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Chapter

Adaptive Optics Imaging 
Technique in Diabetic Retinopathy
Florian Baltă, Irina Elena Cristescu  

and Ioana Teodora Tofolean

Abstract

Adaptive optics ophthalmoscopy opened a new era in the medical retina field. 
The possibility of obtaining high-resolution retinal images of photoreceptors and 
retinal vessels addresses new perspectives in retinal physiology and pathophysiol-
ogy. The overwhelming incidence of diabetes in the global population justifies the 
need to develop and refine methods of diagnosing early retinal changes, in order to 
preserve vision and avoid complications. The current grading of diabetic retinopa-
thy is based on clinical changes only. Nevertheless, imaging tools such as optical 
coherence tomography and optical coherence tomography angiography are also 
used for screening of this pathology. The corroboration of the information provided 
by these imaging methods may lay the foundations for a new approach to the defini-
tion and diagnosis of diabetic retinopathy.

Keywords: diabetic retinopathy, retinal imaging, adaptive optics ophthalmoscopy, 
wall-to-lumen ratio, cone mosaic, rtx1™

1. Introduction: Adaptive optics in retinal imaging

The principle of adaptive optics (AO) belongs to Babcock since 1953. Fifteen 
years afterward, the technique started to be used in military setups. Its main pur-
pose was obtaining good satellite surveillance images, even in unfavorable meteoro-
logical situations. In 1970, the Soviet and American military managed the real-time 
correction of atmospheric turbulences when studying laser sources and stars [1, 2]. 
In 1996, the first AO ophthalmoscope allowed in vivo imaging of the human retina, 
compensating for static and dynamic aberrations of the optical system of the 
human eye. AO technology has three main components: a Hartmann-Shack sensor, 
to measure distortion, a deformable mirror to compensate for the distortion, and a 
control system to calculate the required compensation.

AO has been allowing in vivo studies of human retinal photoreceptors mosaic 
and vessels at a two-micron transversal resolution. As it is lessening the effect 
of optical aberrations on any measurement, it can be combined with almost any 
imaging device. AO imaging at histological resolution of the retina opened new 
perspectives toward early detection, monitoring, and treatment of retinal diseases. 
The devices above are allowing noninvasive in vivo imaging of retinal structures:

• retinal nerve fiber layers; axons of ganglion cells can be studied with AO scan-
ning laser ophthalmoscopy (AOSLO) [3, 4], AO optical coherence tomography 
(AOOCT) [5], and with AO flood illumination ophthalmoscopy [6];
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• ganglion cells, although large in size, they have a low signal-to-noise ratio 
and a low intrinsic contrast. They were visualized in monkeys using intrinsic 
two-photon excitation fluorescence and AOSLO [7] and in humans using 
AOOCT [8];

• bipolar cells could not be visualized using any AO system, as they lack intrinsic 
contrast and scatter to be seen by reflectance;

• Henle fibers were visible with AOSLO, but in pathological cases only. In a study 
that included four family members with Best vitelliform macular dystrophy, 
the inner retinal layers changed their orientation because of the large subreti-
nal lesions, thus producing sufficient scatter to reveal their structure;

• photoreceptors have been the most studied microscopic retinal structures, 
being the first neuron of the human visual pathway. Both cones and rods could 
be assessed using AO imaging techniques [9]. Advances in AO ophthalmoscopy 
led to substantial refinement in the ability to assess these cells, to the point 
where recording and analyzing clear mosaics of photoreceptors across of the 
macular region become possible;

• retinal pigment epithelium (RPE) was visualized in patients with age-related 
degeneration, in which RPE was obvious due to the photoreceptors degenera-
tion, fact confirmed by optical coherence tomography (OCT) scans as well 
[10]. Moreover, AOSLO dark field showed RPE cell mosaic in a subject with no 
eye disease [11];

• lamina cribrosa—morphological changes were noticed in glaucomatous patients 
using flood illumination AO retinal camera [12], AOOCT [13], and AOSLO [10];

• retinal vasculature.

The following section focuses on an overview of AO retinal imaging methods, 
namely AO flood illumination imaging, adaptive optics scanning laser ophthalmos-
copy, and adaptive optics optical coherence tomography.

