-th dual hyperplane hj

p (26).
The function φj

p(v) (28) is linear and greater than zero as long as the parameter vector
v = [vk,1,..., vk,n + 1]

T remains on the wrong side of the hyperplane hj
p (26). Convex

and piecewise-linear (CPL) penalty functions φj
p(v) (28) are used to enforce the

linear separation (8) of the learning sets Gk
+ and Gk

� (2).
The perceptron criterion function Φk

p(v) is defined as the weighted sum of the
penalty functions φj

p(v) (28) [6]:

Φk
p vð Þ ¼ Σj αj φj

p vð Þ (29)

Positive parameters αj (αj > 0) can be treated as prices of individual feature vectors xj:

∀j∈ Jk
þ 2ð Þð Þ αj ¼ 1= 2 mk

þð Þ and ∀j∈ Jk
� 2ð Þð Þ αj ¼ 1= 2 mk

�ð Þ (30)

6
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where mk
+ (mk

�) is the number of elements xj in the learning set Gk
+ (Gk

�) (2).
The perceptron criterion function Φk

p(v) (29) was built on the basis of the error
correction algorithm, the basic algorithm in the Perceptron model of learning processes
in neural networks [14].

The criterion function Φk
p(v) (29) is convex and piecewise-linear (CPL) [6]. It

means, among others, that the function Φk
p(v) (29) remains linear within each area

Dl (27):

∀l∈ 1, … ,Lf gð Þ

∀v∈Dlð Þ Φk
p vð Þ ¼ Σj αj yj

� 	T (31)

where the summation is performed on all vectors yj (23) fulfilling the condition
yj

Tv < 1.
The optimal vector vk* determines the minimum value Φk

p(vk*) of the criterion
function Φk

p(v) (29):

∃vk
∗ð Þ ∀v∈R

nþ1
� �

Φk
p vð Þ≥Φk

p vk
∗ð Þ≥0 (32)

Since the criterion function Φk
p(v) (29) is linear in each convex polyhedron Dl

(27), the optimal point vk* representing the minimum Φk
p(vk*) (32) can be located in

selected vertex of some polyhedron Dl0
p (27). This property of the optimal vector vk*

(32) follows from the fundamental theorem of linear programming [5].
It has been shown that the minimum value Φk

p(vk*) (32) of the perceptron criterion
function Φk

p(v) (29) with the parameters αj (30) is normalized as follows [6]:

0≤Φk
p vk

∗ð Þ≤ 1 (33)

The below theorem has been proved [6]:
Theorem 2: The minimum value Φk

p(vk*) (32) of the perceptron criterion function
Φk

p(v) (29) is equal to zero (Φk
p(vk*) = 0) if and only if the learning sets Gk

+ and Gk
�

(2) are linearly separable (4).
The minimum value Φk

p(vk*) (32) is near to one (Φk
p(vk*) ≈ 1) if the sets Gk

+ and
Gk

� (2) cover almost completely. It can also be proved that the minimum value
Φk

p(vk*) (32) of the perceptron criterion function Φk
p(v) (29) does not depend on

invertible linear transformations of the feature vectors yj (23) [6]. The perceptron
criterion function Φk(v) (29) remains linear inside of each region Dl (27).

The regularized criterion function Ψk
p(v) is defined as the sum of the perceptron

criterion function Φk
p(v) (29) and some additional penalty functions [13]. These

additional CPL functions are equal to the costs γi (γi > 0) of individual features Xi

multiply by the absolute values |wi| of weighs wi, where v = [wT,�θ]T = [w1,..., wn,�θ]T∈
R
n + 1 (24):

Ψk
p vð Þ ¼ Φk

p vð Þ þ λ Σi γi∣wi∣ (34)

where λ (λ ≥ 0) is the cost level. The standard values of the cost parameters γi are
equal to one (∀i ∈ {1, ..., n} γi = 1).

The optimal vector vk,λ* constitutes the minimum value Ψk
p(vk,λ*) of the CPL

criterion function Ψk
p(v) (34), which is defined on elements xj of the learning sets

Gk
+ and Gk

� (2):

7
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∃vk,λ
∗ð Þ ∀v∈Rnþ1

� �

Ψk
p vð Þ≥Ψk

p vk,λ
∗ð Þ>0 (35)

Similarly as in the case of the perceptron criterion function Φk
p(v) (29), the

optimal vector vk,λ* (35) can be located in selected vertex of some polyhedronDl0 (27).
The minimum value Ψk

p(vk,λ*) (35) of the criterion function Ψk
p(v) (34) is used,

among others, in the relaxed linear separability (RLS) method of gene subsets
selection [15].

4. Collinearity criterion function

Minimizing the collinearity criterion function is used to extract collinear patterns
from large, multidimensional data sets C (1) [7]. Linear models of multivariate
interactions can be formulated on the basis of representative collinear patterns [9].

