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Abstract

Currently, billions of nucleotide and amino acid sequences accumulate in
free-access databases as a result of the omics revolution, the improvement in
sequencing technologies, and the systematic storage of shotgun sequencing data
from a large and diverse number of organisms. In this chapter, multi-omics data
mining approaches will be discussed as a novel tool for the identification and
characterization of novel DNA sequences encoding elementary parts of complex
biological systems (BioBricks) using omics libraries. Multi-omics data mining opens
up the possibility to identify novel unknown sequences from free-access databases.
It also provides an excellent platform for the identification and design of novel
BioBricks by using previously well-characterized biological bricks as scaffolds for
homology searching and BioBrick design. In this chapter, the most recent mining
approaches will be discussed, and several examples will be presented to highlight its
relevance as a novel tool for synthetic biology.

Keywords: genome, transcriptome, proteome, data mining, metabolic pathway,
BioBricks design, multi-omics, synthetic biology

1. Introduction

1.1 The omics revolution

Within the last decades, a magnificent transformation in biology took place
when a huge success in sequencing, bioinformatics, and bioanalytics was achieved.
Several technologies were created to decrypt the metabolism of cells or interactions
within tissues, organisms, and even entire ecosystems based on the identification of
genes (genomics), mRNA (transcriptomics), proteins (proteomics), and metabo-
lites (metabolomics) [1]. Since the discovery of the DNA structure by Watson and
Crick in 1953 [2], an ever-increasing number of technologies for gene identification
and characterization was established. One of the most relevant breakthroughs in
DNA characterization was the invention of Sanger’s sequencing in 1977 [3]. This
sequencing technique uses chemical analogs of the deoxyribonucleotides (dNTPs,
monomers of DNA strands) called dideoxynucleotides (ddNTPs), which lack the 30

hydroxyl group that is required for extension of DNA chains and therefore cannot
form a bond with the 50 phosphate of the next dNTP [4]. The overall advantages of
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accuracy, robustness, and ease of use against other established methods led Sanger
sequencing to become one of the most common technologies used to sequence
DNA. Several improvements were subsequently applied to this technique, such
as the use of fluorometric detection and capillary-based electrophoresis, thus
contributing to the development of automated DNA sequencing machines [5–11].
These machines allowed researchers to obtain sequence reads slightly less than one
kilobase (kb) in length and boosted the development of other crucial technologies
such as the Polymerase Chain Reaction (PCR) in 1985 and the recombinant DNA
technology in the following years [12, 13].

In parallel to the development of large-scale dideoxy sequencing methods, a new
technique set the novum for next-generation DNA sequencers. This approach
remarkedly varies from the abovementioned methods as it does not involve the use
of radio- or fluorescently labeled dNTPs. Instead, it is based on a luminescent
method for measuring pyrophosphate synthesis in a process called pyrosequencing
[14]. This sequencing technology is a two-enzyme process starting with the con-
version of pyrophosphate into ATP (by an ATP sulfurylase) and the subsequent use
of ATP as a substrate for luciferase, thus emitting light proportional to the amount
of pyrophosphate available. Pyrosequencing became a popular technique for two
major reasons: (i) it uses natural nucleotides instead of modified ones, and (ii) that
sequencing results can be obtained in real-time without requiring time-consuming
electrophoresis. In addition to pyrosequencing, other sequencing technologies were
also devolved - the most important probably being the Solexa method, later
acquired by the company Illumina [15]. Hereby, adapter-bracketed DNA molecules
pass a lawn of complementary oligonucleotides bound to a flow cell. This method
involves solid-phase PCR with neighboring clusters of clonal DNA strands in a
process called “bridge amplification” [15–17]. Apart from Illumina, which is proba-
bly the most important technique currently in use, other sequencing companies
established their novel methodologies [18, 19], which are known as the second-
generation sequencing techniques. The most notable second-generation sequencing
platform is probably Ion Torrent. It is the first “post-light sequencing” technology
with neither using fluorescence nor luminescence. Its methodology is based on
beads bearing clonal populations of DNA fragments washed over a pico well plate,
thereby releasing protons measured via the generated pH difference [20].