1.1 AO flood illumination imaging

AO flood illumination imaging was obtained by coupling a wave front sensor and a 
deformable mirror to a high-magnification fundus camera, thus providing some of the 
first organized studies of retinal photoreceptors [14]. This is the principle of the AO rtx1 
camera (Imagine Eyes, Orsay, France), which has been extensively used in the study of 
retinal photoreceptors [15–17] and vasculature [18, 19]. Compared with the other two 
devices, its axial resolution is smaller (~300 μm) [10]. However, an important advantage 
of this type of imaging is the speed at which the entire retinal image is acquired (a few 
milliseconds). Thus, with a CCD camera, 40 retinal images are taken in 4 s, which are to 
be further processed by specialized software in order to deliver a final image [20]. One 
single image is minimally influenced by eye movement, and the system is capable of 
providing very high frame rates with high sensitivity [21].

1.2 AO scanning laser ophthalmoscopy

AO scanning laser ophthalmoscope provides a higher contrast relative to AO 
flood illumination by recording scattered light from a focused beam across the 



3

Adaptive Optics Imaging Technique in Diabetic Retinopathy
DOI: http://dx.doi.org/10.5772/intechopen.101266

retinal surface through confocality. A pinhole conjugated to the focal retinal plane 
removes beams of light whose origin is outside the point spread function. By 
modifying the pinhole size, different transversal and axial resolutions of the system 
can be obtained, allowing imaging of the retinal structures (nerve fiber layers, 
photoreceptors, blood vessels). Its accuracy is increased by the AO constituent. In 
addition to this, continuous scanning allows the study of larger areas at a superior 
rate relative to conventional fundus imaging [22]. AOSLO is being used in high-
resolution imaging, eye-tracking, laser modulations setups, psychophysics and 
electrophysiology studies [23].

1.3 AO optical coherence tomography

OCT started to be used as a retinal imaging tool in 1991, while the association 
of AO technology with the OCT was first introduced more than 10 years ago [24]. 
An advantage of the AOOCT its ability to adjust images in all three coordinates 
(both axial and lateral) and to offer great visualization of individual cells because 
of its outstanding axial resolution. Axial resolution increases with the bandwidth 
of the imaging coherent light source [23]. Time-domain OCT might reach an axial 
resolution of 2–3 μm, whereas spectral-domain OCT an axial resolution between 
2.1 and 2.5 μm [25]. Nevertheless, individual cells cannot be visualized because of 
low acquisition speed and low lateral resolution (>15 μm). Swept source OCT has 
a higher acquisition speed, but with an axial resolution of 5.3 μm and a lateral one 
of 20 μm. Lateral resolution is influenced by the eye’s aberrations effect on focal 
spot size. After coupling AO with OCT imaging, the lateral resolution of the system 
reached 2–3 μm [26], and 3D imaging of retinal structures (RPE, ganglion cells, 
lamina cribrosa, nerve fiber layer) was achieved [27].

2. Diabetic retinopathy and adaptive optics

Diabetic retinopathy (DR) is a microvascular complication of diabetes  
mellitus (DM), representing one of the leading causes of vision loss and blindness 
worldwide [28]. Its early diagnosis is necessary to preserve vision and avoid its 
complications.

Staging of diabetic retinopathy is currently performed according to clinical 
changes only. Given the fact that patients with DR can be asymptomatic for a very 
long period of time, even in very advanced stages of the disease, regular screening 
of diabetic patients and appropriate treatment are strongly recommended [29]. 
Besides clinical examination, the new emerging imaging methods provide valu-
able information and lay the foundations of a new approach in the definition and 
diagnosis of diabetic retinopathy.

The accepted pathophysiological mechanisms of vision loss entail both retinal 
microvascular and neuronal damage [30–34]. Therefore, some authors [35] suggest 
diabetic retinal disease to be a more appropriate term for retinal changes in diabetes 
mellitus than diabetic retinopathy, as it encompasses both retinal vasculopathy 
and neuropathy. Moreover, it appears that retinal diabetic neuropathy (neuronal 
degeneration of the internal retinal layers) precedes retinal vasculopathy [36].

Diabetic patients without DR are proven by full-field electroretinography (ERG) 
and multifocal ERG studies to have retinal functional alterations [37], as well as 
ionic transport changes at photoreceptors’ level [38, 39]. In addition to this, given 
that the retina and the cerebral cortex have the same embryological origin, it can be 
speculated that the retinal functional alterations may be connected with neurocog-
nitive deficits in diabetic patients [40]. In this context, the study of photoreceptors 
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and retinal vessels can lead to the identification of new biomarkers that are able to 
mirror retinal alterations induced by DM.