The collinearity penalty functions φj(w) are determined by individual feature
vectors xj = [xj,1,...,xj,n]

T in the following manner [9]:

∀xj ∈C 1ð Þ
� �

φj wð Þ ¼ ∣ 1� xj
Tw ∣ ¼

1� xj
Tw if xj

Tw≤ 1

xj
Tw� 1 if xj

Tw> 1

(36)

The penalty functions φj(w) (36) can be related to the following dual hyperplanes
hj
1 in the parameter (weight) space Rn (w ∈ R

n):

∀j ¼ 1, … ,mð Þ hj
1 ¼ w : xj

Tw ¼ 1
� �

(37)

The CPL penalty φj(w) (36) is equal to zero (φj
c(w) = 0) in the point

w = [w1,..., wn]
T if and only if the point w is located on the dual hyperplane hj

1 (37).
The collinearity criterion function Φk(w) is defined as the weighted sum of the

penalty functions φj(w) (36) determined by feature vectors xj forming the data subset
Ck (Ck ⊂ C (1)):

Φk wð Þ ¼ Σj βj φj wð Þ (38)

where the sum takes into account only the indices J of the set Jk = {j: xj ∈ Ck}, and
the positive parameters βj (βj > 0) in the function Φk(w) (38) can be treated as the
prices of particular feature vectors xj. The standard choice of the parameters βj values
is one ((∀j ∈ Jk) βj = 1.0).

The collinearity criterion function Φk(w) (38) is convex and piecewise-linear
(CPL) as the sum of this type of penalty functions φj(w) (36) [9]. The vector wk*
determines the minimum value Φk(wk*) of the criterion function Φk(w) (38):

∃wk
∗ð Þ ∀wð Þ Φk wð Þ≥Φk wk

∗ð Þ≥0 (39)

Definition 3: The data subset Ck (Ck ⊂ C (1)) is collinearwhen all feature vectors xj
from this subset are located on some hyperplane H(w, θ) = {x:wTx = θ} with θ 6¼ 0.

Theorem 3: The minimum value Φk
p(vk*) (39) of the collinearity criterion function

Φk(w) (38) defined on the feature vectors xj constituting a data subset Ck (Ck ⊂ C

(1)) is equal to zero (Φk
p(vk*) = 0) when this subset Ck is collinear (Def. 3) [9].

8
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Different collinear subsets Ck can be extracted from data set C (1) with a large
number m of elements xj by minimizing the collinearity criterion function Φk

p(w)
(38) [9].

The minimum value Φk
p(vk*) (39) of the collinearity criterion function Φk(w)

(38) can be reduced to zero by omitting some feature vectors xj from the data subset
Ck (Ck ⊂ C (1)). If the minimum value Φk(wk*) (39) is greater than zero (Φk(wk*) >
0) then we can select feature vectors xj (j ∈ Jk(wk*)) with the penalty φj(wk*) (36)
greater than zero:

∀j∈ Jk wk
∗ð Þð Þ φj wk

∗ð Þ ¼ ∣1� xj
T wk

∗ ∣>0 (40)

Omitting one feature vector xj0 (j0∈ Jk(wk*)) with the above property results in the
following reduction of the minimum value Φk

p(vk*) (39);

Φk0 wk0
∗ð Þ≤Φk wk

∗ð Þ � φj0 wk
∗ð Þ (41)

where Φk0(wk0*) is the minimum value (39) of the collinearity criterion function
Φk0(w) (38) defined on feature vectors xj constituting the data subset Ck reduced by
the vector xj0.

The regularized criterion function Ψk(w) is defined as the sum of the collinearity
criterion function Φk(w) (38) and some additional CPL penalty functions φj

0(w) [7]:

Ψk wð Þ ¼ Φk wð Þ þ λ Σi χi wð Þ ¼ Σj βj φj wð Þ þ λ Σi χi φi
0 wð Þ (42)

where λ ≥ 0 is the cost level. The standard values of the cost parameters γi are equal
to one ((∀i ∈ {1,… ,n}) γi = 1). The additional CPL penalty functions φj

0(w) are
defined below [7]:

∀i ¼ 1, … , nð Þ (43)

χi wð Þ ¼ ∣ ei
Tw ∣ ¼

�wj if wj ≤0

wj if wj >0

The functions φj
0(w) (43) are related to the following dual hyperplanes hj

0 in the
parameter (weight) space Rn (w ∈ R

n):

∀i ¼ 1, … , nð Þ hj
0 ¼ w : ej

Tw ¼ 0
� �

¼ w : wj ¼ 0
� �

(44)

The CPL penalty function φj
0(w) (43) is equal to zero (φj

0(w) = 0) in the
point w = [w1,..., wn]

T if and only if this point is located on the dual hyperplane
hj
0 (44).

