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Chapter

Modeling Heterogeneity Using
Lindley Distribution
Arvind Pandey and Lalpawimawha

Abstract

Frailty models are intended for use in survival analysis to explain unobserved
heterogeneity in an individual caused by various hereditary variables or environ-
mental influences. A shared frailty model was utilized to examine the data. It is
based on the idea that frailty affects the hazard rate in a multiplicative manner. In
this manuscript, we introduce a new frailty model called the Lindley shared frailty
model with exponential power and generalized Rayleigh as baseline distributions.
The The Bayesian method of the Monte Carlo method of the Markov chain is used to
estimate the parameters used in the model; simulation studies are also carried out to
compare the actual and calculated values of the parameters; the proposed model is
compared with the Bayesian comparison method Compare and propose the best
model of infectious disease data.

Keywords: Bayesian technique, exponential power distribution, generalized
Rayleigh distribution, Lindley frailty, MCMC

1. Introduction

The term frailty was coined by Vaupel et al. [1]. The frailty model is typically
represented as an unobservable random variable that multiplies the risk function,
with the frailty random variable supposed to be one of the parameter distributions,
such as gamma, log-normal, positive stable, inverse Gaussian, power variance
function, and so on. Let Y be a continuous random variable of lifetime of an
individual and the frailty random variable (RV) be V. The conditional hazard
function (CHF) for a given frailty variable V ¼ v at time y>0 is

m yjvð Þ ¼ vh0 yð ÞeX
0β, (1)

where m0 yð Þ is a baseline hazard function (BHF) at time y>0, X is a covariate
and β is a regression coefficient, these are in vector form. The CHF for given frailty
at time y>0 is

S yjvð Þ ¼ e
�
Ð y

0
m xjvð Þdx

¼ e�vM0 yð ÞeX
0β

, (2)

where M0 yð Þ is cumulative baseline hazard function (CBHF) at time y>0.
Integrating over the range of frailty variable V having density f vð Þ, we get marginal
survival function as
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S yð Þ ¼

ð

∞

0
S yjvð Þf vð Þdv, (3)

¼ Lv M0 yð ÞeX
0β

� �

, (4)

where LV :ð Þ is a Laplace transformation of the distribution of V. Once we have
survival function at time y>0 of lifetime random variable of an individual one can
obtain probability structure and can base their inference on it.

Frailty models have gained more attention in the recent medical research due to
the uniqueness property of the frailty parameter. Generally, gamma distribution,
log-normal distribution and inverse Gaussian distributions are the most commonly
used frailty distributions [2, 3]. Hanagal and Dabade [4] introduced new Com-
pound negative binomial shared frailty models for bivariate survival data using
Weibull and generalized exponential as baseline distributions. Pandey et al. [5]
compared gamma, inverse Gaussian and positive frailty models with generalized
Pareto as baseline distribution. Pandey et al. [6] also compared gamma and inverse
Gaussian frailty distributions under additive property.

To extract the features of the Lindley shared frailty model, we used Lindley as a
frailty distribution with right censored data under generalized Rayleigh and expo-
nential power as baseline distributions. The survival periods are dependent in this
case because the frailty variable follows the Lindley distribution. The predicted
value of the frailty distribution variance influences the population’s degree of
heterogeneity. The higher the variance of the frailty distribution, the more
heterogeneity there is in the population under consideration. The frailty distribution
becomes degraded when zero variance is observed. As a baseline distribution, the
exponential power distribution is used. Because it exhibits a rising hazard rate, which
is typical in real-life distributions, the exponential power distribution is chosen as the
baseline distribution. The Lindley distribution with one parameter was first proposed
by Lindley [7] for analyzing failure times data. It belongs to an exponential family,
but it is used as an alternative to the exponential distribution. Lindley distribution is
alluring due to the ability of modeling failure time data with increasing, decreasing,
unimodal and bathtub shaped hazard rates. Ghitany et al. [8, 9] discussed different
properties of Lindley distribution and also showed that Lindley distribution is better
than the exponential distribution for modeling failure time data when considering
hazard rate is unimodal or bathtub shaped. It is also shown that Lindley distribution is
more flexible than exponential distribution in modeling lifetime data. Many authors
have discussed and introduced different generalization of Lindley distribution.
Bakouch et al. [10] introduced extended Lindley distribution. Ghitany et al. [11]
proposed the power Lindley distribution and Shanker et al. [12] proposed two
parameter Lindley distribution, which could also be reduced to one parameter case.
The mean of a two parameter Lindley distribution is always greater than the mode
indicating that the distribution is positively skewed.