Adaptive optics retinal camera is able to detect early diabetes-induced retinal 
changes, often before any documentable sign can be traced using other retinal 
imaging techniques, thus shedding new light on the pathophysiology of microvas-
cular and neuronal changes in DR.

Microaneurysms are considered to be the first visible clinical signs, while the 
loss of pericytes seems to be the first histological microvascular alteration [41]. 
Microvascular clinical findings in DR encompass intraretinal hemorrhages, micro-
aneurysms, venous caliber abnormalities, intraretinal microvascular abnormalities 
(IRMA), lipid exudates, cotton-wool spots, and retinal neovascularization [42]. 
Among these, microaneurysms [43], microscopic hemorrhages [43–45], hard 
exudates [46, 47], edematous cyst walls [45], and modified arteriolar structures 
[48–50] were already morphologically characterized using adaptive optics images 
(Figures 1 and 2). Offering a fine documentation of retinal lesions, AO imaging 
technique might become an important instrument for early diagnosis and progres-
sion monitorization of DR [51].

Figure 1. 
(a) Color fundus photo and red free photo of a patient with hard exudates and retinal edema. (b) Optical 
coherence tomography corresponding to the green line in (a) shows hard exudates in the middle retinal layers. 
(c) Adaptive optics imaging cone mosaic; small arrows indicate the hard exudates. (d) Magnification of the 
upper part in (c), in which besides the hard exudates (small arrows), edema blurring the retinal image can 
be noticed. (e) Magnification of (d), detail of a hard exudate showing foci of hyper- and hypo-reflectivity. 
(f) Magnification of (d), detail of two hard exudates and retinal edema; the cystic spaces have a sharp 
demarcation line indicated by the big arrow. (Reproduced from [46]. Copyright by the ©Romanian Society of 
Ophthalmology.)
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2.1 Imaging the cone mosaic in diabetic retinopathy

Biological systems are characterized by symmetrical spatial arrangements 
as in hexagonal systems. These structures can have equal angles and sides. Even 
when they are not clearly delimited [52], Voronoi diagrams can generate the limits 
between elements, taking the starting points as generators. It is known that the 
regular hexagon is the maximum-sided polygon that could be used to cover a plane 
without overlaps. The immediate advantage of this organization is the maximiza-
tion of number of neighbors of each element and the consequent optimization of 
cell signaling, resolution, and isotropy (photoreceptors, retinal neurons).

2.1.1 Cone parameters

2.1.1.1 Photoreceptor density

The density of photoreceptors is usually assessed by dividing the number of detected 
cones by the analyzed area. This method implies a normal distribution within the ana-
lyzed area and will underestimate the density if this area overlaps over regions for which 
no data are available. These limitations motivate the need for Voronoi local density 
analysis [53]. The density of photoreceptors can be expressed in metric (cones/mm2) or 
angular (cones/degree) units. The value of the antero-posterior axis can influence the 
values   expressed in metric units. At a certain eccentricity, the distance from the fovea 
may be different depending on the antero-posterior axis. For example, an eccentricity of 
2° corresponds to a distance between 0.53 and 0.64 mm from the fovea, given an axis of 
22–26 mm. As the axis gets longer, the retinal area increases and the cones density gets 
lower when expressed in metric units [54].

Figure 2. 
(a) and (b) Color fundus photo and red free photo of a patient with microaneurysms and hemorrhages. 
(c) and (d) Larger magnification of the area delimited in the previous photos, (a) and (b). The big arrow 
indicates a microaneurysm and the arrowheads show hemorrhages. (e) Adaptive optics image corresponding 
to (c) and (d). The black lesion with inner hyper-reflectivity marked by a big arrow is a microaneurysm. 
The black lesions marked by small arrows are retinal hemorrhages. (f) OCT angiography revealed only one 
lesion from the ones above which is the microaneurysm. (Reproduced from [46]. Copyright by the ©Romanian 
Society of Ophthalmology.)
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2.1.1.2 Cone spacing

This indicator is useful to be used in conjunction with photoreceptor density. 
It considers only the closest photoreceptor for each cone detected in the region 
of interest, regardless of the measured distance [17]. This can lead to high values   
for isolated cells. On the other hand, it has been shown that the distance between 
photoreceptors is less sensitive to subsampling (compared to cones) and to the 
correlation with a certain pathology. Thus, photoreceptor spacing overestimates the 
overall health of the photoreceptor mosaic (e.g., a mosaic with sporadic photorecep-
tor losses may have normal distances between photoreceptors, but in the presence 
of an abnormal density). In conclusion, in order to correctly depict a mosaic, all 
biomarkers should be considered [55].

