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1. Introduction     

Recently there has been increased research interest in the study of the hybrid dynamical 

systems (Sun & Ge, 2005) and (Li et al., 2005). These systems involve the interaction of 

discrete and continuous dynamics. Continuous variables take the values from the set of real 

numbers and the discrete variables take the values from finite set of symbols. The hybrid 

systems have the behaviour of an analog dynamic system before certain abrupt structural or 

operating conditions are changed. The event driven dynamics in hybrid control systems can 

be described using different frameworks from discrete event systems (Cassandras & 

Lafortune, 2008) such as timed automata, max-plus algebra or Petry nets. For dynamic 

systems whose component are dominantly discrete event, main tools for analysis and design 

are representation theory, supervisory control, computer simulation and verification. From 

the clasical control theory point of view, hybrid systems may be considered as a switching 

control between analog feedback loops. Generally, hybrid systems can achieve better 

performance then non-switching controllers because they can to reconfigure and reorganize 

their structures. For that is necessery correct coordination of discrete and analog control 

variables. 

The mathematical model for real process, generally, has the Hammerstein-Wiener form 

(Crama & Atkins, 2001) and (Zhao & Chen, 2006). It means that on the input and output of 

the process are present nonlinear elements (actuator and sensor). Here we will consider 

Hammerstein model which has the input saturation as nonlinear element. That is the most 

frequent nonlinearity encountered in practice (Hippe, 2006). Also, unmodeled dynamics 

with matching condition is present. As a control strategy will be used switching control. The 

switched systems can be viewed as higher abstraction of hybrid systems. 

The design of switching controllers having guaranted stability, known as the picewise linear 

LQ control (PLC), is first considered in (Wredenhagen & Belanger, 1994). The picewise 

linear systems are systems that have different linear dynamics in different regions of the 

continuous state space (Johansson, 2003). The PLC control has the associated switching 

surfaces in form of positively invariant sets and yields a relatively low-gain controller. In the 

LHG (low-and-high gain) design a low gain feedback law is first designed in such a way 
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that the actuator does not saturate in magnitude and the closed – loop system remains 

linear. The low gain enlarge the region in which the closed-loop system remains linear and 

enlarge the basin of attraction of the closed-loop systems (Lin, 1999). After that, using 

appropriate Lyapunov function for the closed-loop system, under this low gain feedback 

control law, a linear high gain feedback law is designed and added to the low gain feedback 

control. Combination of LHG and PLC gives the robust controllers with fast transience. The 

key feature of PLC/LHG controllers is that the saturation level is avoided. But, it has been 

recognized in references (Lin et al., 1997) and (De Dona et al., 2002) that the performance of 

closed-loop system can be further improved by forcing the control into saturation. Such 

controller increases the value of the switching regions so that each linear controller is able to 

act in a region where a degree of over-saturation is reached. The over-saturation means that 

the controller demands for input level is greater than the avaliable range. 

The actuator rate saturation, also, is important problem. Namely, the phase lag associated 

with saturation rate has a destabilizing effect (Saberi et al., 2000). The problem is more 

severe when the actuator is, also, subject to magnitude saturation since small actuator 

output results in small stability margin even in the absence of rate saturation (Lin et al., 

1997). 

The problem is more complex in the presence of delay in the system. The paper 

(Tarbouriech & da Silva, 2000) deals with the synthesis of stabilizing controllers for linear 

systems with state delay and saturation controls. Performance guided hybrid LQ controller 

for discrete time-delay systems is considered in (Filipovic, 2005). In (Wu et al., 2007) the 

method for designing an output feedback law that stabilize a linear system subject to 

actuator saturation with large domain of attraction is considered. It is usually true that 

higher performance levels are associated with pushing the limits (Goodwin et al., 2005). 

That is motivation to operate the system on constraint bounderies. It means that problem 

with actuator saturation can be considered as optimisation with constraints. 

In this paper the robustness of picewise linear LQ control with prescribed degree of stability 

using switching, low-and-high gain and over-saturation is considered. The process is 

described with linear uncertain dynamic system in the state space form. Structure of the 

uncertaintes is defined with matching conditions. By the Lyapunov stability criterion 

(Michel et al., 2008) it is shown that a robust PLC/LHG controller with allowed over-

saturation, can exponentially stabilize linear uncertain systems with prescribed exponential 

rate. This approach is different in comparison with (De Dona et al., 2002) where the Riccati 

equation approach is used. 