5. Parameter vertices

The perceptron criterion function Φk
p(v) (29) and the collinearity criterion func-

tion Φk(w) (38) are convex and piecewise-linear (CPL). The minimum values of a
such CPL criterion functions can be located in parameter vertices of some convex
polyhedra. We consider the parameter vertices wk (wk ∈ R

n) related to the
collinearity criterion function Φk(w) (38).
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Definition 4: The parameter vertex wk of the rank rk (rk ≤ n) in the weight space Rn

(wk ∈ R
n) is the intersection point of rk hyperplanes hj

1 (37) defined by linearly
indepenedent feature vectors xj (j ∈ Jk) from the data set C (1) and n - rk hyperplanes
hi
0 (44) defined by unit vectors ei (i ∈ Ik) [7].
The j-th dual hyperplane hj

1 (37) defined by the feature vector xj (1) passes
through the k-th vertex wk if the equation wk

Txj = 1 holds.
Definition 5: The k-th weight vertex wk of the rank rk is degenerate in the parameter

space Rn if the number mk of hyperplanes hj
1 (37) passing through this vertex

(wk
Txj = 1) is greater than the rank rk (mk > rk).
The vertex wk can be defined by the following set of n linear equations:

∀j∈ Jk wkð Þð Þ wk
Txj ¼ 1 (45)

and

∀i∈ Ik wkð Þð Þ wk
Tei ¼ 0 (46)

Eqs. (45) and (46) can be represented in the below matrix form [7]:

Bk wk ¼ 1k (47)

where 1k = [1,… ,1, 0,… ,0]T is the vector with the first rk components equal to one
and the remaining n - rk components are equal to zero.

The square matrix Bk (47) consists of k feature vectors xj (j ∈ Jk (45)) and n - k unit
vectors ei (i ∈ Ik (46)) []:

Bk ¼ x1, … ,xk, ei kþ1ð Þ, … , ei nð Þ

� �T
(48)

where the symbol ei(l) denotes such unit vector, which is the l-th row of thematrix Bk.
Since feature vectors xj (∀j∈ Jk(wk) (45)) making up rk rows of the matrix Bk (48)

are linearly independent, then the inverse matrix Bk
�1 exists:

Bk
�1 ¼ r1, … , rk, ri kþ1ð Þ, … :, ri nð Þ

� �

(49)

The inverse matrix Bk
�1 (49) can be obtained starting from the unit matrix

I = [e1,..., en]
T and using the basis exchange algorithm [8].

The non-singular matrix Bk (48) is the basis of the feature space F[n] related to the
vertex wk = [wk,1,… , wk,n]

T. Since the last n - rk components of the vector 1k (47) are
equal to zero, the following equation holds:

wk ¼ Bk
�11k ¼ r1 þ … þ rk (50)

According to Eq. (50), the weight vertex wk is the sum of the first k columns ri of
the inverse matrix Bk

�1 (49).
Remark 1: The n - k components wk.i of the vectorwk = [wk,1,… , wk,n]

T (50) linked
to the zero components of the vector 1k = [1,… , 1, 0,… ., 0, 1]T (7) are equal to zero:

∀i∈ kþ 1, … , nf gð Þ wk:i ¼ 0 (51)

The conditions wk.i = 0 (51) result from the equationswk
Tei = 0 (46) at the vertexwk.
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The fundamental theorem of linear programming shows that the minimum Φk(wk*)
(39) of the CPL collinearity criterion function Φk(w) (38) can always be located in
one of the vertices wk (50) [5]. The same property has also the regularized criterion
function Ψk(w) (42), another function of the CPL type [7].

We can see that all such feature vectors xj (1) which define hyperplanes hj
1 (37)

passing through the vertexwk are located on the hyperplane H(wk, 1) = {x:wk
Tx = 1}

(3) in the feature space F[n]. A large number mk of feature vectors xj (1) located on the
hyperplaneH(wk, 1) (3) form the collinear cluster C(wk) based on the vertexwk [8]:

C wkð Þ ¼ xj ∈C 1ð Þ : wk
Tx ¼ 1

� �

(52)

If the vertex wk of the rank rk is degenerate in the parameter space Rn then the
collinear cluster C(wk) (52) contains more than rk feature vectors xj (1).

The k-th vertexwk = [wk,1,… , wk,n]
T in the parameter space Rn (wk ∈ R

n) is linked
by the Eq. (47) to the non-singular matrix Bk (48). The rows of the matrix Bk (48) can
form the basis of the feature space F[n]. The conditions wk.i = 0 (51) result from the
equations wk

Tei = 0 (46) at the vertex wk.

∀i ¼ 1, … , nð Þ if ei ∈Bk 48ð Þð Þ, then wk:i ¼ 0 (53)

Each feature vector xj from the data set C (1) represents n features Xi belonging to
the feature set R(n) = {X1,… , Xn}. The k-th vertexical feature subset Rk(rk) consists of rk
features Xi that are connected to the weights wk.i different from zero (wk.i 6¼ 0):

Rk rkð Þ ¼ Xi 1ð Þ, … ,Xi rkð Þ

� �

(54)

The k-th vertexical subspace Fk[rk] (Fk[rk] ⊂ F[n]) contains the reduced vectors
xj[rk] with rk componets xj,i(l) (xj[rk] ∈ Fk[rk]) related to the weights wk.i different
from zero:

∀j∈ 1, … ,mf gð Þ xj rk½ � ¼ xj,i 1ð Þ, … , xj,i rkð Þ

� �T
(55)

The reduced vectors xj[rk] (55) are obtained from the feature vectors
xj = [xj,1,...,xj,n]

T belonging to the data set C (1) by omitting the n - rk components xj,i
related to the weights wk.i equal to zero (wk.i = 0).