Recently, a third sequencing generation started with the invention of S. Quake in
2003 termed Single Molecule Sequencing (SMS) [21, 22]. Its principle is similar to
Illumina but skipping bridge amplification. In SMS, DNA templates attached to a
planar surface and propriety fluorescent reversible terminator dNTPs (dubbed as
“virtual terminators”) are washed over one base at a time and imaged, before
cleavage and cycling the adjacent base over. SMS has been recently improved in the
Single-Molecule Real-Time (SMRT) platform from Pacific Biosciences, available for
the PacBio machines [23]. During SMRT runs, DNA polymerization happens in
arrays of microfabricated nanostructures called zero-mode waveguides (ZMWs)
which are essentially tiny holes in a metallic film covering a chip. It allows visuali-
zation of single fluorophore molecules because the zone of laser excitation is so
small that it allows distinction over the background of neighboring molecules in the
solution [24]. Nonetheless, the probably most anticipated third-generation DNA
sequencing method is nanopore sequencing which enables researchers to detect and
quantify all types of biological molecules [25]. Its principle was theoretically
established even before second-generation sequencing emerged by demonstrating
that single-stranded RNA or DNA could be driven across a lipid bilayer through a
large α-hemolysin ion channel by electrophoresis. Furthermore, passage through
the channel blocks ion flow, decreasing the current for a length of time proportional
to the length of the nucleic acid [26]. With Oxford Nanopore Technologies (ONT)
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as the first provider of nanopore sequencers and their nanopore platforms GridION
and MinION [27, 28], the latter of which is a small, mobile phone-sized USB device
(released in 2014) [29]. Despite the admittedly poor quality profiles currently
observed, it is hoped that such sequencers represent a genuinely disruptive tech-
nology in the DNA sequencing field in the future, producing incredibly long read
(non-amplified) sequence data far cheaper and faster than what was previously
possible [28, 30]. The average read length, error rate, total number of reads, and run
prices vary significantly among the different sequencing methodologies. Thus, the
selection of the appropriate technology for sequencing is a crucial step that depends
on the purpose of the study. For instance, Illumina and Ion Torrent produce accu-
rate short reads ideal for the analysis of fragmented DNA, while PacBio and Min-
ION produce long reads with a lower accuracy but very useful, for example, for the
assembly of scaffolds during genome sequencing.

Similar to the development of advanced techniques for sequencing nucleic acids,
other methods have been extensively developed for dissecting the proteome [31]
and metabolome [32] of a multitude of organisms. Of these omics approaches
metabolomics, however, is distinct from the others. In metabolomics not a set of
linear (1D) molecules with a sequence of defined monomers (4 bases or 21 amino
acids) is to be determined, but a wild bunch of different 3D compounds. Eventually,
a large number of databases have been developed to collect all these information,
which provide excellent platforms for data mining as will be discussed in the
following chapters.

2. Genome and transcriptome data mining

The exponential accumulation of data in genomic databases during the last
decades has motivated the creation of bioinformatics tools to explore, relate and
understand the genetic information from a vast number of organisms [33, 34].
These bioinformatics tools have been validated by experimental data, thus
strengthening the design and assembly of novel biological entities (i.e., genes, RNA
molecules, proteins, and metabolites). Those biological entities that can be used as
building blocks for the assembly of artificial biosynthetic pathways are known as
BioBricks. Consequently, the selection and design of BioBricks is important to
further create and understand complex biological systems and biofactories of rele-
vance in industrial biotechnology [35]. The general idea of comparing genomic
sequences to identify such novel components of different metabolic pathways is not
new. In fact, early in the 1970s, several efforts were performed to elucidate physi-
ological and metabolic information through the comparative analysis of genetic
sequences [36–38]. Classical genetics and reverse genetics approaches were then
used to identify, annotate, compare, and connect genetic clusters associated with
biosynthesis, using previously reported genetic data sets [39, 40].

It was not until 1999 that Genome Mining (GM) formally emerged as a strategy
for the computational analysis of genetic sequences that sought to recognize patterns
between them within the framework of the human genome project. Later, alongside
bioinformatics advances in the area of microbiology, GM acquires new attributes,
building the concept known today: a bioinformatics approach that aims to predict
DNA sequences associated with physiological and/or metabolic events, allowing the
elucidation/prediction of metabolic pathways that lead to secondary metabolites of
scientific and industrial interest [35, 38, 41, 42]. Today, GM is not limited only to
genomic predictions but seeks a holistic approach that includes the entire spectrum of
molecular biology, articulating the prediction of the products of gene expression, the
control of that expression, as well as the identity and structure of those potential
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metabolites, strengthening the creation of biological models that allow the compari-
son, understanding, and manipulation of cellular molecular systems [41, 43].