2. Switching controller with prescribed degree of stability    

The dynamic system subject to input saturation can be described in the next form 

 ( ) ( ) ( )tuBsattAxtx Δ+=& , ( ) n
00 RXxtx ⊂∈=   (1) 

Where nRx∈  and mRu∈ . Nonlinear input function (saturation function) is defined as  

mm RR:sat →Δ  
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[ ] m,,2,1i  ,  0  ,  ,, im1 LL =>ΔΔΔ=Δ  

( ) ( ) ( )[ ]Tmusatusatusat
mΔΔΔ = ,,11

L
 

 ( ) ( ) ( )iiii , u  min u signusat
i

Δ=
Δ

Δ  (2) 

The iu  is the ith element of vector u. As in (Wredenhagen & Belanger, 1994) we take a 

sequence { }N
1ii =ρ  such that 0N21 >ρ>ρ>ρ L  and matrix 0Q > . Then that one can to 

define matrix 

 [ ] m,,2,1j   ,0r    ,  r,,r,rdiagR
j

i
m
i

2
i

1
ii LL =>=   (3) 

Design of optimal LQ regulator with prescribed degree of stability is based on minimization 

of next functional 

 ( ) ( ) ( ) ( ) ( )[ ]∫
∞

α +=α
0t

i
TTt2

0 dttvRtvtQxtxe,xJ   (4) 

The quantity α  in (4) defines the degree of system stability for the feedback control systems. 

From (4) for every iR  we can get matrices iP  and iK  from equations  

 ( ) ( ) 0QPBBRPIAPPIA i
T1

iiii
T =+−α++α+ −   (5) 

 i
T1

ii PBRK −=   (6) 

where iP  is the positive solution of the algebraic Riccati equation (5) for the optimal LQ 

problem. Matrix iK  is gain of the controller. 

The switching surfaces are ellipsoids defined by 

 
( ) { } NixPexxPEE ii

tT
iiii ,2,1     ,:,

2 L=≤== −
Δ

ρρ α
  (7) 

Elements of matrix iR  are chosen, for a given iq , to be the largest so that is satisfied 

 
( ) ( )

i
m,,1j

   ,   ,PEx      ,1xPb
r

1
v iiijji

T
jj

i
j

L=

ρ∈∀Δβ+≤=
 (8) 

where jv  is the j th element of xKv i−= , jb  is the j th column of matrix B. 

The ellipsoids in the sequence { }N
1iiE =  are nested, i.e. 

 1N,2,1i   ,   EE i1i −=⊂+ L   (9) 
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he state space region contained in the biggest ellipsoid can be devided into N cells { }N
1iiC =  

 NN1iii EC   ,   E/EC == −   (10) 

Now, the controller based on the switching strategy is given in the next form 

 N...,2,1i  , Cx  ,  xKv ii =∈−=   (11) 

The controller (5), (6) and (11) for 0=α  is originally proposed in (Tarbouriech & da Silva, 

2000). This controller is known as the picewise linear LQ contoller (PLC). Associated 

switching surfaces to PLC strategy are positively invariant sets (Blanchini, 1999) and 

(Blanchini & Miani, 2008) given by nested ellipsoids. 

The PLC strategy which is proposed in (Lin, 1999) is low-gain controller. Such controller 

underutilize the available control capacity and the resulting convergence of the regulation 

error to zero is very slow although saturation is avoided. 

Remark 1. Recent advances in miniaturizing, communication, sensing and actuation have 

made it feasible to envision large numbers of autonomous vehicles working cooperatively to 

accomplish an objective (Ren & Beard, 2008). The communication band and power 

constraints preclude centralized command and control. As a result a critical problem for 

cooperative control is to design distributed algorithms such that the group of vehicles can 

reach consensus on the shared information in the presence of limited and unreliable 

information exchange and dynamically changing interaction topologies. For the switching 

information exchange topologies the convergence of consensus protocol is proved (Ren & 

Atkins, 2007). As a controller the dwell time controller (switching controller) is used. From 

the stability of switched system follows that consensus can be achieved asymptotically. That 

is the new interesting application of hybrid systems. 

In the next section will be considered switching control strategy which leads to better 

closed-loop performance. 

3. Robust switching controller    

A common feature for controllers which are described in (Hippe, 2006) is that the saturation 

levels are avoided. Because such controllers are low-gain controllers. It has been discovered 

in (De Dona et al., 2002) and (Lin et al., 1997) that the performance of closed loop system can 

be improved by forcing the controls into the saturation. In (De Dona et al., 2002) is shown 

that combination of switching, scaling and over-saturation has a superior performance then 

in the case where each is used seperetly. 