The classic approach and the Bayesian approach are two widely utilized tech-
niques in general. We can employ prior distributions here, therefore we’ll estimate
the model parameters using the Bayesian Markov Chain Monte Carlo (MCMC)
approach. Furthermore, because characteristics with diverse posterior distributions
may be easily generated, the results and model selection criteria can be clearly
interpreted. Run after thinning mean and autocorrelation plots, follow-up plots,
past plot couplings, sample autocorrelation plots dictate chain behavior, burn dura-
tion, autocorrelation delay, and how observations are made It’s utilized for cognitive
confirmation on its own. We also give simulation experiments to back up the
model’s performance. All of the model’s estimation processes are detailed, as well as
infection statistics relating to kidney infections.
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In Sections 2 and 3, the introduction of the Lindley shared frailty model and
baseline distributions are given, followed by proposed models and estimation strat-
egies in Sections 4 and 5. In Sections 6 and 7, application of the proposed model and
discussion are given.

2. Lindley shared frailty model

Let a continuous random variable V follows two parameter Lindley distribution
(TPLDP) with parameters α and λ then density function of V is

f vð Þ ¼

α2

αλþ 1
λþ vð Þe�λv ; v>0, α>0, λα> � 1

0 ; otherwise,

8

>

<

>

:

(5)

and the Laplace transform is

LV sð Þ ¼
α2 1þ sþ αð Þλð Þ

sþ αð Þ2 1þ λαð Þ
, sþ α>0: (6)

The mean and variance of frailty variable are E Zð Þ ¼ αλþ2
α αλþ1ð Þ and V Vð Þ ¼

2þ4αλþα2λ2

α2 αλþ1ð Þ2
. For identifiability, we assume V has expected value equal to one i.e.

E Vð Þ ¼ 1, which imply that α = ξ and λ= 2�ξ

ξ ξ�1ð Þ. Under this restriction the density

function and the Laplace transformation of Lindley distribution reduces to

f vð Þ ¼

e�ξvξ ξ2vþ ξ� ξv� 2
� �

ξ� 2
; v>0, ξ>0

0 ; otherwise,

8

>

<

>

:

(7)

and the Laplace transform is

LV sð Þ ¼
ξ ξþ s 2� ξð Þð Þ

sþ ξð Þ2
: (8)

with variance of V is 4ξ�ξ2�2
ξ2

. The frailty variable V is degenerate at V ¼ 1.

Replacing Laplace transform in Eq. (4), we get the unconditional bivariate survival

function for the jth individual as

S y1k, y2k
� �

¼
ξ ξþ ηk M01 y1k

� �

þM02 y2k
� �� �

2� ξð Þ
� �

ηk M01 y1k
� �

þM02 y2k
� �� �

þ ξ
� �2 (9)

whereM01 y1k
� �

andM02 y2k
� �

are the cumulative baseline hazard functions of the
lifetime Y1k and Y2k respectively.

