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Chapter

The Pharmacology of Botulinum 
Toxin Type A
Anna V. Reznik

Abstract

The aim of this chapter is to structure current information clarifying the most 
disputable issues of botulinum neurotoxin type A (BoNT/A) pharmacology after sys-
temic (botulism) impact and local medical application. Botulinum neurotoxin (BoNT) 
pharmacological features evaluated open ways to study factors affecting its biological 
activity: to extend/shorten its effect duration, to increase/decrease BoNT sensitivity 
in specific patient populations. The chapter presents unique molecular mechanisms 
underlying BoNT/A pharmacokinetics and pharmacodynamics: entering the body, 
distribution, receptor binding, translocation, mediator release suppression, zinc 
metabolism as well as factors affecting body sensitivity to BoNT at each of those stages. 
The specific biological effects of BoNT/A, which may underlie its analgesic, anticancer 
and anti-inflammatory effects, are described. Botulinum neurotoxin pharmacokinet-
ics and pharmacodynamics features discussed herein represent significant clinical 
relevance since they determine botulinum treatment safety and effectiveness. And also 
they open ways to develop both BoNT-based therapies and anti-botulinic agents.

Keywords: botulinum, neurotoxin, ganglioside, synaptic vesicle protein, fibroblast 
growth factor receptor, SNARE proteins, mediator release block, zinc metabolism, 
thioredoxin reductase - thioredoxin system, botulism, neuromuscular blockade

1. Introduction

Botulinum neurotoxins (BoNTs) are the most potent protein toxins among 
bacterial, animal, plant and chemical toxic compounds and are the cause of botulism 
[1]. However, BoNT-based therapeutics are widely used for treatment of various 
diseases and esthetic disorders. Various features of BoNT pharmacology holding a 
great promise for development of both BoNT-based therapeutics and anti-botulinic 
agents are currently studied. Unique molecular mechanisms underlying various stages 
of botulinum neurotoxin type A pharmacological activity as well as potential factors 
affecting body sensitivity to BoNT are described herein.

2. Neurotoxin complex and BoNT molecule structure

Botulinum neurotoxin is a protein dimer with molecular weight of 150 kDa and 
chemical formula C6760H10447N1743O2010S32 consisting of two chains: light and 
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heavy [1]. The light chain represents approximately one third of toxin molecular 
weight and is bound to the heavy one with a disulfide link [2].

The light chain (L-chain) is a protease blocking synaptic release. It forms the 
BoNT molecule catalytic domain. The heavy chain (H-chain) consists of two 
domains: binding domain bounds to target cell surface receptors, translocation 
domain is involved in light chain translocation creating cell membrane channel. 
The BoNT molecule is a dipole with an electric charge attenuating from the binding 
domain to the catalytic one [3]. It is of importance when the molecule is directed 
relative to cell membrane that facilitates receptor binding.

In natural settings BoNTs are synthesized by bacteria as a complex with several 
proteins: one non-toxic non-hemagglutinin (NTNHA) and several hemagglutinins [1].

NTNHA has a molecular weight of 130 kDa and its amino acid sequences are 
highly homologous to BoNT but without protease motif as the only difference. “Hand 
in glove”-type interaction with the BoNT molecule protects the one from aggressive 
effects of environmental factors including GIT proteolytic enzymes [4].

There are three classes of hemagglutinins with molecular weight of 33–35, 15–18 
and 70 kDa [5]. They do not contact with the BoNT molecule directly but with 
NTNHA working as an adhesin molecule when such toxin complex is absorbed.

Non-toxic hemagglutinin and hemagglutinin proteins can form various multimeric 
complexes with BoNT called botulinum neurotoxin complexes. Each of them contains 
only one BoNT molecule released from the complex if medium pH changes [2].

3. BoNT absorption and distribution

BoNTs can enter human body via both injured and intact tissues. Therapeutically 
botulinum neurotoxin type-A (BoNT/A) based agents are mainly injected as close as 
possible to their target cells. However, BoNT/A forms to be applied without the need 
to damage skin are already under development though they are not yet through Phase 
III clinical studies [6, 7].