In this section, we define a class of uncertain linear systems 

 ( ) ( )( )[ ] ( ) ( )( )[ ] ( )t u t BBt x t  AAtx ωΔ++ωΔ+=&   (12) 

The matrices A and B are the nominal system and input matrices respectively and ( )ωΔA  

and ( )ωΔB  are uncertain matrices which depend continuosly on the uncertainty vector ( )tω  

 ( ) [ )∞∈⊂Ω∈ω ,0t    ,  Rt p   (13) 
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We will suppose that the following assumptions are satisfied 

A.1)  ( )B,A  is controllable 

A.2)  pR∈Ω  is a compact set 

A.3)  There are continuous mappings 

( ) nmR:D ×→ω⋅  , ( ) mmR:E ×→ω⋅  

( ) ( )ω=ωΔ BDA  , ( ) ( )ω=ωΔ BEB , Ω∈ω∀  

Assumption A.3) is known as matching contition . This assumption can be relaxed using the 

notion of mismatching threshold (Barmish & Leitmann, 1982). 

In the control law (11) a high-gain component is incorporated by multiplying the gains with 

a scaling factor ( )k1+  with 0k ≥ . The PLC control law with low-and-high gain has the 

form 

 ( ) ( ) ( )txKk1tu i+=   ,  iCx∈   ,   N,..,2,1i =   (14) 

where is k  design parameter. 

We, also, can to introduce the over-saturation index as in (De Dona et al., 2002). Let us 

define the function ( )tiβ  as 

 ( )
( ) ( )( )

( )( ) ( )
( )⎪⎩

⎪
⎨
⎧

=

≠
Δ

Δ−
=β

0tv   ,0

0tv   ,
tvsat

tvsattv

t

i

i
ii

iii

i   (15) 

The over-saturation index is a constant iβ  such that  

 ( ) ii t β≤β
∞

  (16) 

In the case of over-saturation elements of matrix iR  are chosen to be the largest so that is 

satisfied 

 ( ) jji
T
jj

i

j 1xPb
r

1
v

s
Δβ+≤=  ,  ( )iii qPEx∈∀   (17) 

Now we will formulate theorem which defines the conditions under which control system 
which is described with relations (12) and (14) – (17) is exponentially stable. 
Theorem 1. Let us suppose that the closed loop system described with (12) and (14) – (17) 
for wich together with assumptions A.1) - A.3), also, are satisfied  

A.4) iR  is positive definite matrix 

0

rD

Dr

R
m
i

i
1

i >
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= O  , N,...,2,1i =  
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A.5)  ( ){ } 0KRaKPBD2Q ii
T
ii

TT
min >−ω−λ   

For precomputed gains 

iK    ,   N..,2,1i =  

( )1,0a∈   for  ( ) 0D >ω   ,  ( ) 0E >ω  

0=a   for  ( ) ( ) 0ED =ω=ω    

A.6)  ( ){ } a1IEmin −>+ωλ      ,   Ω∈ω∀  

A.7)  The allowed over-saturation for each element iv  of the control vector v  is 

 [ ] ( ){ }
( ){ }

2j
i

m

1pQ

j
immin

ii
T
ii

TT
min

N,..,2,1i
jmax

sl K rIE

KRaKPBD2Q4
1min

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ωλ

−ω−λ
+=β

∑
+=

=
 

where j
ik  is the j th row of matrix iK  

Then feedback (14)-(17) exponentially stabilize system (12) with exponential speed α  for 

Ω∈ω∀  and 1Ex∈ . 

Proof: In the control systems (12) and (14)-(17) the continuous states ( )tx  and discrete state 

(relating to the switching paradigm) are present and we choose a piecewise quadratic 
Lyapunov function 

 ( ) xPxxV i
T= ,      N...,2,1i  , Cx i =∈   (18) 

Using relation (12) we have  

( ) ( )( ) ( )( )[ ] ⋅ωΔ++ωΔ+=+= T
i

T
i

T BBxAAxPxxPxxV &&&  

( )( ) ( )( ) ( )[ ]=ωΔ++ωΔ++⋅ Δ usatBBxAAPxxP T
i  

( )( )[ ( )( )( ) ( )( )] ⋅ω++−+ω+= Δ
TT

i

TT BEBxKk1satBDAx  

( )( )[ ( )( ) ( )( )]=+−ω++ω++ Δ xKk1satBEBxBDAPxxP ii
T

i  

( )( ) ( )( )[ ] +ω++ω+ xBDAPPBDAx ii
TT  

( )( )( ) ( )( ) ⋅+ω++−+ Δ i
T

i
TT

i PxxPBEBxKk1sat  

 ( )( ) ( )( )xKk1satBEB i+−ω+⋅ Δ   (19) 