And for without frailty, the model becomes

S y1k, y2k
� �

¼ e�ηk M01 y1kð ÞþM02 y2kð Þð Þ: (10)
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3. Baseline distributions

As a starting point, we’ll look at the generalized Rayleigh distribution. Surles and
Padgett [13] proposed the two-parameter Burr type X distribution, dubbed the
generalized Rayleigh distribution, and demonstrated that the two-parameter gen-
eralized Rayleigh distribution may be utilized to describe strength and general
lifetime data rather efficiently. The two-parameter generalized Rayleigh distribu-
tion can be utilized well in survival analysis to describe strength data as well as
general lifetime data. If a continuous random variable Y has a two-parameter
generalized Rayleigh distribution, the survival function, hazard function, and
cumulative hazard function are as follows:

S yð Þ ¼ 1� 1� e� λyð Þ2
� �α

; y>0, λ>0, α>0 (11)

m yð Þ ¼
2αλ2ye� λyð Þ2 1� e� λyð Þ2

� �α�1

1� 1� e� λyð Þ2
� �α ; y>0, λ>0, α>0 (12)

M yð Þ ¼ � log 1� 1� e� λyð Þ2
� �αh i

; y>0, λ>0, α>0 (13)

where α and λ stands for shape and scale parameters respectively of the distri-
bution. It has also some attractive properties increasing hazard and bathtub type
depends on the parameter value.

The second baseline distribution considered here is exponential power distribu-
tion. A continuous random variable Y is said to follow the exponential power
distribution if its survival function, hazard function and cumulative hazard func-
tion are, respectively,

S yð Þ ¼ e1�eλy
α

; y>0, λ>0, α>0 (14)

m yð Þ ¼ αλyα�1eλy
α

; y>0, λ>0, α>0 (15)

M yð Þ ¼ eλy
α

� 1 (16)

where λ and α are the shape and scale parameters of the exponential power
distribution. The hazard function and cumulative hazard function are respectively,

m yð Þ ¼ αλyα�1eλy
α

; y>0, λ>0, α>0 (17)

M yð Þ ¼ eλy
α

� 1 (18)

The hazard function is decreasing function at time y when α< 1 for smaller
values of λ but as λ increases hazard function takes U shape curve and further
increment in λ gives increasing nature to hazard function.

4. Proposed models

The unconditional survival function is obtained by replacing the cumulative
hazard functions of generalized Rayleigh distribution and exponential power distri-
bution in Eqs. (9) and (10). Then,
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S y1k, y2k
� �

¼ e
� � log 1� 1�e� λ1y1kð Þ2

� �α1
h i� �

þ � log 1� 1�e� λ2y2kð Þ2
� �α2

h i� �� �

ηk

1þ ξ � log 1� 1� e� λ1y1kð Þ
2� �α1

� �� 	

þ

��

� log 1� 1� e� λ2y2kð Þ
2� �α2

� �� 			�

�1=ξ

(19)

S y1k, y2k
� �

¼ e
�

α1
λ1

eλ1y1k�1ð Þþα2
λ2

eλ2y2k�1ð Þ
� �

ηk

1þ ξ
α1

λ1
eλ1y1k � 1
� �

þ
α2

λ2
eλ2y2k � 1
� �

� 	� ��1=ξ (20)

S y1k, y2k
� �

¼ e
� � log 1� 1�e� λ1y1kð Þ2

� �α1
h i� �

þ � log 1� 1�e� λ2y2kð Þ2
� �α2

h i� �� �

ηk
(21)

S y1k, y2k
� �

¼ e
�

α1
λ1

eλ1y1k�1ð Þþα2
λ2

eλ2y2k�1ð Þ
� �

ηk
(22)

The Eqs. (19) and (20) are Lindley shared frailty model with generalized
Rayleigh and exponential power as baseline distributions, called as Model-I and
Model-II and Eqs. (21) and (22) are without frailty models under the same baseline
distributions, called as Model-III and Model-IV.

