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Abstract

Introduction. Cerebrovascular disorders are the main causes of heavy burden 
health worldwide, also, it is critical to understand the pathophysiological mecha-
nism and then trying to prevent the neurological sequels. Objective. To discuss 
the inflammatory and oxidative stress aspects associated to the cerebrovascular 
diseases, focusing on biomarkers, also the role of omega oils, and the intracellular 
molecular network associated to the tissue burden on those conditions. Results. 
One of the most promising biomarkers it is Neuron-Specific Enolase (NSE). Serum 
NSE levels were elevated in stroke-patients compared to the non-stroke controls. 
Also, studies have demonstrated that in specific ratio omega oils 3, 6 and 9 can ame-
liorate the inflammatory and oxidative stress in nervous tissue and could be useful 
to the inflammatory and oxidative stress negative effects of cerebrovascular dis-
eases. In addition, the study of the molecular mechanisms is essential to understand 
which molecules could be addressed in cascade of events preventing the permanent 
damage on the nervous tissue. Final considerations. The studies on cerebrovascular 
disorders must precisely identify the mechanisms and key molecules involved and 
improve the time of diagnostics and prognostics reducing the negative impacts of 
those conditions.

Keywords: Neuroinflammation, oxidative stress, omega oils, biomarkers, molecular 
Cascade, pathophysiology

1. Introduction

Cerebrovascular disease is an important cause of severe health impairment 
and/or death, being the stroke, the main event-related as a cause of this group 
of diseases. The American Association of Neurological Surgeons (AANS) define 
cerebrovascular disease as disorder, in which, an area of the brain is temporarily or 
permanently affected by ischemia or bleeding and one or more of the cerebral blood 
vessels are involved in the pathological process, which includes stroke, carotid steno-
sis, vertebral and intracranial stenosis, aneurysms, and vascular malformations [1].

Other conditions such as brain tumors, neurotrauma, intracerebral hematoma, 
and aneurysmal subarachnoid hemorrhage, could be potentially important depending 
on the incidence or prevalence in populations across the world [2]. Cerebrovascular 
diseases are frequently associated with the high financial cost to the public and private 
health system across developed and under-resourced countries.
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2. Expenditures for cerebrovascular disease patients

Brazil has shown a high level of economic burden to manage and treat cerebro-
vascular diseases. In a Brazilian report, the authors have demonstrated the annual 
costs and use of health care compared, age and sex paired healthy individuals to 
patients with cerebrovascular disease [3].

Reis Neto and Busch evaluated the annual costs and the use of private health 
care systems comparing 71,094 individuals among healthy controls and patients 
with cerebrovascular conditions. The 12 months follow-up report, found that the 
annual individual expenditure was 65.6% higher compared to the control group 
without any cerebrovascular condition [3].

Several reports have demonstrated that the main cause of cerebrovascular 
disease is stroke, which leads to a huge impact on brain tissue due to restriction on 
blood flow compromising the nervous tissue and leading to negative effects.

3. Stroke

According to the World Health Organization (WHO), stroke is a condition 
that the blood flow is interrupted leading to a focal or global disturbance on brain 
functions showing symptoms during at least 24 hours or longer or even leading to 
the death of the patient [4].

3.1 Types of strokes

Since the stroke is related to the blood flow to the nervous tissue, the stroke 
could be divided into (1) ischemic stroke and (2) hemorrhagic stroke.

The ischemic stroke resulted in obstruction of a large vessel in the brain or 
cervical region leading to reduced levels of oxygen and glucose diffusion to the 
after-occlusion regions, particularly classified in two regions—penumbra and 
ischemic core (Figure 1) with some important characteristics. On the other hand, 
hemorrhagic stroke is produced due to a rupture of a vessel mainly due to hyper-
tensive disease, coagulation disorders vascular malformation and could be poten-
tialized by diet and other modifiable factors [4].