We consider the optimal vertexical subspace Fk*[rk] (Fk*[rk] ⊂ F[n]) related to the
reduced optimal vertex wk*[rk] which determines the minimum Φk(wk*) (39) of the
collinearity criterion function Φk(w) (38). The optimal collinear cluster
C(wk*[rk]) (52) is based on the optimal vertex wk*[rk] = [wk,1*,… , wk,rk*]

T with rk
different from zero components wk,i* (wk.i* 6¼ 0). Feature vectors xj belonging to the
collinear cluster C(wk*) (52) satisfy the equations wk*[rk]

Txj[rk] = 1, hence:

∀xj ∈P wk
∗ð Þ

� �

wk:1
∗ xj,i 1ð Þ þ … þwk:rk

∗ xj,i rkð Þ ¼ 1
(56)

where xj,i(l) are components of the j-th feature vectors xj related to the weights wk.i

different from zero (wk.i 6¼ 0).
A large number mk of feature vectors xj (1) belonging to the collinear cluster

C(wk*[rk]) (52) justifies the following collinear model of interaction between selected
features Xi(l) which is based on the Eqs. (56) [9]:
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wk:1
∗ Xi 1ð Þ þ … þwk:rk

∗ Xi rkð Þ ¼ 1 (57)

The collinear interaction model (57) allows, inter alia, to design the following
prognostic models for each feature Xi0 from the subset Rk(rk) (54):

∀i0 ∈ 1, … , rkf Þ Xi0 ¼ αi0,0 þ αi0,1 Xi 1ð Þ þ … þ αi0,rk Xi rkð Þ

�

(58)

where βi0,0 = 1 / wk.i0*, βi0, i0 = 0, and (∀ i(l) 6¼ i0) βi0,i(l) = wk.i(l)* / wk.i0*.
Feature Xi0 is a dependent variable in the prognostic model (58), the remaining m -

1 features Xi(l) are independent variables (i(l) 6¼ i0). The family of rk prognostic
models (58) can be designed on the basis of one collinear interaction model (57).
Models (58) have a better justification for a large number mk of feature vectors xj (1)
in the collinear cluster C(wk*[rk]) (52).

6. Basis exchange algorithm

The collinearity criterion function Φ(w) (38), like other convex and piecewise
linear (CPL) criterion functions, can be minimized using the basis exchange algorithm
[8]. The basis exchange algorithm aimed at minimization of the collinearity criterion
function Φ(w) (38) is described below.

According to the basis exchange algorithm, the optimal vertex wk*, which consti-
tutes the minimum value Φk(wk*) (39) of the collinearity function Φk(w) (38), is
achieved after a finite number L of the steps l as a result of guided movement between
selected vertices wk (50) [8]:

w0 ! w1 ! … : ! wL (59)

The sequence of verticeswk (59) is related by (47) to the following sequence of the
inverse matrices Bk

�1 (49):

B0
�1 ! B1

�1 ! … : ! BL
�1 (60)

The sequence of verticeswk(l) (59) typically starts at the vertexw0 = [0,..., 0]T related
to the identity matrix B0 = In = [e1,..., en]

T of the dimension n x n [7]. The final vertexwL

(59) should assure the minimum value of the collinearity criterion function Φ(w) (38):

∀wð Þ Φ wð Þ≥Φ wLð Þ≥0 (61)

If the criterion function Φ(w) (38) is defined on m (m ≤ n) linearly independent
vectors xj (xj ∈ C (1)) then the value Φ(wL) of the collinearity criterion function
Φ(w) (38) at the final vertexwL (59) becomes zero (Φ(wL) = 0) [8]. The rank rL (Def.
4) of the final vertex wL (59) can be equal to the number m of feature vectors xj
(rL =m) or it can be less thanm (rL < m). The rank rL of the final vertexwL (59) is less
than m (rL < m) if the final vertex wL is degenerate [7].

Consider the reversible matrix Bk = [x1,..., xk, ei(k + 1),..., ei(n)]
T (48), which

determines the vertex wk (50) and the value Φk(wk) of the criterion function Φk(w)
(38) in the k-th step. In the step (l + 1), one of the unit vectors ei in the matrix Bk (48)
is replaced by the feature vector xk + 1 and the matrix Bk + 1 = [x1,..., xk, xk + 1,
ei(k + 2),..., ei(n)]

T appears. The unit vector ei(k + 1) leaving matrix Bk (48) is indicated
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by an exit criterion based on the gradient of the collinearity criterion function Φ(w)
(38) [7]. The exit criterion allows to determine the exit edge rk + 1 (49) of the greatest
descent of the collinearity criterion function Φ(w) (38). As a result of replacing the
unit vector ei(k + 1) with the feature vector xk + 1, the value Φ(wk) of the collinearity
function Φ(w) (38) decreases (41):

Φ wkþ1ð Þ≤Φ wkð Þ � φkþ1 wkð Þ (62)

After a finite number L (L ≤ m) of the steps k, the collinearity function Φ(w) (38)
reaches its minimum (61) at the final vertex wL (59).