5. Estimation strategies

By assuming independence between censoring scheme and individual lifetimes,

the likelihood function associated with failure times for the kth people (k = 1,2,3, n)
and censoring times is given by

I Ψ, β, ξð Þ ¼
Y

n1

k¼1

f 1 y1k, y2k
� �

Y

n2

k¼1

f 2 y1k, d2k
� �

Y

n3

k¼1

f 3 d1k, y2k
� �

Y

n4

k¼1

f 4 d1k, d2kð Þ (23)

where Ψ, β and ξ are vectors of baseline parameters, regression coefficients and
frailty distribution parameter. The likelihood function for without frailty is given as

I Ψ, βð Þ ¼
Y

n1

k¼1

f 1 y1k, y2k
� �

Y

n2

k¼1

f 2 y1k, d2k
� �

Y

n3

k¼1

f 3 d1k, y2k
� �

Y

n4

k¼1

f 4 d1k, d2kð Þ (24)

and n1, n2, n3 and n4 are the number of observations, which are observed to lie in
the intervals y1k < d1k, y2k < d2k; y1k < d1k, y2k > d2k; y1k > d1k, y2k < d2k and

y1k > d1k, y2k > d2k respectively and the contribution of the kth individual in the
likelihood function as

f 1 y1k, y2k
� �

¼
∂
2S y1k, y2k
� �

∂y1k∂y2k

f 2 y1k, d2k
� �

¼ �
∂S y1k, d2k
� �

∂y1k

f 3 d1k, y2k
� �

¼ �
∂S d1k, y2k
� �

∂y2k

f 4 d1k, d2kð Þ ¼ S d1k, d2kð Þ

(25)
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Putting Eq. (24) in Eqs. (23) and (24), we get the likelihood functions for the
Lindley shared frailty models under generalized Rayleigh and exponential power
baseline distributions and likelihood function for without frailty models under the
same baseline distributions.

The joint posterior density of the parameters given failure times is given as

π α1, λ1, α2, λ2, ξ, βð Þ∝L α1, λ1, α2, λ2, ξ, βð Þ

�g1 α1ð Þg2 λ1ð Þg3 α2ð Þg4 λ2ð Þg5 ξð Þ
Y

5

i¼1

pi βið Þ

where gi :ð Þ (i ¼ 1, 2,⋯, 5) represent the prior density function of baseline
parameters and frailty variance, which are suppose to have known hyper parame-
ters; pi :ð Þ represents prior density function for the regression coefficient βi; βi
represents regression coefficients of vector form except βi, i ¼ 1, 2, … , a and likeli-
hood function I :ð Þ is also presented by Eqs. (23) and (24). It is assumed that all of
the parameters are distributed independently in this case.

The expression of the likelihood function in Eqs. (23) and (24) are not easy to
solve by using the Newton–Raphson method. MLEs fail to converge as it involved a
large number of parameters. As a result, the Bayesian approach was used to estimate
the parameters involved in the models, which is free of such issues.

Prior distributions are utilized as follows: for a frailty parameter with a small
value of Ψ, a gamma distribution with mean 1 and big variance Γ Ψ,Ψð Þ is used as a
prior distribution. As a prior for the regression coefficient, say φ2, a normal distri-
bution with mean zero and huge variance is utilized. Because we do not know
anything about the baseline parameters, we use the same type of prior distributions
used by Ibrahim et al. [14] and Sahu et al. [15], as well as a non-informative prior.
As non-informative prior distributions, Γ a1, b1ð Þ and U a2, b2ð Þ are utilized. All the
hyper-parameters Ψ,φ, a1, a2, b1 and b2 are supposed to be known in advanced.
Here Γ a1, b1ð Þ stands for gamma distribution having shape parameter a1 and scale
parameter b1 and U a2, b2ð Þ stands for the uniform distribution over the interval a2
to b2. We provide the hyper-parameters as Ψ ¼ 0:0001,φ2 ¼ 1000, a1 ¼ 1, b1 ¼
0:0001, a2 ¼ 0, and b2 ¼ 100.

The Metropolis Hasting Algorithm and Gibbs Sampler were used to estimate the
parameters in the models fitted with the preceding prior density function and
likelihood Eqs. (23) and (24), Metropolis Hasting Algorithm and Gibbs Sampler was
utilized. Geweke test and Gelman-Rubin statistics, as suggested by Geweke [16] and
Gelman et al. [17], show that the Markov chain converges to a stationary distribu-
tion. We used trace plots, coupling from the past plots, and sample autocorrelation
plots to examine the chain’s behavior, as well as to determine the burn-in period and
autocorrelation lag.