In natural settings BoNTs show systemic action causing botulism and enter the 
body mainly through intact membranes.

Depending on toxin mode of entry botulism forms can be classified as follows: 
food botulism (ingestion of BoNT-contaminated food), infant (ingestion of food 
with bacteria spores), inhalation (breathing-in BoNT-containing aerosols), wound 
(in majority of cases it is related to injectable drug use), iatrogenic [8].

In natural settings botulinum neurotoxin should cross epithelial barriers and reach 
general circulation to hit its target cells. Such process is called absorption.

BoNT might utilize two modes of penetrating intestinal or pulmonary epithelium: 
intracellular route and intercellular junction-related one.

In case of transcytosis (penetration through epithelial cell) BoNT binds to ganglio-
side receptors at epithelial cell surface and undergoes endocytosis (being captured in 
a vesicle). Transport vesicles transfer toxin through the whole cell and release it into 
general circulation. Neither toxin structure is altered, nor it is released in cell cytosol 
during transcytosis, which differentiates BoNT binding with epithelial cell from 
binding with neuronal ones [9, 10].

Paracellular route (through intercellular junctions) may or may not involve complex-
ing proteins. Complexin hemagglutinins can bind to E-cadherin in epithelial intercellu-
lar junctions and disrupts the latter allowing BoNT in general circulation [4]. However, 
BoNT molecules are able to break epithelial barriers without complexing proteins. 
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Studies by Maksymowych et al. [11] and Al-Saleem et al. [12] showed that introduction 
of equimolar amounts of free BoNT/A and BoNT/A complexes resulted in equivalent 
BoNT titers in general circulation with similar toxicity and effectiveness. However, 
hemagglutinins are assumed to boost BoNT transportation through epithelium.

When transported through intestinal wall BoNT may bind to cholinergic and sero-
toninergic neurons of enteral (intestinal) nervous system located in intestinal submu-
cosa blocking gut motor and secretory activity. It explains impaired bowel movement 
(constipation) as one of early signs for alimentary and infant botulism [13].

BoNT penetrating epithelial barrier reaches general circulation and is distributed in 
all extracellular fluid compartments in the body but the ones of central nervous system.

Eisele et al. [14] had a series of experiments demonstrating that with pH values 
close to neutral (arterial blood pH of 7.37–7.43 [15, 16]) botulinum neurotoxin 
complex dissociates on active BoNT and complexing proteins with half-life below 
1 minute. Once such toxin complex dissociates complexing proteins are not any more 
of any significance for the occurrence of the clinical effect of BoNT.

Al-Saleem et al. [17] works proved that toxin reaches general circulation without 
any evident structural or biological activity changes. General circulation performs 
as toxin storage compartment until BoNT reaches its target cells. While in general 
circulation BoNT undergoes slight biotransformation, it is not accumulated in blood 
cells and mostly remains in its free active form. Such concept of “general circulation—
botulinum neurotoxin storage compartment” has been confirmed by many research-
ers. Fagan et al. [18] described active BoNT/A presence in human blood serum 11 days 
after contaminated food ingestion; Sheth et al. [19], 25 days after disease onset; 
Delbrassinne et al. [20], 29 days after contaminated food was taken.

From intravascular fluid compartment botulinum neurotoxin enters extravascular 
one and then intercellular fluid. Being locally injected with therapeutic purposes botu-
linum neurotoxin is directly introduced in extravascular compartment (or intravascu-
lar one if it is in a blood vessel) next to target cells bypassing absorption stage. From 
intercellular compartment botulinum neurotoxin should reach its target—peripheral 
cholinergic nerve endings and bind to receptors there.

To better understand the mechanism of botulinum neurotoxin binding with 
receptors knowledge of normal neurotransmission in synapses is required.