From relation (5) we have 
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 QP2PBBRPAPPA ii
T1

iiii
T −α−=+ −   (20) 

Using relation (20) the first term in (19) becames 

 ( )( ) ( )( )[ ] =ω++ω+ xBDAPPBDAx ii
TT   

( ) ( ) ( )xDPxxPBDxxAPPAx i
T

i
TTT

ii
TT ω+ω++ = 

+−α−= − QxxxPx2xPBBRPx T
i

T
i

T1
ii

T ( ) ( ) =ω+ω+ xBDPxxPBDx i
T

i
TTT  

( ) ( ) ( ) ( ) =ω+⋅ωω+−α−−= xBDPxxPBDxQxxxV2BvPx i
T

i
TTTT

i
T  

 ( ) ( ) ( )xDRvvRDxQxxxV2vPv i
T

i
TTT

i
T ω−ω−−α−=   (21) 

Also, one can get 

( ) ( ) =−−ω+ω+ vRavvRavxDRvvRDxQxx i
T

i
T

i
T

i
TTT  

( ) =+−ω−= vRavxKRaxKxPBDx2Qxx i
T

ii
T
ii

TTTT

 

 
( )( ) vRavxKRaKPBD2Qx i

T
ii

T
ii

TTT +−ω−=
  (22) 

For a second and third terms in relation (19) we have 

( )( )( ) ( )( ) +ω++−Δ xPBEBxKk1sat i
TT

i ( )( ) ( )( ) =+−ω+ Δ xKk1satBEBPx ii
T  

( )( )( ) ( )( )( ) ( ) ( )( )++−+ω+−++− ΔΔΔ xKk1BsatPBxxPBEKk1satxPBKk1sat ii
T

i
TTT

ii
TT

i  

( ) ( )( ) ( )( ) ( )( )( ) ( ) −ω+−−+−−=+−ω+ ΔΔΔ vRExKk1satvRxKk1satxKk1satBEBPx i
TT

ii
T

iii
T  

( )( ) ( ) ( )( ) =+−ω−+−− ΔΔ xKk1satERvxKk1satRv ii
T

ii
T

( )( )( ) ( )[ ] ( )[ ] ( )( )xKk1satIERvvRIExKk1sat i
T

i
T

i
TT

i +−+ω−+ω+−−= ΔΔ  

( )[ ] ( )( ) ( ){ } ( )( )xkk1satRvIE2xKk1satIERv2 ii
T

mini
T

i
T +−+ωλ−≤+−+ω−= ΔΔ  

 ( ){ } ( )( )xkk1satRvIE2 ii
T

min +−+ωλ−≤ Δ   (23) 

From (19) and (21)-(23) and assumption A6) of Theorem follows 

( ) ( ) ( ) ( )( ) −−ω−−α−+≤ xKRaKPBD2QxxV2vRva1xV ii
T
ii

TTT
i

T&  

( ){ } ( )( ) ( ) ( ){ } ⋅−+ωλ+α−≤+−+ωλ− Δ
T

i
T

minii
T

min xvRvIExV2xkk1satRvIE2
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( )( ) ( ){ } ( )( ) =+−+ωλ−−ω− Δ xkk1satRvIE2xKRaKPBD2Q ii
T

minii
T
ii

TT  

( ) ( )( ) ( ){ }⋅+ωλ++−ω−−α− IExKRaKPBD2QxxV2 minii
T
ii

TTT  

 ( )( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⋅ ∑

=
Δ

m

1j
jijj

j
i vKk1sat2vvr

j
  (24) 

 

In last relation is the jv  is the j th element of xKv ii −=  i.e. 

 xkxPb
r

1
v

j
ii

T
jj

i

j −=−=   (25) 

From relation (17) one can get  

 ( ) [ ]( )
jmaxjj 11v β+≤Δβ+≤    ,  ii ECx ⊂∈∀   ,   mj ,...,2,1=   (26) 

 

and [ ]
jmaxβ  is defined in the assumption A.7) of Theorem. 