It is important to decide which model provides the best fit to the dataset, the
comparison of models was done using Akaike Information Criteria (AIC), Bayesian
Information Criteria (BIC), Deviance Information Criteria (DIC) and Bayes factor.

6. Application in real life data

The models’ applicability was tested by applying them to infectious illness data
relating to kidney infection that occurred during catheter implantation [18]. It
includes 38 patients’ first and second recurrence times of infection from catheters
used with portable dialysis equipment. For each patient in a cluster, these two times
of infection are clustered together. Other pertinent data includes infection duration,

6
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patient age, gender (0 for male and 1 for female), and illness kinds such as
Glomerulo Nephritis (GN), Acute Nephritis (AN), and Polycystic Kidney Disease
(PKD).

To begin, the Kolmogorov–Smirnov test is used to determine the goodness of fit
for kidney infection data, and the p-values obtained for the first and second recur-
rences are large enough to rule out the hypothesis that the first and second recur-
rence times follow the distributions with survival functions as given in Eqs. (11) and
(14) in univariate case and it is also assumed to be appropriate for bivariate case.
The corresponding p-values are given in Table 1. The posterior summary of the
proposed models are presented in Tables 2 and 3. It consists of estimate (posterior
mean), standard error, 95% lower and upper credible limits, GR statistics values
with p-values and Geweke test values. From Tables 2 and 3, It is observed that we
can observe that regression coefficients for all the models are more or less same.
Also for all these proposed models, the value zero is not a credible value for all the
credible intervals of the regression coefficients, so all the covariates are seems to be
significant. To test the models’ accuracy, we created 95% and 50% predictive
intervals from a generated random sample based on a predictive distribution as
described by Sahu et al. [15], and counted the total number of actual recurrence
times for first and second kidney infections that fell within the intervals. The 95
percent and 50 percent predictive intervals are contained in the 95% and 50%
predictive intervals for Models I and II, respectively, 76, 58, and 76, 60 out of 76

Distribution Recurrence times

First Second

Generalized Rayleigh 0.98078 0.99889

Exponential power 0.96291 0.75766

Table 1.
p-Values of K-S Statistics for goodness of fit test for kidney infection data set.

Parameter Estimate Standard

error

Lower

credible

limit

Upper

credible

limit

Geweke

values

p values Gelman &

Rubin values

Burn in period = 5600; autocorrelation lag = 275

α1 0.3716 0.0312 0.3118 0.4283 1.0007 �0.0048 0.4980

α2 0.4253 0.0455 0.3326 0.5044 1.0003 �0.0045 0.4981

λ1 0.0032 0.0004 0.0023 0.0041 1.0008 �0.0017 0.4992

λ2 0.0026 0.0004 0.0018 0.0034 1.0031 �0.0052 0.4979

ξ 1.1287 0.0423 1.0722 1.2196 1.0032 �0.0095 0.4961

β1 0.0153 0.0041 0.0083 0.0238 1.0052 �0.0042 0.4983

β2 �1.0792 0.2740 �1.6013 �0.5350 1.0001 0.0070 0.4983

β3 0.0021 0.0004 0.0012 0.0029 1.0008 �0.0060 0.4975

β4 0.0031 0.0004 0.0022 0.0040 1.0005 �0.0010 0.4995

β5 �0.2149 0.0514 -0.3031 �0.0947 1.0008 0.0059 0.5023

Table 2.
Posterior results with baseline generalized Rayleigh distribution.
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observations. This demonstrates that the two models are appropriate for the data.
Model-I is a better model in terms of AIC, BIC, and DIC values, since it has lower
AIC, BIC, and DIC values than Model-II in Table 4. However, because the differ-
ence between AIC, BIC, and DIC values for Model I and Model II is so little, AIC,
BIC, and DIC values are not suitable for deciding between the two models. To
compare model uwith model v, we use the Bayes factor (Table 5). Model-I is better
than Model-II, since the equivalent value of 2 log Buvð Þ is larger than 10, suggesting
that there is a very strong positive to favor Model-I over Model-II for the provided
dataset, confirming our earlier conclusion in Table 4. As a result of all of the
demonstrated comparison criteria, we can conclude that Model-I is superior to
Model-II in terms of modeling kidney infection data.