Figure 1. 
A schematic illustration for brain damage provoked by an ischemic stroke (created with BioRender.com®).
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Worldwide in 2016, there were 5.5 million deaths related to the conse-
quences of stroke, in addition, 80.1 million prevalent cases, being 41.1 and 
39.0 in female and male respectively, also 13.7 million new cases of stroke cases 
 worldwide [5].

The last published 2021 guideline for the prevention of stroke summarizes the 
types and subtypes of stroke (Figure 2) according to the anatomy location and 
involvement [6–8]. Those phenotypes are key features to provide accurate informa-
tion to the physician to take a correct decision and may deliver a proper assistance to 
the patients.

In the acute phase of cerebral arterial occlusion, the critical treatment consists 
of recovering cerebral reperfusion as soon as possible. Currently, two therapies are 
validated for this purpose—intravenous thrombolytic (rtPA) and/or mechanical 
thrombectomy [9].

Each of these modalities has advantages and disadvantages. However, less than 
20% of all stroke patients are candidates for mechanical thrombectomy, making 
primary and secondary prevention still the major factors to reduce the number 
of cases in the world. The prevention of stroke is based on a healthy diet, regular 
exercise, and avoiding smoking and alcohol consumption.

3.2 Pathophysiology of stroke

In ischemic stroke, an interruption in cellular oxidative metabolism decreases 
the oxidative metabolism, levels of calcium and sodium, these key factors lead 
to a reduction in oxygen-based neuronal mitochondrial function, energetic 

Figure 2. 
The classification of stroke subtypes according to the definition and anatomical localization (created with 
BioRender.com®).
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debit, production, and releasing of inflammatory mediators (prostaglandin and 
leukotrienes), in addition, vasoconstriction, platelet aggregation, and vessel 
occlusion.

On the other hand, a hemorrhagic cerebrovascular event, an acute vessel rupture 
of encephalic structures; a secondary ischemic lesion around the hematoma may 
also occur [10–12].

The anti-inflammatory and antioxidative roles of omega oils 3, 6, and 9 have 
been largely investigated in cerebrovascular diseases [13–15].

The economical, epidemiological, and pathophysiology impacts of cerebrovas-
cular diseases are huge and must be addressed to improve the comprehension of 
all the factors that are related to the genesis and the disease progression of these 
conditions. Thus, the animal models could be potentially positive helping to clarify 
all the key factors related to cerebrovascular diseases.

3.3 Inflammatory and oxidative state in stroke

Several studies have been conducted in the past to assess the benefit 
of cerebral arterial reperfusion, but only in 1995, the benefit was proven 
using  intravenous thrombolysis with alteplase (tPA) to break the cerebral 
 thrombus [16].

A recent report has suggested superiority in treatment with a new clot buster 
“tenecteplase” (TNK), a variant of tPA, but possesses greater fibrin specificity and 
a longer half-life, making it potentially safer and a more effective drug for stroke 
[17]. In addition to intravenous thrombolytic therapy, the treatment of patients 
with stroke is having profound modifications due to the endovascular treatment of 
cerebral reperfusion, increasing the therapeutic window for up to 24 hours from the 
onset of initial symptoms [18].

Early treatment is the most critical factor for successful reperfusion therapy 
of acute ischemic stroke. The researchers only discovered the correct way to treat 
stroke patients in the acute phase after understanding exactly how the alteration in 
cerebral blood flow modifies the cell function.

Acute occlusion of an arterial branch responsible for the irrigation of a 
brain area triggers an inflammatory cascade that clinically manifests as an 
acute neurological deficit. However, according to the degree of dependence 
of that cell on the vessel, different metabolic responses will occur. The brain 
requires a continuous supply of oxygen and glucose to maintain physiologic 
function.

The regular brain perfusion rate is approximately 50–60 mL/100 g tissue/min, if 
cerebral blood flow is interrupted, then neuronal metabolism can be affected after 
30 seconds of interruption and will completely stop within 2 minutes of depriva-
tion. Through the increase in the cellular capacity to extract oxygen under low 
supply conditions, no symptoms are observed until the brain blood flow reaches 
around 20–30 mL/100 g/min [19], and then the energy generation is shifted to the 
anaerobic glycolysis pathway.