4. Normal synapse neurotransmission

Neuromediators are synthesized in neuron cytosol and then stored in pre-synaptic 
nerve endings within synaptic vesicles. Synaptic vesicle membrane contains proton 
pump (vesicular ATPase), which, when activated, increases intravesicular proton 
concentration [8]. Electrochemical proton gradient ensures mediator influx from 
cytosol and its accumulation in such vesicles. The uptake of mediators within the 
synaptic vesicles is also regulated by receptors on the neuronal membrane, not only 
by the proton gradient. Mediator-containing vesicles are located in neuron cytoplasm 
and are bound to specific presynaptic membrane regions (active zones [21]) during 
so-called docking [22]. Vesicles are docked with cell membrane in active zones only 
and docking is controlled by a great deal of transport proteins [23].

When a nerve impulse arrives axonal presynaptic membrane is depolarized, 
calcium channels open and Ca2+ ions flow into axon [24]. In response to Ca2+ influx the 
mediator-containing vesicle fuses with presynaptic membrane in active zone. This stage 
is called priming. It is regulated with two integral membrane synaptic vesicle proteins 
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(synaptobrevin and synaptotagmin) as well as two presynaptic membrane proteins 
(SNAP25 and syntaxin) and cytosol proteins including complexin [25–28].

Rapid vesicle conformation changes by regulatory proteins result in full synaptic 
vesicle fusion with presynaptic membrane and pore formation wherethrough neuro-
mediator is released in a synaptic cleft [29].

Neuromediator diffuses from its nerve terminal and binds to post-synaptic 
receptors that trigger post-synaptic cell signaling. In neuromuscular junctions acetyl 
choline binds with its receptor on myocyte plasmalemma resulting in muscle cell 
membrane depolarization. Membrane depolarization kicks off Ca2+ influx in myocyte 
and muscle contraction.

While neuromediator is released synaptic vesicle lumen opens temporarily into 
a synaptic cleft but later it internalizes in nerve terminal during endocytosis. After 
endocytosis the vesicle is again filled in with neuromediator and next neurotransmis-
sion cycle starts [30].

5. BoNT/A binding with target cells

Active BoNT/A molecules bind with target cells via their receptors on cell surface 
[31]. To bind with neuronal membrane BoNT/A molecule should interact with a set of 
high and low affinity receptors [32]. Currently three receptors (polysyaloganglioside 
GT1b, fibroblast growth factor receptor 3, transmembrane vesicular receptor SV2) 
and several co-receptors have been described with such combination.

Active neurotoxin molecule endocytosis and its further changes are possible only 
once it binds with entire receptor combination at axonal surface [5]. Binding to one 
of the receptors without interaction with others does not induce toxin internalization. 
Such multistage process for BoNT/A binding with receptors makes up for low BoNT/A 
concentration in circulating fluids, high rate of extracellular flow around cells and 
small axonal surface area.

5.1 First receptor: Polysyaloganglioside

First BoNT/A receptor at neuronal surface is polysyaloganglioside GT1b (PSG).
Gangliosides are glycosylated lipids being a part of cell membranes. Though gan-

gliosides are present in all tissues of vertebrates they are more prevalent in neuronal 
membranes [33] where they are involved in optimal myelin production, axon-myelin 
interactions, peripheral and central axon stability [32].

PSG density on presynaptic membrane is high. PSGs are grouped as microdo-
mains next to presynaptic membrane active zones [34]. PSG receptor presence in 
these zones is important for processes of botulinum neurotoxin binding with other 
receptors.

Oligosaccharide (BoNT-binding part) PSG projects quite far outside membrane 
surface in a synaptic gap and is negatively charged [8]. BoNT/A molecule is a dipole 
with positively charged binding domain [3]. Such electric charge difference of 
BoNT/A binding domain and PSG receptors (and other anion lipids at axonal mem-
brane) makes possible to redirect BoNT/A molecule on its way to cell membrane 
enhancing receptor binding chances.

Currently polysyaloganglioside are considered as initial binding regions drawing 
toxin from relatively vast 3D extracellular fluid space into 2D membrane surface one 
[5]. It is required, in turn, for toxin binding to following receptors. On one hand, 
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binding to PSG is irreversible since BoNT/A is extracted from ground substance and 
is fixed on axonal membrane. On the other, at that stage toxin can still be affected and 
neutralizing antibodies can still reach it.