GMwas initially developed in bacterial models and demonstrated a high relevance
for synthetic biologists and metabolic engineers, thus becoming one of the biggest
breakthroughs in molecular biology and biotechnology [38, 44]. Between the 1990s
and 2000s, the genus Streptomyces (which is well known for its production of valuable
antibiotics) was extensively studied at the experimental level, which allowed the
identification of a large number of gene sequences involved in secondary metabolite
production, regulation and antibiotic resistance. Comparison of gene sequences
between different species of this genus, revealed a total of about 30 Biosynthetic
Gene Clusters (BGCs) associated with the biosynthesis of such secondary metabolites
[45, 46]. Following these advances, GM was extended to study novel bacterial genera
with abundant genomic information and was initially used to fight against bacterial
resistance [47, 48]. During the last years, GM was successfully used as a tool for the
identification of alternative pathways for the biosynthesis of different natural prod-
ucts in diverse microorganisms [33, 49], an approach which usually proved to be
more efficient than other screening methods used for the identification of novel
enzymes of relevance for the biosynthesis of secondary metabolites [33, 49].

Recently, GM was also scaled up to eukaryotic models, thus revealing that
multiple BGCs contain not only relevant information regarding the biosynthesis of
secondary metabolites but also valuable information to study evolutionary events
and ecological adaptation of different gene clusters [38, 50, 51]. A good example of
the vast collection of BGCs predicted up to now can be found on the “Atlas of
Biosynthetic Gene Clusters”, a database of the Joint Genome Institute founded in
2015. This Atlas contains data on predicted and experimental gene clusters related
to many secondary metabolites. As of June 2021, there are a total of 411,006
biosynthetic gene clusters reported, of which only 1285 have been experimentally
validated [52]. GM is completely dependent on bioinformatics and computational
technology available for the analysis of a large dataset. Thus, to boost the potential
of this information, the development of novel computational tools and algorithms
as well as the interest of researchers to join this effort is still required [42, 51]. There
are currently a variety of methods for performing GM using the available genomic
information that will be further discussed hereafter.

2.1 Classical genome mining

The “classical” form of GM consists of the search for enzymes linked to the
synthesis of secondary metabolites, by mining highly conserved sequences [35].
Before the current databases (composed of hundreds of genomic datasets and
several bioinformatics tools) were established, novel sequences were evaluated by
using reverse genetics, where genomic libraries were scanned for basic biosynthetic
genes associated with a metabolic pathway of interest [38, 53]. Those annotations
had to be performed manually and by obtaining experimentally corroborated
results. This formed the basis of classical GM, which provided the first consensus
sequences to be compared with the vast amount of novel sequences obtained from
different next-generation sequencing platforms [54]. Both, reverse genetics and
GM follow the same mining pattern: one or several reference sequences, whose
enzymatic products were already experimentally validated, are used to compare
them with the genomes of interest and to identify homologous sequences in the
organism of interest. Sequences of interest are considered as being generally associ-
ated with catalytic domains and highly conserved motifs [35, 38].

Classical GM was initially focused on the identification of genomic clusters
associated with enzymes for the production of secondary metabolites, that involve
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the following bacterial groups of enzymes and bioactive peptides: (i) polyketide
synthases (PKSs); (ii) non-ribosomal peptide synthetases (NRPSs); and ribosomally
and post-translationally modified peptides (RiPPs) [55–57]. Sequence comparison
of these groups of proteins allowed the subsequent identification of conserved
motifs that are currently helping to identify novel BGCs in pre-existing genomes,
without resorting to the strenuous processes of experimentation and first consider-
ing the bioinformatic in silico approach [58]. Thus, numerous examples have dem-
onstrated the advantage of GM as a successful screening tool for evaluating the
ability of one organism to produce a particular metabolite based on the available
BGCs information [59–61]. An example of this is presented by Su et al. who
performed GM on a strain of Bacillus subtilis (i.e., NCD-2), initially predicting its
potential for the production of fengicin, surfactin, bacillaene, subtilosin,
bacillibactin, bacillosin and other not previously reported molecules, that were later
detected by UHPLC-QTOF-MS/MS in its fermentation extracts [62]. The increasing
popularity of classical GM promoted the development of GM-specialized databases
and novel bioinformatics tools with improved homology searching tools, specialized
sequence analyses, and advanced prediction algorithms. A list of some currently
available GM specialized databases and related bioinformatics tools are presented in
Tables 1 and 2, respectively.