This is the basis of the glutamate excitotoxicity theory and may 
explain why pyramidal neurons in the hippocampus and Purkinje cells in the 
cerebellum that rely on glutamate neurotransmission are particularly vulner-
able to ischemia [20]. The center of the irrigated tissue area, when receiving 
less than 10 ml/100 g of brain tissue, after 4–5 minutes, cannot maintain the 
sodium and potassium transporter working, generating a cytotoxic edema that 
will evolve to cell apoptosis, a process mediated by calcium and the glutamate 
(Figure 3) [21].
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3.4 Stroke blood biomarkers

One of the major difficulties for the acute treatment of patients with 
cerebral ischemia is early diagnosis through a serum biomarker since stroke 
often occurs with atypical and nonspecific symptoms, known as “stroke chame-
leons” [22].

The biomarker must be reliable, rapidly measured, and readily available, to be 
considered a good biomarker for stroke. In addition, the biomarker must help in 
determining the mechanism of injury, differentiating in cardioembolic, athero-
thrombotic, or prothrombotic state [23].

However, the stroke biomarkers do not have sufficient data to support an ideal 
concept of sensitivity and specificity [24] to standard any biomarker by itself to 
characterize the progression of the disease. In addition, Lassen, and cols., first 
reported that acute occlusion of an arterial branch responsible for the irrigation of 
a brain area triggers an inflammatory cascade that clinically manifests as an acute 
neurological deficit. However, different metabolic responses will occur leading to 
difficulty to identify a biomarker that shows specificity and sensibility for a lab 
detection [19].

One of the most promising markers evaluated is neuron-specific enolase (NSE), 
an enzyme released after neuronal damage. Serum NSE levels were elevated in 
stroke patients compared to the nonstroke controls and are associated with infarct 
volume and high neurological deficit [25]. Nonetheless, the NSE major issue to be 
standardized as a biomarker is delayed-release into the blood flow after brain injury 
compromising, the key role of early diagnosis [26].

Furthermore, the brain natriuretic peptide (BNP) is the main cardiac  
biomarker studied for its relationship with stroke, including the presence of 
paroxysmal atrial fibrillation, although optimal cutoff values for individual profiles 
are undefined [27].

In addition, studies from a European consortium of the population-based cohort 
(approximately 58.000 stroke-free participants), evaluating brain natriuretic 
peptide (BNP) levels, demonstrated that increased levels of NT-proBNP were 
associated with the higher risk of ischemic and hemorrhagic stroke [28].

Another study assessing 381 patients diagnosed with the transient ischemic 
attack (TIA), has shown an NT-proBNP level > 800 pg./mL, which was indepen-
dently associated with a higher risk of stroke over 37 months follow-up [29].

Figure 3. 
Molecular pathways outlining the role of glutamate in excitotoxicity following stroke (created with 
BioRender.com®).
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4. Animals models in cerebrovascular diseases

The pathophysiology of cerebrovascular diseases such as ischemia has been stud-
ied in several animal models. These models have shown many metabolic alterations 
leading to cellular lesions in specific brain regions, depending on the duration of the 
blood flow restriction [10–12].

The use of small animals (e.g., mice, rats, gerbils, or rabbits) have an important 
advantage; lower maintenance costs compared to larger animals. The rat is the most 
used in stoke studies, due to the physiology and anatomy similarity to the humans 
[30], however, the mouse could be potentially useful, since is the uses of transgenic 
technology that can assess the molecular pathophysiology of stroke [31, 32].

The middle cerebral artery permanent or transient occlusion (MCAo) is less 
invasive and does not require craniectomy and has been widely used in published 
reports. In the transient method, the duration of suture varies between 60 and 
120 minutes inducing high levels of infarction (Figure 4) [33].