The sequence (60) of the inverse matrices Bk
�1 is obtained in a multi-step

process of minimizing the function Φ(w) (38). During the k-th step, the matrix
Bk-1 = [x1,… , xk-1, ei(k),… ., ei(n)]

T (12) is transformed into the matrix Bk by replacing
the unit vector ei(k) with the feature vector xk:

∀k∈ 1, … ,Lf gð Þ Bk�1 ! Bk (63)

According to the vector Gauss-Jordan transformation, replacing the unit vector ei
(k) with the feature vector xk during the k - th stage results in the following modifica-
tions of the co + lumns ri(k) of the inverse matrix Bl

�1 = [x1,… , xl, ei(l+1),… , ei(n)]
T

(49) [6]:

ri lþ1ð Þ lþ 1ð Þ ¼ 1=ri lþ1ð Þ lð Þ
Txlþ1

� 	

ri lþ1ð Þ lð Þ (64)

and

∀i 6¼ i lþ 1ð Þð Þ ri lþ 1ð Þ ¼ ri lð Þ � ri lð Þ
Txlþ1

� 	

ri lð Þ lþ 1ð Þ ¼

¼ ri lð Þ � ri lð Þ
Txj lþ1ð Þ=ri lð Þ lð Þ

Txlþ1

� 	

ri lð Þ lð Þ

where i(l+1) is the index of the unit vector ei(l+1) leaving the basis
Bl = [x1,..., xl, ei(l+1),..., ei(n)]

T during the l-th stage.
Remark 2: The vector Gauss-Jordan transformation (64) resulting from the

replacing of the unit vector ei(k) with the feature vector xk in the basis
Bk-1 = [x1,..., xk-1, ei(k),..., ei(n)]

T cannot be executed when the below collinearity
condition is met [7]:

ri kð Þ kð ÞT xk ¼ 0 (65)

The collinearity condition (65) causes a division by zero in Eq. (64).
Let the symbol rl[k] denote the l-th column rl(k) = [rl,1(k),..., rl,n(k)]

T of the
inverse matrix Bk

�1 = [r1(k),… , rk-1(k), rk(k),… ., rn(k)] (49) after the reduction of
the last n - k components rl,i(k):

rl k½ � ¼ rl,1 kð Þ, … , rl,k kð Þ½ �T (66)

Similarly, the symbol xj[k] = [xj,1,...,xj,k]
T means the reduced vector obtained

from the feature vector xj = [xj,1,...,xj,n]
T after he reducing of the last n - k

components xj,i:
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ð∀j∈ 1, … ,mf Þ xj k½ � ¼ xj,1, … , xj,k
� �T

(67)

Lemma 3: The collinearity condition (65) appears during the k-th step when the
reduced vector xk[k] (66) is a linear combination of the basis reduced vectors xj[k]
(67) with j < k:

xk k½ � ¼ α1 x1 k½ � þ … þ αk�1 xk�1 k½ � (68)

where (∀i ∈ {1,… , k - 1}) αi ∈ R1.
The proof of this lemma results directly from the collinearity condition (65) [7].

7. Small samples of multivariate feature vectors

A small sample of multivariate vectors appears when the number m of feature
vectors xj in the data set C (1) is much smaller than the dimension n of these vectors
(m << n). The basis exchange algorithms allows for efficient minimization of the CPL
criterion functions also in the case of small samples of multivariate vectors [10].
However, for small samples, some new properties of the basis exchange algorithms are
more important. In particular, the regularization (42) of the CPL criterion functions
becomes crucial. New properties of the basis exchange algorithms in the case of a
small numberm of multidimensional feature vectors xj (1) is discussed on the example
of the collinearity criterion function Φ(w) (38) and the regularized criterion function
Ψ(w) (42).

Lemma 4: The value Φ(wK) of the collinearity criterion function Φ(w) (38) at the
final vertexwL (59) is equal to zero if allm linear Eqs. (45) are fulfilled in the vertexwL

which is related by the Eq. (47) to the matrix BL = [x1,..., xm, ei(1),..., ei(n-m)]
T (48)

containing the unit vectors ei with the indices i from the subset IL (i ∈ IL).
Theorem 4: If the feature vectors xj constituting the subset Ck (Ck ⊂ C (1)) and

used in the definition of the function Φ(w) (38) are linearly independent (Def. 2),
then the value Φ(wL) of the collinearity criterion function Φ(w) at the final vertexwL

(59) is equal to zero (Φ(wL) = 0).
The proof of Theorem 4 can be based on the stepwise inversion of the matrices Bk

(48) [16]. The final vertex wL (59) can be found by inverting the related matrix
BL = [x1,..., xrk, ei(1),..., ei(n-rk)]

T (48).
The final vertex wL (59) resetting (Φ(wL) = 0) the criterion function Φ(w) (38)

can be related to the optimal matrix BL = [x1,..., xL, ei(L + 1),..., ei(n)]
T (48) built from L

(L ≤ m) feature vectors xj (j ∈ J(wL) (45)) from the data set C (1) and from n - L
selected unit vectors ei (i ∈ I(wL) (46)). Different subsets of the unit vectors ei in the
final matrix BL (48) result in different positions of the final vertices wL(l) (59) in the
parameter space Rn. The criterion function Φ(w) (38) is equal zero
(Φ(wL(l)) = 0) at each of these vertices wL(l) (59).