Currently, the most popular platform for GM of bacterial and fungal genomes is
antiSMASH. It is up to now the most comprehensive by integrating its own database
and incorporating different prediction tools [63]. The key of its popularity results
from the integration of different complex secondary metabolite-specific gene anal-
ysis methods using a much more researcher-friendly interface [82]. Unfortunately,
as shown in the tables, most advances have been made in bacteria and there is still a
need to improve or create new bioinformatics tools to enable GM in other organisms
such as fungi and especially plants, which commonly do not have biosynthetic gene
clusters but a separated, often compartmentalized (cell type specific) synthesis of
secondary metabolites, including transport of intermediates between cell types and
even organs [83, 84].

2.2 Comparative genome mining

Classical GM alone fails to identify BGCs in genomic regions that do not follow a
classical modular gene topology, as described by Donadio et al. since 1991. The

Database Description Ref.

antiSMASH
database

Comprehensive resource on BGCs for secondary metabolites identified in
bacterial genomes.

[63]

BACTIBASE Open-access database used for the characterization of bacterial antimicrobial
peptides.

[64]

ClusterMine360 Contains over 200 curated entries of BGCs clusters including classification of
the potential compounds produced, taxonomic information of the producing
organisms, and links to original data.

[65]

CSDB/r-CSDB Manually curated database containing more than 160 PKS, NRPS, and PKS/
NRPS BGCs.

[66]

DoBISCUIT Contains a literature-based collection of BGCs for PKS and NRPS. [67]

IMG-ABC Contains automatically identified gene clusters, clusters with known
biosynthesis products, and secondary metabolites.

[68]

Table 1.
Main databases focused on biosynthetic gene clusters (BGCs) encoding secondary metabolites.
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organization of open reading frames (ORFs) associated with secondary
metabolite-producing genes that generally follow an order of distribution between
catalytic and structural domains for modular PKSs or NRPSs, for example, is called
a modular pattern [39]. These extensively described and annotated modules serve
as a template for comparison with new sequences from available genomes [42].

Leblond and coworkers found more than 3300 BGCs for about 16,500 possible
NRPS-associated enzymes in Streptomyces ambofaciens. However, when evaluating
the potential enzymes in silico, they realized that many did not follow the modular
pattern used as a template [85]. This, indeed, reduced the possibilities of modeling
the possible secondary metabolites that could be produced by this bacterium. This is
certainly an example of the current limitations of classical GM, which must con-
template new technologies (e.g., artificial intelligence (AI) and machine learning
(ML)) in response to unconventional sequences that do not completely follow the
expected organization.

One way to address these limitations is by integrating already existing tools that
are focused more on the identification of patterns related to phylogeny and evolu-
tion instead of molecular function. For example, descriptions of lineage relation-
ships can be made and some non-modular combinations of putative BGCs can be
described between organisms that may not belong to the same taxonomic level.
These results are not only valuable for the search for pathways to new natural
products, but they also allow evolutionary reconstruction in the creation of meta-
bolic pathways that respond to defense, competition, and attack of organisms in
their ecosystem [86]. In plant metabolomics, such phylogentic relationships based

Tool Description Ref.

antiSMASH Fully automated tool for extracting genome data from bacteria and fungi to
search for BGCs.

[69]

BiG-SCAPE Uses the distance between BGCs (identified with antiSMASH), to create
sequence similarity networks.

[70]

CLUSEAN Allows homology searches and identification of conserved domains in BGCs
of genes encoding for PKS and NRPS. Also classifies enzymes and predicts
the domains specificity.

[71]

CLUSTER
FINDER

Uses a probability approach to recognize BGCs in genomic and metagenomic
data.

[72]

EvoMining Uses phylogenetics to recognize, compare and identify BGCs associated with
primary metabolism but that present a divergent phylogeny.

[73]

FunGeneClusterS Allows the prediction of BGCs based on genomic and transcriptomic data for
fungi.

[74]

MIPS-CG Allows the identification of totally new BGCs using only genomic data. [75]

NaPDoS Detects and analyze genes associated with secondary metabolites. [76]

PhytoClust Detects BGCs of secondary metabolites in plant genomes. [77]

PKMiner Predicts novel BGCs of type II PKS and aromatic polyketide chemotypes
using their conserved aromatase and cyclase domains.

[78]

plantiSMASH An antiSMASH’ version that uses plant genomes. [79]

SBSPKS Allows chemical analysis of experimentally characterized BGCs for PKS/
NRPS proteins.