2.1.1.3 Voronoi diagrams

Given a finite set of two or more points in an Euclidean plane, we associate all 
locations of that plane with the nearest element of the set. The result is a tessellation 
of the plane in a series of regions associated with the elements of the set of points. 
This tiling is called the Voronoi diagram generated by the set of points, while the 
regions that make up the Voronoi diagram are called Voronoi polygons [56]. Li and 
collaborators showed that less than 30% of Voronoi polygons are non-hexagonal 
in the vicinity of the fovea and that their percentage increases to 50–60% at higher 
eccentricities [57]. Cones at higher eccentricities are unevenly distributed and 
protect the visual system from perceiving a distorted signal [58].

AO ophthalmoscopy is an accessible tool for clinicians to visualize the human 
retina in vivo [59, 60]. Cones parameters have been analyzed in healthy, adult 
population [15, 61, 62] and correlated to several factors (age, gender, refractive 
error, antero-posterior axis, race, ethnicity). These studies showed a variability of 
photoreceptor densities in normal population [15, 63], which makes it difficult to 
detect small variabilities of this parameter in comparative studies. The inclusion of 
all photoreceptor parameters (distance from the nearest photoreceptor and Voronoi 
diagrams—with the analysis of their spatial arrangement) in study protocols prom-
ises to provide more conclusive results [17]. Nevertheless, the first measurements of 
cone density come from the postmortem histological analysis of the human retina 
[64]. It has been shown that in the center of the fovea, there is a density of 199,000 
cells/mm2, which decreases to about 20,000 cells/mm2 to 1 mm from the center of 
the fovea.

2.1.2 Cone parameters in diabetic retinopathy

AO ophthalmoscopy has been used to assess the parafoveal cone parameters 
in diabetic patients (type I or type II diabetes) and controls in various studies 
(Figure 3) [16, 17, 48, 66, 67].

Lombardo et al. [17] studied the differences between cone parameters at 1.5 
degrees eccentricity in patients diagnosed with DM I without DR or with nonpro-
liferative DR and in healthy subjects. Their results showed that cone density was 
higher in the control group as compared with the study group, on both vertical 
and horizontal meridians. Another study [47, 68] showed that cone density was 
10% lower in type I diabetic subjects with no DR than in controls. Moreover, cone 
densities were also investigated in type II diabetic patients with or without DR 
and in healthy subjects, at 0 and 2 degrees eccentricity [16]. The results showed a 
positive correlation of the extent of cone loss on AO imaging with DR severity in 



7

Adaptive Optics Imaging Technique in Diabetic Retinopathy
DOI: http://dx.doi.org/10.5772/intechopen.101266

type II diabetic patients. On the other hand, Tan and collaborators [69] found no 
cone densities differences at 7 degrees eccentricity between patients with DM I and 
healthy subjects, probably due to the short duration of diabetes in the study group.

In addition to this, cone spacing was found to significantly increase in diabetic 
patients, when compared with healthy controls [70]. Results show lessening of 
hexagonal mosaics of cones (Voronoi 6 tiles) with increased severity of DR.

The horizontal meridian was proved to have a higher average cone density than 
the vertical one in both controls and type I diabetic patients with no DR [47, 68]. 
However, the asymmetry was higher in the control group. Another study reported 
this pattern in normal subjects [15]. This asymmetry, also called “horizontal–verti-
cal anisotropy,” could be related to the way we are using our vision. When reading, 
the horizontal meridian is more in demand than the vertical one. Psychophysical 
studies have shown a higher contrast sensitivity and spatial resolution of the 
horizontal meridian as compared with the vertical one at a given eccentricity [71]. 
Further studies including more subjects are needed to describe the cone parameters 
in diabetic and age-matched volunteers.

2.2 Imaging the retinal microvasculature in diabetic retinopathy

Retinal microcirculation is a network of arterioles, capillaries, and venules with 
diameters that do not exceed 150 μm, whose main function is to assure and regulate 
an optimal tissue perfusion [72]. Microcirculation alterations, also called microan-
giopathy, lead to organ damage and clinical events in patients with DM.

A microvascular network is assessed from a structural and functional point of 
view, taking into consideration both its topology and geometric abnormalities [73]. 