The position of the final vertices wL(l) (59) in the parameter space Rn depends on
which unit vectors ei (i ∈ IL(l)) are included in the basis BL(l) (48), where:

∀l∈ 1, … , lmaxf Þ Φk wL lð Þ
� �

¼ 0
�

(69)

The maximal number lmax (69) of different vertices wL(l) (59) can be large when
m << n:
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lmax ¼ n!=m! n–mð Þ! (70)

The choice between different final vertices wL(l) (59) can be based on the minimi-
zation of the regularized criterion function Ψ(w) (42). The regularized function Ψ(w)
(42) is the sum of the collinearity function Φ(w) (38) and the weighted sum of the
cost functions φi

0(w) (43). If Φ(wL(l)) = 0 (38), then the value Ψ(wL(l)) of the
criterion function Ψ(w) (42) at the final vertex wL(l) (59) can be given as follows:

Ψ wL lð Þ
� �

¼ λi Σi χi φj
0 wL lð Þ
� �

¼

¼ λ Σ χi ∣ wL lð Þ,i ∣
(71)

where the above sums take into account only the indices i of the subset I(wL(l)) of
the non-zero components wL(l),i of the final vertexwL(l) = [wL(l),1,… , wL(l),n]

T (59):

I wL lð Þ
� �

¼ i : ei
TwL lð Þ 6¼ 0

� �

¼ i : wL lð Þ,i 6¼ 0
� �

(72)

If the final vertexwL(l) (59) is not degenerate (Def. 5), then the matrix BL(l) (48) is
built from all m feature vectors xj (j ∈ {1,...., m}) making up the data set C (1) and
from n - m selected unit vectors ei (i ∈ I(wL(l)) (71)).

BÞm ¼ x1, … ,xm, ei mþ1ð Þ, … , ei nð Þ

� �T
(73)

The problem of the constrained minimizing of the regularized function Ψ(w) (71)
at the verticeswL(l) (59) satisfying the conditions Φ(wL(l)) = 0 (69) can be formulated
in the following way:

min l Ψ wL lð Þ
� �

: Φ wL lð Þ
� �

¼ 0
� �

¼

¼ min l Σi γi wL lð Þ,i











: Φ wL lð Þ
� �

¼ 0
� � (74)

According to the above formulation, the search for the minimum of the regularized
criterion function Ψ(w) (42) is takes place at all such vertices wL(l) (59), where the
collinearity function Φ(w) (38) is equal to zero. The regularized criterion function
Ψ(w) (42) is defined as follows at the final vertices
wL(l) = [wL(l),1,… , wL(l),n]

T (59), where Φ(wL(l)) = 0:

∀wL lð Þ
� �

Ψ0 wL lð Þ
� �

¼ Σ γi ∣ wL lð Þ,i ∣ (75)

The optimal vertexwL(l)* is the minimum value Ψ0(wL(l)*) of the CPL criterion
function Ψ0(w) (75) defined on such final verticeswL(l) (59), where Φ(wL(l)) = 0 (38):

∃wL lð Þ
∗

� �

∀wL lð Þ : Φ wL lð Þ
� �

¼ 0
� �

Ψ0 wL lð Þ
� �

≥Ψ0 wL lð Þ
∗

� �

>0 (76)

As in the case of the minimization of the perceptron criterion function Φk
p(v)

(29), the optimal vectorwL(l)* (76) may be located at a selected vertex of some convex
polyhedron (27) in the parameter space Rn (w ∈ R

n) [7].
If the cost parameters γi (42) have standard values of one ((∀i ∈ {1,… ,n}) γi = 1),

then the constraint minimization problem (74) leads to the optimal vertexwL(l)* with
the smallest L1 length ||wL(l)* ||L1 = |wL(l),1*| + … + |wL(l),n*|, where Φ(wL(l)*) = 0 (38):

∃wL lð Þ
∗

� �

∀wL lð Þ : Φ wL lð Þ
� �

¼ 0
� �

kwL lð Þk≥ kwL lð Þ
∗ k (77)
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Optimal vertex wL(l)* with the smallest L1 length || wL(l)* ||L1 (77) is related to the
largest L1 margin δL1(wL(l)*) (6) [11]:

δL1 wL lð Þ
∗

� �

¼ 2=k wL lð Þ
∗ k L1 ¼ 2= jwL lð Þ,1

∗ jþ…þj wL lð Þ,n
∗ j

� �

(78)

The basis exchane algorithm allow to solve the constraint minimization problem
(74) and to find the optimal vertex wL(l)* (77) with the largest L1 margin δL1(wL(l)*).