However, polysyalogangliosides are membrane receptors for both botulinum neu-
rotoxin and human neuropathy-associated antiganglioside autoantibodies. Anti-PSG 
autoantibody production in neuropathy patients may induce diminished botulinum 
neurotoxin sensitivity and resistance development [35].

5.2 Second receptor: Fibroblast growth factor receptor 3

HC subdomain structure of botulinum neurotoxin type A is homologous to basic 
fibroblast growth factor (FGF) [36]. That similarity enables BoNT/A high-affinity 
binding with protein fibroblast growth factor receptor 3 (FGFR3b) on neuronal 
surface [37].

However, FGFR3b receptors are affine not only to BoNT/A but also to multiple 
fibroblast growth factors. Moreover, this receptor affinity to growth factors exceeds 
the one to botulinum neurotoxin. Native FGFR3 ligands—growth factors FGF1, FGF2 
and FGF9—compete for binding with FGFR3 and occupying receptors are able to jam 
BoNT/A absorption by cells [8].

Besides, FGFR3b receptor activity is regulated by several low-affinity cofactors 
including heparansulfate, neuropilin-1, anosmin, etc. [38]. Non-specificity and 
competitive binding of FGFR3 receptors with BoNT/A and fibroblast growth factors, 
cofactor impact on receptor activity may explain fragility of the said receptor mecha-
nism and, therefore, variable sensitivity to botulinum neurotoxin. Moreover, some 
FGFR3 mutation-related conditions (skeletal dysplasias, epidermal nevus, seborrheic 
keratosis, hyperinsulinemia) might demonstrate defective FGFR3 expression [39–43]. 
FGFR3 mutation influence on botulinum neurotoxin sensitivity is yet to be studied.

5.3 Third receptor: Transmembrane vesicular receptor SV2

SV2 is a protein receptor located on vesicular membrane [44] of all peripheral and 
central neurons as well as on secretory granule membrane of endocrine cells [45]. SV2 
is expressed on vesicular membranes in cells accumulating not only acetyl choline but 
also GABA, dopamine, glutamate, substance P and several other mediators [46].

Unlike polysyaloganglioside receptors expressed into a synaptic gap the SV2-
receptor BoNT/A-binding site is projected into synaptic vesicle lumen and is not 
approachable for neurotoxin while such vesicle is in axonal cytosol [47]. SV2 becomes 
reachable for BoNT/A at the time of vesicle fusion with presynaptic membrane and 
acetyl choline exocytosis [48].

Thus, BoNT/A binding with entire receptor combination happens in active zones 
only after synaptic vesicle fusion with presynaptic membrane and opening of vesicu-
lar lumen into synaptic cleft facilitating further BoNT/A endocytosis. After binding 
with receptor combination and endocytosis botulinum neurotoxin cannot be reached 
by neutralizing antibodies anymore.

6. Endocytosis

BoNT/A molecule binding with receptors results in receptor-mediated endocytosis 
of both receptors and toxin [49].
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Immediately after endocytosis vesicular lumen has neutral pH. Vesicular ATPase 
proton pump controls mediator re-uptake [50] and injects protons into synaptic 
vesicle, therefore, gradually decreasing vesicular lumen pH [51].

7. Light chain translocation

Vesicular medium acidification results in irreversible conformation changes of 
both heavy and light BoNT/A chains. With these changes the heavy chain being 
linked via receptors with vesicular membrane forms transmembrane H-channel there 
[52, 53]. Through the channel the conformation-altered light chain leaves the vesicle 
for cytosol [54] and then chain-binding disulfide link breaks up.

L-chain translocation occurs with pH between 4.5 and 6 [55]. pH decrease results 
in protonation of carboxylated amino acid residues present in BoNT/A heavy and 
light chains. Carboxylated residues are located at one side of toxin molecule and their 
protonation results in significant changes of molecular shape [55]. BoNT/A molecule 
with its positively charged surface interacts with anion vesicular membrane surface 
forming protein and lipid complex [56]. L-chain is assumed to turn into “molten pro-
tein globule” gaining hydrophobic features [8]. On one hand, L-chain hydrophobicity 
ensures its translocation via the H-chain-formed membrane channel. On the other, 
with lower pH molecular surface where the disulfide bond is located becomes more 
hydrophobic. It ensures disulfide bond integrity until complete L-chain translocation.