[80]

SMURF Used for mining BGCs in fungi to identify conserved domains in PKS, NRPS,
PKS/NRPS hybrids, and terpenoid genes.

[81]

Table 2.
Main tools for mining secondary metabolite biosynthesis gene clusters.
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on an untargeted fingerprint approach of natural products of different species were
for the first time described in 2013 for Urtica species [87], still awaiting a full
correlation with genomic data.

Two different ways of using phylogenetics approaches for comparative GM can
be defined: In the first one, phylogenetics trees are constructed using both the
whole sequences of the organisms under study and a pool of conserved well-
characterized gene clusters associated to the production of a defined compound. In
this way, BGC lineages can be traced and evolutionary relationships between
apparently unrelated organisms can be established. Abdelmohsen et al. used this
strategy to investigate biosynthetic pathways in actinomycetes isolated from marine
sponges from the Red Sea. After a combination of taxonomic evaluation using the
16S ribosomal gene, PCR amplification of genes associated with modular PKS and
NRPS, and phylogenetic analysis, the authors found that 20 of the actinomycetes
isolates (speeded over 10 genera) possessed at least one of the biosynthetic genes
analyzed [88]. This method has been extensively applied to identify novel potential
BGCs [70, 89] and to create new gene clusters that can be further related to already
annotated genomes of organisms previously studied at the experimental level.

The use of comparative GM has also allowed the identification of genes involved
in the production of secondary metabolites in bacteria, by considering horizontal
gene transfer events and phylogenetic analysis. Here, relationship trees are
constructed using genes that are directly associated with the creation of specific
compounds/secondary metabolites [90]. In this model, gene relationships are
inferred primarily using the biosynthetic gene sequences only, and later those
relationships are contrasted or strengthened by evaluating the rest of the organism’s
genome [91]. An example of the use of this method are studies conducted on the
genus Streptomyces, where the production of secondary metabolites was again eval-
uated considering events of lateral gene transfer. It was found that, although hori-
zontal gene transfer of the studied BGCs is not so frequent, the transfer of
exogenous regulatory, resistance, and secondary metabolite production genes can
significantly contribute to recombination events in those BGCs. Thus, comparative
GM brings new relevant concepts such as the variable nature of those BGCs and
their diversification even within very specific levels of phylogenetic discrimination.
This undoubtedly paves the way not only to understand the evolution of BGCs
in microorganisms but also to understanding the ecological landscape that it
influences [91].

Currently, one of the methods to specifically evaluate putative catalytic domains
in enzymes, using phylogenetic algorithms, is the Natural Product Domain Seeker
(NaPDos), which organizes sequences into clades and allows the recognition of
lineages of organisms capable of producing selected metabolites [76, 92]. This
represents a new approach for the evaluation of possible non-homologous and
undescribed enzymes (shown for modular PKS and NPRS) and to elucidate new
chemical structures not yet identified. NaPDos initially contained only data from
PCR fragments but now is a comprehensive tool that also includes genomics and
metagenomics data [93]. This is particularly important because it allows the evalu-
ation of genomic data obtained from complex samples such as soils, sediments,
water sources, wastes, etc. (metagenomics). With NaPDos it is even possible to
estimate the diversity of microorganisms from the sampled source, as well as to
evaluate the genetic potential for the biosynthesis of different metabolites [93].

2.3 Genome mining in synthetic biology

The identification of novel BGCs resulting from genomic mining studies repre-
sents a great opportunity for synthetic biologists and metabolic engineering as it
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allows the identification, construction, synthesis, and expression of BioBricks in
heterologous models or to discover natural compounds with outstanding properties.
One of the most significant commercial examples of this application has been
observed during the engineering of yeast for the biosynthesis of valuable products
such as artemisinin (an antimalarial drug) by using BioBricks identified through
GM [35, 94]. Recently, GM has been also used to identify more than 70 syntheses
involved in the production of hypermodified peptide cytotoxins (i.e., unique, and
valuable chemotherapeutics) by mining prokaryotic diversity [95]. With the help of
GM, the identification of several cryptic metabolic pathways has been possible,
giving way to combinatorial biosynthesis, which can be used in the construction of
biosynthetic units, following the pattern of BGCs. These approaches also present
challenges mainly related to our current understanding of the interdependent met-
abolic circuits, and the complexity in tracking them. This will certainly require
many more efforts from bioinformatics to enrich genomic mining by including
additional omics data such as transcriptomics, metabolomics, and proteomics not
only for microorganisms but also for eukaryotes with their complexer, usually
unclustered biosynthetic production networks [96].