For the 0x ≠  we have two posibilites 

 
Sjsj

2v Δ≤   ,  1s Sj ∈   ,  { }p211 j,,j,jS L=   (27) 

and  

 [ ]( )
SSS jjmaxsjj 1v2 Δβ+≤<Δ   , 2s Sj ∈  ,  { }m1p2 j,,jS L+=   (28) 

 

whereby 

mp0 ≤≤   ,  { }m,..,2,1SS 21 =∪   ,  φ=∩ 21 SS  

 

Using argument as in (De Dona et al., 2002) one can get 

 
S

S

l

S

j
i

2
j

m

1ps
m

1pl

j
i

j
iT

k

4

r

r
xx

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
> ∑

∑+=

+=

    (29) 

From (24) and (29) follows 

( ) ( ) ( ){ } ( )( ) ⋅+
⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−⋅+ωλ+α− ∑∑

+==
Δ

m

1ps

j
i

p

1s
sjsjsj

j
imin

S

Sj

S rvk1sat2vvrIExV2xV&  
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( ){ }

( ){ }
2j

i

m

1pl

j
imin

2
jii

T
ii

TT
min

11jj

2

j

Sl

s

SSS

KrIE

KRaKPBD2Q4
AAv2v

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ωλ

Δ−ω−λ
=

⎭
⎬
⎫
⎥⎦
⎤

⎢⎣
⎡ −Δ−⋅

∑
+=

  (30) 

According to relation (27) first term in (30) is always nonpositive, i.e. 

 ( )( ) 0Vk1sat2v
sjsj

Sj
≤+− Δ    ,   0k ≥∀   (31) 

 

It is well known fact that quadratic polinomial 

21
2 pzpz ++    ,   1Rz∈  

 

is negative if zeros belong to the interval 

2
2
2

11 p4pD     ,
2

Dp
,

2

Dp
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−−−
 

Using those facts it is possible to conclude that second term in relation (30) is nonpositive if 

( ){ }
( ){ }

S

Sl

S j
2j

i

m

1pl

j
imin

ii
T
ii

TT
min

j

KrIE

KRaKPBD2Q4
11v Δ

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ωλ

−ω−λ
++≤

∑
+=

 

This is true because from the definition of elipsoid iE  fallows 

 [ ]( )
SS

jjmaxsj 1v Δβ+≤    ,   21s SSj ∪∈   (32) 

whereby [ ]
Sjmaxβ  is defined in the assumption A7) of Theorem. 

From relation (31)-(32) follows  

 ( ) ( )xV2xV α−<& , 0x ≠∀  , iCx∈  , N,...,2,1i =  (33) 

It means that closed-loop system is exponentially stable. Namely 

 ( ) ( ) ( ){ }121ej ttexptxktx −α−≤ , 0x ≠∀ , iCx∈   (34) 

whereby 

 
{ }
{ }imin

imax
l

P

P
k

λ
λ

=    ,    N,...,2,1i =   (35) 
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The trajectories in each cell iC  approach the origin with a exponential decrease in ( )xV  

along the trajectory. According with the philosophy of control strategy, the trajectories will 

enter the smallest ellipsoid corresponding to Nρ . The exponential stability is assured by (33). 

Remark 2. In the paper (De Dona et al., 2004) is considered the case when in the model (12) 

uncertainty matrix ( ) 0wB =Δ  and the degree of prescribed stability 0=α . Also, in that 

reference the Riccati equation approach is used until in this paper the Lyapunov approach is 

used. 

Remark 3. When unmodeled dynamic is absent, i.e. in the Theorem 1 

0a =   ,  ( ) ( ) 0wEwD ==  

 

the conditions A.5) and A.7) in the Theorem have the form  

{ } 0Qmin >λ  

[ ] { }
2j

i

m

1pl

j
i

min

N,,...,2,1i
jmax

Sl

S

Kr

Q4
1min

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ
+=β

∑
+=

=
 

 

These assumption are identical with the assumptions in reference (De Dona et al., 2002). 

4. Conclusion 

In this paper the switching controller with low-and-high gain and alloved over-saturation 

for uncertain system is considered. The unmodeled dynamics satisfies matching conditions. 

Using picewise quadratic Lyapunov function it is proved the exponential stability of the 

closed loop system. 

It would be interesting to develop the theory for output case and for the descrete-time case. 

Also, extremely is important application of hybrid systems in distributed coordination 

problems (multiple robots, spacecraft and unmanned air vehicles). 
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