To cross vesicular membrane L-chain should have disulfide bond with H-chain 
throughout entire translocation sequence [55]. Premature disulfide bond breakage at 
any stage until it exits into cytosol interrupts L-chain translocation [57].

At the end of translocation process the disulfide bond is destroyed by thioredoxin 
reductase-thioredoxin system releasing light chain to express its catalytic activity in 
cytosol [58].

Thioredoxin reductase (TrxR)—thioredoxin (Trx) system is a main cellular redox 
system. TrxR and Trx are cytosol side proteins of vesicular membrane and their 
inhibition may block BoNT/A action on stages when neurotoxin cannot be reached by 
neutralizing antibodies [59]. In vitro experiments of Zanetti et al. [60] showed that 
inhibitors for TrxR-Trx enzymatic couple hampers L-chain protease activity for all 
known botulinum neurotoxin serotypes in cultured neurons. While in vivo they pre-
vent toxin-induced paralysis in mice irrespective of botulinum neurotoxin serotype.

In terms of life cycle model disulfide bond reduction is the end of intracellular 
existence of intact active BoNT/A molecule (holotoxin). Even if a light or heavy 
chain was exported out of cell none of them on its own should be able to disrupt 
cell functioning. Only holotoxin can undergo through multiple stages ended up 
with conduction block [61]. On the other side, conformation changes related to 
pH-induced L-chain translocation in cytosol create “a trap” making impossible both 
retrotranslocation into endosome and active toxin molecule return in extracellular 
environment [5].

8. L-chain cleaves transport proteins

Modified L-chain enters neuron cytosol through H-channel where it behaves as a 
metalloprotease. It catalytically cleaves nine amino acids from C-terminal of soluble 
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N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) for SNAP25 
protein (SNAP25206) forming SNAP25197 [62, 63]. Intact SNAP25 is required for 
mediator-containing vesicle attachment with further neurotransmitter release and it 
is also involved directly in Ca-channels activity regulation in presynaptic membrane 
[64]. SNAP25 cleavage impairs mediator exocytosis causing nerve impulse conduc-
tion block and muscle paralysis [65].

Synaptic activity is highly sensitive to cleavage of minimal SNAP25 amounts. It 
was hypothesized that SNAP25 in neuron cytosol exists as various pools and that 
only small amounts of SNAP25 are actively involved in exocytosis and reachable for 
L-protease effects [66]. It was confirmed experimentally showing that cleavage of 
10–15% of total intracellular SNAP25 pool is sufficient for complete neuromediator 
release block [67–69]. L-protease cleavage of as little as 2–3% of SNAP25 pool results 
in block of miniature post-synaptic cell potentials (weak depolarization of post-
synaptic membranes at neuromuscular rest) [70].

Along with that SNAP25 proteolysis product, SNAP25197 protein, on its own 
inhibits exocytosis [71]. Meunier et al [72]. described that SNAP25197 is able to per-
sist for a long while in cytosol as a component of the non-productive SNARE complex 
prolongating BoNT/A effects. While removal of several amino acids from SNAP25197 
results in rapid exocytosis restoration.

9. Zinc metabolism and translocation

Zinc is necessary for light chain catalytic activity. One botulinum holotoxin 
molecule contains 1 zinc atom retained by L-chain zinc-binding amino acid sequence 
and such binding is reversible [73].

Vesicle acidification causes protonation of zinc-binding sections in the BoNT mol-
ecule. Translocation causes light chain denaturation obliterating chelate site integrity. 
As a result bound zinc dissociates and adds up to cytosol zinc pool.