2.4 Transcriptome mining

A transcriptome represents a “snapshot” of a RNA population in a certain tissue
or at a specific developmental stage. Compared to the genomic information of the
same organism, a transcriptomic dataset is less complex as it does not contain any
information, for example, on the untranslated regions of a genome (e.g., pro-
moters). Transcriptomes also do not provide information on the physical organiza-
tion of the individual genetic elements—a fact which in turn represents an obstacle
for the application of classical GM methods (see previous sections) used, for
instance, for pathway elucidation in plants. However, several advantages make
transcriptome mining (TM) a valuable alternative in the last years: First, unlike in a
“static” genome, differential analysis is possible for transcriptomic data. Thus, the
identification of tissue-specific transcripts (pathways restricted to special organs)
and discrimination of non-functional RNAs (pseudogenes) is much easier than in
GM approaches. Secondly, the less complex datasets facilitate mining in organisms
with large and complex genomes such as plants [97], which in general developed
multi-member gene families with redundant functions during evolution. In con-
junction with the fact that the organization of biosynthetic pathways into gene
clusters is exceptional in plants [98], TM is increasingly used in this class of organ-
isms to mine for NP pathways as well as to study different aspects of plant physiol-
ogy. Recent examples for the latter purpose include the dissection of the response to
changing temperatures [99], drought stress [100], or defense against pathogens in
model and non-model plants [101, 102].

First reports on TM used for the discovery of NP biosynthetic genes date back to
the first decade of the 21st century. The reports were based on so-called expressed
sequence tag (EST) databases [103], which were developed as an alternative to earlier
microarray-driven methods for expression analysis. Milestones for the application in
the plant field were the establishment of specific EST databases [104] and the access
to programs that used both microarray data and transcriptome datasets in the frame
of transcriptome profiling (e.g., eVOC [105]). Continued software development led
to more advanced approaches which integrated data modeling in targeted plant
engineering [106]. Alongside with the use of co-expression analysis as a standard tool
in multifaceted mining strategies [107] and the current decrease in prices for
transcriptome sequencing, the developments led to a continuous increase in the
annual output of TM-based publications (3 in 2003, 84 in 2020).
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For instance, all classes of NPs found in plants were targeted using TM in the last
years. Most reports focused on terpenoids, including papers on the identification of
single enzymes such as terpene cyclases/synthases [108], associated biocatalysts
[109] or comparative evolutionary studies of genes in whole plant families such as
Pinaceae [110] or Lamiaceae [111]. An outstanding example is the mining for
biocatalysts involved in the biosynthesis of the insecticidal limonoid azadirachtin in
neem (Azadirachta indica) [112]. By using a comparative analysis of three limonoid-
containing species from the order Sapindales, the authors could identify key
enzymes involved in the early steps of the pathway, namely the initial terpene
cyclase forming the basal triterpene scaffold and subsequent cytochromes involved
in tailoring modifications. In the field of alkaloids, TM was similarly applied,
yielding the enzyme norbelladine synthase from Narcissus pseudonarcissus [113].
This enzyme, which is used for a coupling step during the synthesis of the antican-
cer agent galantamine in Narcissus species, was fished by a TM-based screening for
functional homologs of an enzyme catalyzing a similar enzymatic reaction in opium
poppy. Hagel and co-workers [114] used a similar but broader approach to compare
plants with a pronounced production of benzylisoquinoline alkaloids. Differential
analysis of the transcriptomes and metabolomes of 20 species from the order
Ranunculales revealed 850 genes that are potentially involved in alkaloid biosyn-
thesis and are interesting candidates for use in alkaloid Synthetic Biology. A note-
worthy example concerning the biosynthesis of plant phenolics is the study of Lau
and Satteley [115], which describes mining for enzymes required for the production
of podophyllotoxin. This lignan is an antiviral polyphenol isolated from mayapple
(Podophyllum peltatum), and six of the enzymes involved in its biosynthesis could
be identified by TM followed by subsequent co-expression in tobacco. Another
example is the insight from TM and Metabolomics in the synthesis of hypericin in
the medicinal plant St. John’s wort (Hypericum perforatum) [116].