The photothrombosis model is based on intravascular oxidation through irradia-
tion with a light beam in a specific wavelength, generating oxygen radicals that lead to 
inflammation-like damage [34]. The Endothelin-1, a potent vasoconstrictor, it is admin-
istered in the Middle of Cerebral Artery (MCA) leading to the animal develops stroke.

Figure 4. 
The representation of bilateral occlusion of common carotid arteries. (created with BioRender.com®).
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Another model is the embolic stroke that uses clots with spheres of dextran or 
other supraparamagnetic iron oxides, TiO2, and ceramic that could develop occlu-
sion and lead to stroke [35].

In the last years of animal models to understand the mechanisms involved in 
stroke, it is widely used to evaluate key targets and therapeutics molecules investi-
gating the protectives and treatments tools. The administration of omega 3, 6, and 
9 could be a useful tool to protect the nervous tissue against the inflammatory and 
oxidative damages produced by stroke [33–35].

4.1 Use of omega, 3, 6 and 9 in brain ischemia animal models

The brain ischemia leads to several metabolic alterations in carbohydrates 
metabolism in an experimental model of brain ischemia-induced only by the 
bilateral occlusion of common carotid arteries in rats [36].

However, some evidence suggests that ketone bodies are utilized to generate 
energy in some extreme situations such as ischemia [37]. In addition, in a report 
from Faria and cols in 2007, the authors have demonstrated, that using 48 male 
Wistar rats submitted to the occlusion of common carotid arteries, increased 
cerebral uptake of acetoacetate (ACT) and beta-hydroxybutyrate (BHB) following 
brain ischemia [38].

Pinheiro and cols in 2011, have shown that the preconditioning of 42 male 
rats with different omega oil mix preparations promoted protection against the 
deleterious effects of ischemia/reperfusion injury demonstrated by the reduction 
of red neurons in the group that received mix 2 (omega 6: omega 3 ratio— 1.4:1; 
omega 9: omega 6 ratio—3.4:1) source of omega 3 ALA (35%) + EPA (39%) + DHA 
(26%) [39].

In 2011 Campelo et al., using occlusion of the common bilateral carotid arter-
ies ischemia model demonstrated that the pretreatment using nitrosyl-ruthenium 
(Rut-bpy) decreased the mean arterial pressure variations throughout the transi-
tion of brain ischemia to reperfusion, in addition, decreased the ischemic area, also 
Rut-bpy pretreatment reduced NF-kB hippocampal immunostaining and protein 
expression with improved histopathology scoring as compared to the untreated 
ischemic-group control [40].

Pires and colleagues in 2011, using the L-Ala-Gln preconditioned gerbils 
(Meriones unguiculatus) under the transient bilateral occlusion of the com-
mon carotid arteries, demonstrated a significant increased GSH levels [41]. 
Furthermore, Oliveira and cols. Demonstrated an important reduction on TNF-α, 
NF-κB, IL-6, and HO-1, inflammatory mediators in pretreated gerbils with 
L-Ala-Gln [42].

5. The pathophysiology of subarachnoid hemorrhage

In addition to stoke, the role of the oxidative state in the context of subarachnoid 
hemorrhage is another fascinating topic that deserves to be studied.

The incidence of delayed cerebral ischemia (DCI) is around 30%, with 
DCI remaining the major cause of morbidity and mortality among patients 
who survive the initial treatment of the ruptured aneurysm [43]. The DCI is 
frequently associated with the early arteriolar vasospasm with microthrom-
bosis, perfusion difficulty and neurovascular uncoupling, spreading neurons 
depolarizations, and inflammatory responses that begin at the time of the 
aneurysmal subarachnoid hemorrhage (aSAH) and evolve over time, culminat-
ing in cortical infarction [44].
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The aSAH (approximately the origin of 5% of all strokes) is a complex cerebrovas-
cular disease with severe systemic complications. The worldwide incidence of aSAH 
is approximately 700,000 cases annually with a mortality rate of about 40% [45].