Parameter Estimate Standard

error

Lower

credible

limit

Upper

credible

limit

Geweke

values

p values Gelman &

Rubin values

Burn in period = 6800; autocorrelation lag = 280

α1 0.4440 0.0251 0.3878 0.4905 1.0010 �0.0065 0.4973

α2 0.5040 0.0368 0.4263 0.5689 1.0002 0.0032 0.5012

λ1 0.3120 0.0471 0.2353 0.4021 1.0001 0.0029 0.5011

λ2 0.2150 0.0445 0.1530 0.3166 1.0016 �0.0053 0.4978

ξ 1.2061 0.0496 1.1197 1.3013 0.9999 0.0026 0.5010

β1 0.0001 0.0001 1.7e-05 0.0002 1.0003 0.0036 0.5014

β2 �2.5247 0.3867 �3.2854 �1.7454 1.0021 0.0071 0.5014

β3 0.0020 0.0004 0.0012 0.0029 1.0006 0.0119 0.5047

β4 0.0031 0.0004 0.0021 0.0040 1.0003 0.0107 0.5042

β5 �0.9916 0.4466 �1.8481 �0.1704 1.0027 0.0001 0.5000

Table 3.
Posterior results with baseline exponential power distribution.

Model no. AIC BIC DIC

Model I 638.5262 654.9020 625.1190

Model II 700.3005 716.6763 686.8069

Model III 691.5817 706.3200 720.7843

Model IV 702.0827 716.8210 689.8978

Table 4.
AIC, BIC and DIC values for all models.

Numerator model against

denominator model

2loge Buvð Þ Range Evidence against model

in denominator

Model� I against Model� II 63.23936 > 10 Very Strong Positive

Table 5.
Bayes factor values and decision for test of significance for frailty fitted to kidney infection data set.
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7. Discussion

In this study, we examined a new Lindley shared frailty model under generalized
Rayleigh and exponential power as baseline distributions.

To suit all of the proposed models, the Metropolis-Hastings and Gibbs sampler
was used. The proposed models were used to assess kidney infection data, and the
best model was suggested. To conduct the analysis, we used self-composed
programs in the R statistical software.

All of the exhibited comparison criteria indicated that the Lindley shared frailty
model with generalized Rayleigh baseline distribution is superior to exponential
power baseline distribution and without frailty models for modeling kidney infec-
tion data under the identical baseline distributions. The estimates of frailty variance
are 0.9415 and 0.9739, which are high in all the proposed models indicating that
there is a strong evidence of a high degree of heterogeneity among the patients in
the population. A few patients are anticipated to be exceptionally inclined to infec-
tion compared to others with the same covariate values. Some patients are expected
to be very prone to infection compared to others with the same covariate values.
Also we can say that there is a strong positive correlation between the two infection
times for the same patient.

The most important properties of the proposed models that were not mentioned
in the previous study are the estimates of the frailty variances are high in all
proposed models as compared to previous study given by McGilchrist and Aisbett
[18] on log-normal frailty, Hanagal and Bhambure [19], the disease type GN and
AN has lower infection rates as compared to other covariates. All the covariates are
significant factors for kidney infection, but the disease type are insignificant in the
previous proposed frailty models (see [4]). It is very crucial to be mention that
Lindly shared frailty model based on generalized Rayleigh baseline distribution is
performed better to analyze kidney infection data than other frailty models [4, 19].
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