Future studies will certainly use extensive TM to further explore the biosyn-
thetic machineries to high-value metabolites other than terpenes, alkaloids, and
phenolics. In agreement with this assumption, the latest reports on TM already
target pathways to antimicrobial cyclopeptides [117], polysaccharides [118], or
compounds derived from fatty acids [119]. In general, TM studies will definitely
benefit from the integration of multi-level omics data in the future. Such compre-
hensive methods have already been applied in proof-of-concept studies, including
the combination of TM with proteomics to mine for cyclopeptides [120] or in-plant
“regulomics”, i.e., in software tools comparing transcriptomes with (epi)genomic
data to identify regulatory networks [121].

3. Metabolic data mining

Metabolism is typically defined as the sum of pathways and cycles representing
all the sets of biochemical reactions occurring at a cell and in which the product of a
particular chemical reaction becomes the substrate of the subsequent reaction [122].
Certainly, the understanding of this concept is key in the realm of biological sci-
ences, especially in the post-genomic era, where we have embraced a paradigm shift
from a gene-centered view to an increasing interest in omics-driven high-
throughput data types, sources, and approaches [123]. In line with the current move
towards systems biology, the mining of metabolism data (metabolic data mining)
includes not only the systematic study of component metabolites (i.e.,
metabolomics) [124], but also of all the controlled biochemical reactions in an
organism responsible for their production, which is more recently understood
under the name of reactomics [125] and related processes such as in fluxomics
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[126, 127]. In metabolomics, numerous subclasses have emerged, as in distinction to
especially genomics, a really holistic determination of the metabolome is impossible:
no method exists to extract and analyze all metabolites of an organism completely in
one experiment. Unlike in genomics, transcriptomics or proteomics, metabolome
analytics cannot rely on a one dimensional sequential biopolymer of a limited
number of monomer units and a few handful of derivatizations (methylation, post-
translational modifications etc.). Instead, most compounds are unique, they are
rarely produced by linear monomer assembly processes which can be deconvoluted
by standardized processes. But instead a metabolome is a mixture of compounds
with highly complex 2D and mostly 3D molecular structures of maximum variabil-
ity and physicochemical property divergenceies (e.g., sugars vs. triglycerides).
Subclasses have thus emerged, e.g., lipidomics or glycomics. Along with the great
advances of computing technologies, all types of studies -especially when applied in
combination- have led us to witness an unprecedented revolution in biotechnology
by finding patterns or trends that explain the behavior of large data sets in a
specific context and as automated as possible. Thus, during the last decade, a large
number of metabolic pathways have been mined to identify the key elements and
modules for the production of drugs, foods, fuels, and a plethora of bioactive
compounds [128–130], including the combination of transcriptome and
metabolome studies [116].

The trifold correlation of metabolomic, transcriptomic/genomic and phenotypi-
cal data ideally allows to identify both gene loci responsible and the biosynthetic
components responsible for a property (phenotype), the biosynthetic pathways for
their production, and the genetic control elements associated with them (GWAS—
genome wide association study). This allows e.g., improved molecular breeding in
plants without the necessity of producing GMOs. An example is a study on downy
mildew resistance in hops (Humulus lupulus), i.e., tackling it most devastating
pathogen by identifying the intrinsic strengths of its chemical defense. The identi-
fication of key metabolites responsible for mildew resistance, their associated path-
ways and genetic breeding markers associated with downy mildew resistance now
allows the targeted (non-GMO) molecular breeding of resistant phenotypes [131].
The same tools can, of course, also be used for higher production using genetic
improvement (GMOs) [80]. The different strategies for the identification of these
metabolic pathways via data collection and coupling, reactome reconstruction, and
rational exploration of the chemical space will be further discussed.

3.1 Metabolic data collection and coupling

A typical workflow in metabolic data mining aimed to elucidate interaction
networks and reactomes is shown in Figure 1. Initially, metabolic data is collected
including information on enzymes and metabolites. Then, the recognition and

Figure 1.
Standard workflow in metabolic data mining to elucidate interaction networks and reactomes.
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coupling of network patterns are carried out by association analysis and data
modeling to obtain a reduction in data dimensionality. Finally, reactomes are
reconstructed to elucidate the corresponding network dynamics and topology [132].
This knowledge forms the basis for future metabolic engineering experiments
aimed to enhance the production of the desired compound or to assemble novel
native but also synthetic/unnatural biosynthetic pathways. Interestingly, the cur-
rent advances in the development of novel BioBricks and the design of novel
artificial metabolic networks promote the rapid and efficient coupling of a series of
biological parts into a highly reusable large-scale framework [133].