Support Vector Machines (SVM) is the most popular method for designing linear
classifiers or prognostic models with large margins [12]. According to the SVM
approach, the optimal linear classifier or the prognostic model defined by such an
optimal weight vectorw* that has a maximum margin δL2(w*) based on the Euclidean
(L2) norm:

δL2 w ∗ð Þ ¼ 2= w ∗k kL2 ¼ 2= w ∗ð ÞTw ∗
� 	1=2

(79)

Maximization of the Euclidean margins δL2(w) (79) is performed using quadratic
programming [2].

8. Complex layers of linear prognostic models

Complex layers of linear classifiers or prognostic models have been proposed as a
scheme for obtaining a general classification or forecasting rules designed on the basis
of a small number of multidimensional feature vectors xj [11]. According to this
scheme, when designing linear prognostic models, averaging over a small number m
of feature vectors xj of the dimension n (m << n) is replaced by averaging on
collinear clusters of selected features (genes) Xi. Such an approach to averaging can be
linked to the ergodic theory [17].

In the case of a small sample of multivariate vectors, the number m of feature
vectors xj in the data set C (1) may be much smaller than the dimension n of these
vectors (m << n). In this case, the collinear cluster C(wk*[rk]) (52) may contain all
feature vectors xj from the set C (1) and the vertexwk*[rk] may have the rank rk equal
to m (rk = m).

As it follows from Theorem 4, if the collinearity criterion function Φ(w) (38) is
defined on linearly independent (Def. 2) feature vectors xj, then the values Φ(wm(l)) of
this function at each final vertex wm(l) (59) are equal to zero (Φ(wm(l)) = 0). Each final
vertex wm(l) (59) can be reached in m steps k (k = 1, … , m) starting from the vertex
w0 = [0,..., 0]T related to the identity matrix B0 = In = [e1,..., en]

T.
Minimization of the collinearity criterion function Φ(w) (38), and then minimiza-

tion of the criterion function Ψ0(wL(l)) (75) at the final verticeswL(l) (59) allows to
determine the optimal vertexwL(l)* (77) with the largest L1 margin δL1(wL(l)*) (78). If
the feature vectors xj (1) are linearly independent, then the optimal vertexwL(l)* (77) is
related to the optimal basis BL(l)* = [x1,..., xm, ei(m + 1),..., ei(n)]

T which contains all m
feature vectors xj (1) and n -m unit vectors eiwith the indices i belonging to the optimal
subset I(wL(l)*) (71) (i ∈ I(wL(l)*)).

The optimal basis Bm* = [x1,..., xm, ei(m + 1),..., ei(n)]
T (73) is found in two stages. In

the first stage, m feature vectors xj (1) are introduced into matrices Bk = [x1,..., xk,
ei(k + 1),..., ei(n)]

T (k = 0, 1,… , m - 1). The inverse matrices Bk
�1 (49) are computed in

accordance with the vector Gauss-Jordan transformation (64). In the second stage, the
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unit vectors ei(l) in the matrices Bm(l) (73) are exchanged to minimize the CPL
function Ψ0(wm(l)) (75) at the final vertices wm(l) (77). The optimal basis Bm* defines
(47) the optimal vertex wm(l)* (77), which is characterized by the largest margin
δL1(wm(l)*) (78).

The vertexical feature subspace F1*[m] (F1*[m] ⊂ F[n] (1)) can be obtained on
the basis of the optimal vertex wm(l)* (77) with the largest margin δL1(wm(l)*) (78).
The vertexical subspace F1*[m] contains the reduced vectors x1,j[m] with the
dimension m [7]:

∀j∈ 1, … ,mf gð Þ x1,j m½ �∈ F1
∗ m½ � (80)

The reduced vectors x1,j[m] (80) are obtained from the feature vectors xj = [xj,1,...,
xj,n]

T (xj ∈ F[n]) ignoring such components xj,i which are related to the unit vectors
ei in the optimal basis B1* = [x1,..., xm, ei(m + 1),..., ei(n)]

T (73). The reduced vectors
x1,j[m] are represented by such m features Xi (Xi ∈ R1* (54)), which are not linked to
the unit vectors ei (i ∉ Im(l)*) in the basis Bm(l)* (73) representing the optimal vertex
wm(l)* (77).

R1
∗ ¼ Xi 1ð Þ, … ,Xi mð Þ : i lð Þ ∉ Im lð Þ

∗ 72ð Þ
� �

(81)

The m features Xi(l) belonging to the optimal subset R1* (Xi(l) ∈ R1* (81) are related
to the weights wk.l* (wk*[m] = [wk,1*,… , wk,m*]

T) that are not zero
(wk.l * 6¼ 0).

The optimal feature subset R1* (81) consists of m collinear features Xi. The
optimal vertex w1*[m] (Φ(w1*[m]) = 0 (69)) in the reduced parameter space
R
m (w1*[m] ∈ R

m) is based on these m features Xi. The reduced optimal vertex
w1*[m] with the largest margin δL1(w1*[m]) (77) is the unique solution of the
constrained optimization problem (74). Maximizing the L1 margin δL1(wl*) (78)
leads to the first reduced vertex w1*[m] = [wk,1*,… , wk,m*]

T with non-zero
components wk.i * (wk.i * 6¼ 0).