The initial global hypoperfusion after aSAH leads to inflammatory processes, 
which occur in blood vessels as well as in cerebrospinal fluid (CSF) and then 
macrophages and neutrophils enter the subarachnoid space releasing proinflam-
matory factors [46].

The initial aneurysmal rupture deposits blood within the subarachnoid space, 
the methemoglobin, heme, and hemin resulting from red blood cell breakdown and 
hemoglobin metabolism, which can lead to activation of TLR4, which stimulates a pro-
inflammatory cascade damaging neurons and white matter. Hemin has been associated 
with the release of redox-active iron, which depletes antioxidant stores, such as, nico-
tinamide adenine dinucleotide phosphate (NADPH) and glutathione while producing 
superoxide and hydroxyl radicals as well as increasing lipid peroxidation [47].

Some clinical studies have found that modulating inflammation following aSAH 
is beneficial, on the other hand, several studies have shown, no beneficial effect at 
all. It is likely that activation of inflammation at different time points post rupture, 
is associated with different protective or detrimental responses depending on the 
microenvironment and type of cells recruited to the inflammatory site [48].

One of the most commonly proinflammatory biomarkers used as a clinical indi-
cator of its C-reactive protein (CRP), that plays an important role in disease diagno-
sis and treatment and management evaluation. Recent research has shown that CRP 
(C-reactive protein) is an independent predictor of outcome after aSAH [49].

In a study conducted from January 2012 to June 2017, developed in South Korea, 
the researchers evaluating 156 patients diagnosed with aSAH found, evidence that 
serial measurements of CRP may be used to predict neurological outcomes of SAH 
patients, in addition, maximal CRP levels within 4 days post-SAH are significantly 
correlated with poor neurological outcomes [50].

Injection of proinflammatory components induces cerebral vasospasm, even in 
the absence of blood breakdown products (Figure 5) [48].

Figure 5. 
The damage in red blood cells, led to the release of molecules such as heme, hemin, and methemoglobin, 
through the TLR4, activating the group box 1 genes and then leading to the production and releasing of 
proinflammatory molecules TNF-α and NF-κB [51] (created with BioRender.com®).
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Clinically, the inflammatory response appears in close temporal relationship 
with the spasm and direct proportion to the magnitude of the inflammatory 
response [52]. These findings have been supported by evidence suggesting that the 
accumulation of inflammatory cells closely parallels neuronal cell death. Cell death 
near the vasculature has been substantially reduced by the depletion of inflamma-
tory cells in preclinical studies [53].

One of the main lines of research related to aSAH is the identification of a 
specific biomarker related to the risk of a patient presenting late cerebral ischemia, 
allowing anticipation of specific therapy for the condition.

The difficulty in using biomarkers in clinical practice stems from the variability 
of inflammatory markers according to the phase of hemorrhage, which can protect 
the brain tissue in a certain phase and attack the brain tissue in another phase. In 
addition, the high financial, temporal, and human cost of measuring these markers 
makes them unfeasible, currently, for routine clinical use [54].

6. Inflammatory and oxidative state in brain tumors

Other types of brain lesions, in addition to primarily vascular ones, have 
inflammatory and oxidative aspects in pathogenesis. We will initially discuss brain 
tumors, and the next topic, brain trauma.

The importance of the inflammatory state in oncological diseases in the central 
nervous system (CNS) is already well established and valued. Even with damage to other 
systems, there are changes in the neuroinflammatory microenvironment induced by the 
underlying oncological disease that is reflected in the functioning of the CNS [55–57].

Primary tumors of the nervous system are strongly related to the production 
of reactive oxygen species (ROS), promoting abnormalities in DNA replication, 
activating of proinflammatory gene panel, and subsequent inflammation in the 
tumor microenvironment [58], which is reflected, for example, in the presence of 
tumor-associated macrophages (TAM’s), which arise specifically from microglia in 
the context of gliomas [59, 60].

