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Chapter

A Public Key Cryptosystem Using
Cyclotomic Matrices
Md. Helal Ahmed, Jagmohan Tanti and Sumant Pushp

Abstract

Confidentiality and Integrity are two paramount objectives in the evaluation of
information and communication technology. In this chapter, we propose an arith-
metic approach for designing asymmetric key cryptography. Our method is based
on the formulation of cyclotomic matrices correspond to a diophantine system. The
strategy uses in cyclotomic matrices to design a one-way function. The result of a
one-way function that is efficient to compute, however, is hard to process its
inverse except if privileged information about the hidden entry is known. Also, we
demonstrate that encryption and decryption can be efficiently performed with the
asymptotic complexity of O e2:373ð Þ. Finally, we study the computational complexity
of the cryptosystem.

Keywords: finite fields, discrete logarithm problem, cyclotomic numbers,
cyclotomic matrix, public key, secret key

1. Introduction

Apart from a rich history of Message encryption, the cryptosystem became more
popular in the twentieth century upon the evolution of information technology.
Until the last part of the 1970s, all cryptographic message was sent by the symmet-
ric key. This implies somebody who has sufficient data to encode messages likewise
has enough data to decode messages. Consequently, the clients of the framework
must have to impart the secret key furtively. As a result of an issue stealthily key
sharing, Diffie and Hellman [1] developed a totally new sort of cryptosystem called
public key cryptosystem.

In a Public key cryptosystem, both parties (in a two-party system) have a pair of
public enciphering and secret deciphering keys [2, 3]. Any party can send encrypted
messages to an assigned party using a public enciphering key. However, only the
assigned party can decrypt the message utilizing their corresponding secret
deciphering key [4]. After that various public key cryptosystems were introduced
based on tricky mathematical problems. Among these, RSA is the longest reasonable
use of cryptography. Since its design, in spite of all effort, it has not been broken
yet. The security of the RSA is acknowledged to be established on the issue of the
factorization of an enormous composite number. Be that as it may, there are some
practical issues in RSA execution. The fundamental issue is the key arrangement
time that is absurdly long for computationally restricted processors used in certain
applications. Another issue is the size of the key. It was demonstrated that the time
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required to factor an n-bit integer by index calculus factorization technique is of

order 2n
1=2þδ

, δ>0 [5]. In 1990’s, J. Pollard [6] demonstrated that it was possible in

time bounded by 2n
1=3þδ

, δ>0. The reduction of the exponent of n has significant
outcomes over the long run. It should likewise be expanded each year as a result of
upgrades in the factorization calculations and computational power. Until 2015, it
was prescribed the base size of the RSA key should be 1024 bits and subsequently
increases to 4096 & 8192 bits by 2015 & 2025 respectively [7]. While trying to
remedy these issues, Discrete logarithm problem (DLP) has been utilized (to reduce
key setup time and size of the key).

Discrete logarithm problem (DLP) is a mathematical problem that occurs in
many settings and it is hard to compute exponent in a known multiplicative group
[8]. Diffie-Hellman [1], ElGamal [9], Digital Signature Algorithm [10], Elliptic
curve cryptosystems [11, 12] are the schemes evolved under the Discrete logarithm
algorithm. The security of Diffie-Hellman relied upon the complexity of solving the
discrete logarithm problem. However, the scheme has some disadvantages. It has
not been demonstrated that breaking the Diffie-Hellman key exchange has relied
upon DLP and also the scheme is vulnerable to a man-in-the-middle attack. For the
security aspect, cryptosystem [9] was proposed, to introduce a digital signature
algorithm (DSA) that’s primarily based on Diffie-Hellman DLP and key distribution
scheme. It was demonstrated that DSA is around multiple times littler than the RSA
signature and later DSA has been supplanted by the elliptic curves digital signature
algorithm (ECDSA). Nonetheless, it has some practical implementation problems
[13–15]. The length of the smallest signature is of 320 bits, which is still being too
long for computationally restricted processors. Another issue emerged is as a corre-
lation with RSA in a field with prime characteristics, which is forty times slower
than RSA [16].