The collinear interaction model betweenm collinear features Xi(l) from the optimal
subset R1*(m) (81) can be formulated as follows (57):

wk:1
∗ Xi 1ð Þ þ … þwk:m

∗ Xi mð Þ ¼ 1 (82)

The prognostic models for each feature Xi0 from the subset R1* (81) may have the
following form (58):

∀i0 ∈ 1, … ,mf Þ Xi0 ¼ αi0,0 þ αi0,1 Xi 1ð Þ þ … þ αi0,m Xi mð Þ

�

(83)

where αi0,0 = 1 / wk.i0*, αi0, i0 = 0, and (∀ i(l) 6¼ i0) αi0,i(l) = wk.i(l)* / wk.i0*.
In the case of a data set Cwith a small numberm (m << n) of multidimensional

feature vectors xj (1), the prognostic models (83) for individual features Xi0 can be weak.
It is know that sets (ensembles) of weak models can have strong generalizing properties
[4]. A set of weak prognostic models (83) for a selected feature (dependent variable) Xi0

can be implemented in the complex layer of L prognostic models (83) [11].
The complex layer can be built on the basis of the sequence of L optimal verticeswl*

(77) related to m features Xi constituting the subsets Rl* (81), where l = 0, 1,..., L.

w1
∗ ,R1

∗ð Þ, … :, wL
∗ ,RL

∗ð Þ (84)
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Design assumption: Each subset Rl* (81) in the sequence (84) contains a priori
selected feature (dependent variable) Xi0 and m - 1 other features (independent
variables) Xi(l). The other features Xi(l) (Xi(l) ∈ Rl*) should be different in successive
subsets Rl* (l = 0, 1,..., L).

The first optimal; vertexw1* (77) in the sequence (84) is designed on the basis ofm
feature vectors xj (1), which are represented by all n features Xi constituting the
feature set F(n) = {X1,… , Xn}. The vertex w1* (77) is found by solving the constraint
optimization problem (74) according to the procedure with the two stages outlined
earlier. The two-stage procedure allows to find the optimal vertex w1* (77) with the
largest L1 margin δL1(w1*) (78).

The second optimal vertexw2* (77) in the sequence (84) is obtained on the basis of
m reduced feature vectors xj[n - (m - 1)] (67), which are represented by n - (m - 1)
features Xi constituting the reduced feature subset F2(n - (m + 1)):

F2 n� m� 1ð Þð Þ ¼ F nð Þ=R1
∗ ∪ Xi0f g (85)

The l-th optimal vertex wl* (77) in the sequence (84) is designed on the basis of m
reduced vectors xj[n - l(m - 1)] (67), which are represented by n - l(m - 1) features Xi

constituting the feature subset Fl(n - l(m - 1)):

Fl n� l m� 1ð Þð Þ ¼ Fl�1 n� l m� 1ð Þð Þ=Rl�1
∗ ∪ Xi0f g (86)

The sequence (84) of L optimal vertices wl* (77) related to the subsets
Fl(n - l(m - 1)) (86) of features is characterized by decreased L1 margins δL1(wl*)
(78) [18].

δL1 w1
∗ð Þ≥ δL1 w2

∗ð Þ≥ … ≥ δL1 wL
∗ð Þ (87)

The prognostic models (83) for the dependent feature (variable) Xi0 are designed
for each subset Fl(n - l(m - 1)) (86) of features Xi, where l = 0, 1,..., L (84):

∀l∈ 0, 1, … ,Lf gð (88)

Xi0 lð Þ ¼ αi0,0 lð Þ þ αi0,1 lð Þ Xi 1ð Þ lð Þ þ … þ αi0,m lð Þ Xi mð Þ

The final forecast Xi0
∧ for the dependent feature (variable) Xi0 based on the com-

plex layer of L + 1 prognostic models (88) can have the following form:

Xi0
∧ ¼ Xi0 1ð Þ þ … þ Xi0 Lð Þð Þ= Lþ 1ð Þ (89)

In accordance with the Eq. (89), the final forecast Xi(m)
∧ for the feature Xi0 results

from averaging the forecasts of L + 1 individual models Xi0(l) (88).

9. Concluding remarks

The article considers computational schemes of designing classifiers or prognostic
models based on such a data set C (1), which consists of a small number m of high-
dimensional feature vectors xj (m < < n).

The concept of a complex layer composed of many linear prognostic models (88)
built in low-dimensional feature subspaces is discussed in more detail. These models
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(88) are built by using a small number m of collinear features Xi belonging to the
optimal feature clusters Rl* (81). The optimal feature clusters Rl* (81) are formed by
the search for the largest margins δL1(wl*) (78) in the L1 norm.

The averaged prognostic models Xi0
∧ (89) are based on the layer of L parallel

models Xi0(l) (88). In line with the ergodic theory, averaging on a small number m of
feature vectors xj has been replaced with averaging on L collinear clusters Rl* (81) of
features Xi. Such averaging scheme should allow for a more stable extraction of gen-
eral patterns from small samples of high-dimensional feature vectors xj (1) [11].
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