Simpson et al [74]. in their in vitro studies demonstrated that zinc removal from 
active botulinum neurotoxin molecule caused L-chain catalytic activity loss in 
cell-free samples. Though activity in intact neuromuscular junctions retained since 
internalized toxin bound cytosol zinc. Thus, zinc retained by holotoxin (intact active 
molecule) is not the same zinc that is bound with catalytically active light chain. Light 
chain binds cytosol zinc.

10. Mediator release block

Main BoNT/A target is peripheral neurons where botulinum neurotoxin inhibits 
acetylcholine release [75].

Many of cell-based studies showed that BoNT/A not only blocks acetylcholine 
release but also prevents release of multiple other neuromediators if they are accumu-
lated and stored in vesicles [32]. These neuromediators are as follows: epinephrine, 
norepinephrine, dopamine [76, 77], glutamate [78], glycine [79], serotonin [80], 
substance P [81], etc. Therefore, botulinum neurotoxin is to be considered not as 
specific acetylcholine release inhibitor but rather as an exocytosis blocker for various 
mediators that offers tremendous promise for treatment and prevention of various 
disorders.
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11. Specific biological effects

In addition, BoNT/A can affect cells not only as a blocker of exocytosis mediators, 
but also by binding to various receptors on the cell membrane, cause specific biological 
effects. Including influencing the expression of genes by the cell. Grando and Zachary 
[82] described that many cells are capable of expressing one or more BoNT/A receptors 
and binding BoNT/A: epidermal keratinocytes, mesenchymal stem cells from subcuta-
neous adipose tissue, nasal mucosa cells, urothelium, intestinal epithelial cells, prostate 
epithelial cells, alveolar epithelial cells, neutrophils, macrophages, etc. In addition to 
SNAP25, BoNT/A can also cleave SNAP-23, which is expressed in various human tissues.

Kim et al. [83] experimentally proved that BoNT/A is able to bind to TLR2 receptors 
on macrophages, changing the expression of genes responsible for signal transduction, 
protein metabolism and modification, nucleic acid metabolism, apoptosis, prolifera-
tion, cell differentiation. Which may explain the anti-inflammatory effect of BoNT/A.

12. Cytotoxicity

Cytotoxicity for BoNT/A has not been established either in cell-based studies [84] 
or in electrophysiological studies in healthy humans [85]. In addition, the experience 
of therapeutic use of BoNT/A for various indications indicates the absence of any 
signs of neuronal damage even with long-term regular use [66, 86, 87].

13. Conclusion

Further studies of unique pharmacological mechanisms for botulinum neurotoxin 
are quite promising for the search of the ways to influence its effects: to extend/
shorten its action duration, to increase/decrease BoNT sensitivity in specific patient 
populations. Also it will help to develop protocols for optimal combinations of 
botulinum neurotoxin with esthetic medicine procedures of all kinds. Better insights 
on multiple aspects of not only BoNT neuronal selectivity but also BoNT/A interac-
tion with non-neuronal cells will show ways to find new therapeutic applications of 
botulinum neurotoxin-based agents in various areas of medicine.

One of the promising areas of botulinum therapy and bioengineering of botuli-
num toxin is the treatment of pain syndromes. BoNT/A is effective in the treatment 
of various neuropathic pain syndromes, including chronic migraine, postherpetic 
neuralgia, trigeminal neuralgia and peripheral neuralgia [32].

Hybrid preparations of botulinum toxin are being developed to suppress secretion 
in various cell populations, including the secretion of growth hormone [88]. Various 
effects of BoNT/A on the enhancement and suppression of gene expression in neuro-
nal and non-neuronal cells are described [89]. This implies a fundamentally different 
response of neuronal and epithelial cells to the action of botulinum toxin and is of 
great importance in the development of anti-cancer treatments based on BoNT/A.

Thus, BoNT/A should not be considered as a specific blocker of acetylcholine 
release by motor neurons, but mainly as a blocker of exocytosis of various media-
tors by various cells, neuronal and non-neuronal. Moreover, the biological effect 
of BoNT/A can be realized not only through the blockade of exocytosis. And it can 
be absolutely different in different types of cells, which has great prospects in the 
 treatment and prevention of many diseases.
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