Figure 3. 
Examples of regions of interest (red square) at 2, 3, and 4 degrees nasally analyzed in a control subject 
(a) and in a diabetic patient (b). (Reproduced from [65]. Copyright by the ©Romanian Society of 
Ophthalmology.)
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The retinal vascular branching model is similar to a fractal, having a complex pat-
tern of distribution, where each part has similar features to the main structure. DR 
is associated with a decreased fractal dimension, which is probably correlated with 
the shortcoming of the retinal circulation [74]. The network geometry is appreci-
ated using the length and the diameters of the vessels, by calculating different 
derived parameters.

Vascular-addressing diseases encounter different patterns of vascular remodel-
ing. The inward eutrophic remodeling, seen in stages 1 and 2 of essential hyperten-
sion, is characterized by a reduced lumen diameter, with consecutive rearrangement 
of the surrounding smooth muscle cells, but without a marked growth response 
[75]. The media-to-lumen ratio is increased due to reduced lumen diameter and 
external diameter of the wall and due to increased media thickness, with minimum 
changes in the total amount of wall tissue. All these result in decreased vasodilation 
potential of the vessel and altered arteriolar distensibility [76, 77]. In contrast, the 
hypertrophic remodeling, found in diabetes mellitus and in long-standing, severe 
and secondary hypertension, exhibits a significant growth response with vascular 
smooth muscle cell hypertrophy or hyperplasia [78, 79]. This leads to the increase of 
both media-to-lumen ratio and the media cross-sectional area of the vessel [80].

The bedside morphological assessment of human retinal microcirculation is 
not facile, the gold standard being the media-to-lumen ratio evaluated by wire or 
pressure micromyography on bioptic samples [81]. Recently, noninvasive techniques 
for the evaluation of retinal arterioles prove rather good agreement with micromyo-
graphic measurements, in particular scanning laser Doppler flowmetry and adap-
tive optics [81, 82]. Preliminary data suggest that AO has a substantial advantage 
over Doppler flowmetry, having a better correlation with the gold standard, but 
invasive procedure [81].

Adaptive optics ophthalmoscopy uses a cutting-edge technique, visualizing the 
retinal arterioles lumen as a bright band, while the walls correspond to the darker 
neighboring regions (Figure 4). The wall thickness of the blood vessels depends on 
the vessels’ size, with large lumens requiring thicker walls. The AO-related vascular 
parameters of interest are:

• wall thickness (WT);

• lumen diameter (LD);

• vessel diameter (VD—the algebraic sum between the thickness of the arteri-
oles’ walls and the lumen diameter);

Figure 4. 
Image of the retinal artery of a patient with diabetes mellitus, with visualization of the walls (short arrow) 
and lumen (long arrow), employing AO detect artery software.
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• wall-to-lumen ratio (WLR—the ratio between the wall thickness and the 
lumen diameter);

• the cross-sectional area of the vascular wall (WCSA—the calculation is based 
on the lumen diameter and vessel diameter values).

Zaleska-Żmijewska et al. [48] found statistically significant differences between 
the control group and the prediabetic group with respect to LD and to WLR. 
Furthermore, the same scientific team demonstrated that WLR, WCSA, and the 
average WT exhibit significant differences between the control group and type II 
diabetic patients [70]. An AOSLO study confirms that retinal arterial WT is signifi-
cantly greater in patients with type 2 diabetes than in controls [83].

When it comes to DM type I, the average capillary LD proved to be significantly 
narrower in eyes with nonproliferative diabetic retinopathy and type I DM, when 
compared with healthy subjects (6.27 ± 1.63 μm versus 7.31 ± 1.59 μm, p = 0.002) 
[50]. When investigating the retinal microcirculation changes in type I and II 
diabetic patients without retinopathy, among all studied parameters, only WLR 
was significantly different between the control group and each group of diabetic 
patients taken individually, while no statistically significant differences were found 
between the two diabetic groups [47, 68].

New data characterize retinal arterioles according to DR classification, showing 
that LD, WT, and WLR significantly correlate with the stage of DR [84]. AO was 
even used to establish the effects of a multinutrient complex on retinal microvas-
culature in diabetic patients. After 3 months of food supplements administration, 
WLR, WT, and WCSA had significantly decreased, when compared with initial 
observations [85].

AO proved its potential to detect retinal microvascular changes in prediabetic 
subjects and diabetic patients, as well as to reveal differences between the diabetic 
groups. Providing useful information about the topological and geometrical 
features of the retinal microvasculature from early onset of diabetic disease, AO 
has a promising role in the future, providing valuable prognostic, diagnostic, and 
therapy-related information in diabetic retinopathy.
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