3.2 Proficient exploration of chemical space: natural products and fragments

Metabolic data mining also may involve the use of small compounds derived
from the primary and, most especially, secondary metabolism of living organisms.
These metabolites, typically referred to as natural products (NPs), have largely
been used as a source of chemical entities with promising physicochemical, medic-
inal or other features, being used directly (unmodified), as a substructure, or as
inspiration for a structurally similar chemical scaffold [134, 135]. NPs have been
used for ages as medicines than the synthetic bioactives and as scaffolds for the
rational design of novel synthetic drugs [136, 137]. Interestingly, they occupy a
much larger fraction of the ensemble of all chemical compounds (i.e., have a larger
structural diversity), which is classically known among theoretical and computa-
tional chemists as chemical space (�1060 molecules) [138, 139]. In the field of
medicinal chemistry, and considering we only know just a bit portion of the esti-
mated chemical space (�108 molecules) [140], the use of NP-based libraries repre-
sents a priceless opportunity for scientists to make bigger and faster leaps within it
[141, 142]. This fact represents an additional advantage taking into account that
conventional combinatorial chemistry (usually termed combichem) without input
from natural products initially had very limited success in novel drug discovery
[141, 143], having its strength rather in optimization in most cases [141]. On the
other hand, an alternative scenario intended to explore the chemical space more
profoundly and, thus, may be used to harness metabolic data involves the principles
of molecular fragmentation. According to this technique, a chemical compound of
interest is not identified and evaluated as a whole, but instead, it is developed
starting from structural molecular components usually within the range 120–
300 Da (i.e., fragments) [144, 145]. Although many current chemical libraries are
available as fragments per se, various cleavage methods such as RECAP
(Retrosynthetic Combinatorial Analysis Procedure) have been widely used to
deconstruct chemical libraries of both NPs and other classes of chemical entities
[146, 147]. Among the many advantages of using fragments are not only their
potential to navigate into the chemical space in a more cost-effective manner
compared, for example, to drug-sized molecules, but also their potential to favor
the protein-ligand complementarity and facilitate selectivity adjustments during
optimization processes (a more detailed description is given in Figure 2) [148, 149].
Once more, within the field of BioBricks, the possibility of understanding every
fragment as an independent brick could facilitate not only the recovery of specific
substructures during a virtual screening (VS) protocol but also the coupling of the
best combinations of substructures to obtain a final candidate for further develop-
ment. It is worth mentioning that fragments could be “recycled” to be considered in
the development of a bigger compound if other partner fragments can supply -and
balance- particular physicochemical properties of interest. This is fully illustrated in
terms of ligand efficiency (LE) metrics as a phenomenon called fragment “rescue”
effect [150]. Through an application of these kinds of concepts and approaches, the
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scientific community may benefit from metabolomic data mining of compounds
able to mediate diverse functions in biological systems.

4. Conclusions

Multi-omics data mining has revolutionized science by enabling overlaps among
different fields of study such as biochemistry, molecular biology, synthetic biology,
organic and medicinal chemistry, computational chemistry, chemical engineering,
and high-performance computing. This represents a crucial breakthrough that is
expected to accelerate our comprehension of complex biological systems and, most
interestingly, the identification, selection, and recovery of novel pieces of biological
information in the form of BioBricks for the design of biofactories. Currently, we
have unprecedented access to large multi-omics data repositories, which make
possible the discovery, identification, and coupling of these BioBricks. This is an
important step to unleash different biological functions, or to rationally design
metabolic pathways for the biosynthesis of valuable products. However, there is still
a need for integrating additional cutting-edge technologies in computing and data
science such as machine learning, artificial intelligence, and big and smart data
analytics that can further boost the discovery and de novo design of BioBricks with
high impact in pharma, cosmetics, fine chemical and nutraceutical industries.
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Figure 2.
Comparison between typical high-throughput screening and fragment-based screening. In the left panel,
it is evident that although one specific part of the drug compound exhibits a good fit within most of the pocket of
a hypothetical target protein (red curved line), the other two parts of the same compound do not occupy any
specific binding (blue curved line) or occupies subsites of the active center only partially (green curved line). In
contrast, the right panel shows that the consideration of fragments for screening allowed the identification of
chemical entities with high inherent affinity to the corresponding pockets. Although only shape and size are
included in the illustration for clarity, many other physicochemical characteristics such as lipophilicity and
charge may affect the complementarity between a chemical moiety and its target receptor.
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