Presenting all proinflammatory-related genes, cytokines, and mediators 
involved in this state is beyond the scope of this chapter. However, this proinflam-
matory state has been present since the first stages of tumorigenesis [61] and can 
be fed back by the glioma cells themselves, as demonstrated by Lisi 2014 et al., who 
pointed out that brain tumor gene expression varies throughout the natural history 
of the disease, mainly alternating the expression of M1 and M2a/B, promoting the 
release of different growth factors according to the stages of advancement [62].

This “phenotypic shift” is also implicated in disrupting the natural cycle of 
microglial mitosis [63]. We should also discuss the key role of external elements, 
such as Benzo[a]pyrene, promoting oxidative stress, leading the DNA damage 
arising from DNA mutations. On the other hand, Patri 2019 et al suggest that 
noradrenaline may have a protective effect against this effect [64].

Feng 2020 demonstrated through enrichment levels of 28 immune cells in the 
tumor immune microenvironment in five datasets, demonstrating prognostic (and 
consequent therapeutic) implications through phenomena that diverge from those 
observed in other types of cancer. The phenotype involved, for example, allows the 
tumor to evade the immune response mechanism [65]. Among the ways to exercise 
this immune-resistant condition can be cited suppression of EZH2 [66] and T cell 
dysfunction promoting the sustained growth of the tumor [67, 68].

The understanding of neuroinflammatory implications extends beyond the 
formulation of specific therapies to combat the growth and perpetuation of  
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the neoplasm—oxidative stress has a strong influence on the outcome also in the 
postoperative state of tumor resection, and the correct conduct with this in mind 
can also influence the outcome [69].

7. Inflammatory and oxidative state in traumatic brain injury (TBI)

TBI is one of the main causes of brain damage, especially in the young popula-
tion. The cumulation of inflammatory factors is associated with the increased 
tissue damage of the nervous system in both the brain and spinal cord [70], causing 
lesions through ischemic-like patterns mechanisms [71].

In the initial moments, proinflammatory cytokines IL-1α, IL-1β, IL-6, and TNF-α, 
are released in sustained-response patter reaching and activating the microglia, being 
predominant during the first 48 hours [70, 72, 73].

Even in cases of mild traumatic brain injury, which commonly do not present 
with more exuberant clinical conditions, there is evidence of neuroinflammation, 
and apoptosis related to oxidative stress [74].

Interestingly, there is evidence for similar patterns in psychiatric conditions 
where trauma itself is not (or at least is not sustained) the main factor involved, as 
in post-traumatic stress disorder [75, 76]. Hyperfibrinogenemia is another common 
factor in the proinflammatory state of TBI and other neurological conditions such 
as Alzheimer’s disease [77].

Among the substances studied in this context is the release of nitric oxide (NO), 
produced by endothelial nitric oxide synthase [78]. Abdul-Muneer 2014 described 
the interactions involved between several inflammatory cytokines and growth factors 
involved in oxidative stress and neurovascular inflammation in the pathogenesis of 
TBI, highlighting blood–brain barrier dysfunction (BBB) in the onset and perpetua-
tion of changes in the cellular microenvironment in this pathological condition [79].

Recognition of the role of the inflammatory microenvironment, both in the 
acute and later phases of TBI, offers a therapeutic opportunity by changing  
the phenotype from proinflammatory to anti-inflammatory, which represents the 
fertile area for research [74, 80]. Chemokines are emerging as powerful controlling 
inflammation-induced brain edema factors, especially regarding BBB dysfunction 
[81]. In another example, there is evidence that hypothermia can be used to curb the 
inflammatory cascade [70].

8. Closing remarks

Thus, the research of neurovascular diseases, as well as the understanding of 
other brain injuries initially nonvascular (such as neoplasms and traumas) should 
identify the critical molecules of the cascade of the disease mechanism that could be 
potentially used, such as, a biomarker and used to develops prognostics to under-
stand how the disease progression is. On the other hand, as fast as, the inflamma-
tory and oxidative mechanisms are revealed; more and more molecules can be used 
as therapeutical tools to address the negative clinical signs associated with disease.
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