There are some other designs for public-key cryptosystems based on some
extensive features of matrices. However, there were some practical implementa-
tion problems. Thus it had never achieved wide popularity in the cryptographic
community. McElice [17] come up with a public key cryptosystem rooted on the
Goppa codes Hamming metric. The scheme has the advantage that it has two to
three orders of magnitude faster than RSA. Despite its advantage, it has some

drawbacks. It was demonstrated that the length of the public key is 219 bits and the
data expansion is too large. Some other extensions of the scheme can also be found
in [18–20]. Unfortunately, the scheme & its variants has been broken in [21–23].
Later, Gabidulin [24] come up with the rank metric & the Gabidulin codes over a
finite field with q elements, where q ¼ pr i.e. Fq, as an alternative for the Ham-
ming metric. The efficiency of the scheme relied on same set of parameters and
the complexity of the decoding algorithm for random codes in rank metric is tons
higher than the Hamming metric [17, 25–27]. Numerous fruitful attacks were
utilized on the structure of the public code [28–30]. To prevent these attacks,
numerous alterations of the cryptosystems were made, consequently drastically
increases the size of the key [31–33]. Lau and Tan [34] proposed new encryption
with a public key matrix by considering the addition of a random distortion
matrix over Fq of full column rank n. There are also many other design on
matrices, which are not cited here, but none of them gain wide popularity in the
cryptographic community due to lack of efficient implementation problems in one
and another way.

Thinking about these inadequacies, it would be desirable to have a cryptosystem
dependent on other than the presumptions as of now being used. Thus, we propose
a cyclotomy asymmetric cryptosystem (CAC) based on strong assumptions of DLP
that have to reduce the key size and faster the computational process.
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1.1 Outline of our scheme

In this chapter, we consider two significant problems in the theory of cyclotomic
numbers over Fp. The first one deals with an efficient algorithm for fast computa-

tion of all the cyclotomic numbers of order 2l2, where l is prime. The subsequent
one deals with designing public key cryptosystem based on cyclotomic matrices of

order 2l2. The strategy employs for designing public-key cryptosystem utilizing

cyclotomic matrices of order 2l2, whose entries are cyclotomic numbers of order 2l2,
l be prime, where cyclotomic numbers are certain pairs of solutions a, bð Þ2l2 of order

2l2 over a finite field Fp with p elements.
In our approach, to designing cyclotomy asymmetric cryptosystem (CAC) based

on trapdoor one-way function (OWF). The public key is obtained by choosing a
non-trivial generator γ ∈F ∗

p . The chosen value of the generator constructs a cyclo-

tomic matrix of order 2l2. It is believed that cyclotomic matrices of order 2l2 is
always non-singular if the value of k> 1. Since there are efficient algorithms for the
construction of cyclotomic matrices. Consequently, the key setup time in our pro-
posed cryptosystem is much shorter than previously designed cryptosystems.

In the scheme, the secret key is given by choosing a different non-trivial gener-
ator, which is accomplished by discrete logarithm problem (DLP) over a finite field
F ∗
p . A key-expansion algorithm is employed to expand the secret keys, which form a

non-singular matrix of order 2l2. Here it is important to note that, if one can change
the generators of F ∗

p , then entries of cyclotomic matrices get interchanged among

themselves, however, the nature of the cyclotomic matrices remain as same. The
decryption algorithm involves efficient algebraic operations of matrices. Hence the
decryption in our proposed CAC is very efficient. In view of the perspective on the
efficient encryption and decryption features, the polynomial time algorithm
ensures that the proposed CAC makes it attractive in computationally restricted
processors.

The chapter is organized as follows: Section 2 presents the definition and nota-

tions, including some well-known properties of cyclotomic numbers of order 2l2.

Section 3 presents the construction of cyclotomic matrices of order 2l2. Section 4
contains encryption and decryption algorithms of CAC along with a numerical
example. In addition, the computational complexity of the proposed CAC is
discussed and in Section 5 presents the encryption & decryption can be efficiently
perform with asymptotic complexity of O e2:373ð Þ. Finally, a brief conclusion is
reflected in Section 6.

2. Cyclotomic numbers

Cyclotomic numbers are one of the most vital objects in Number Theory. These
numbers had been substantially utilized in Cryptography, Coding Theory and other
branches of Information Theory. Thus, calculation of cyclotomic numbers, so called
to as cyclotomic number problems, of various orders is one of the primary problems
in Number Theory. Complete answers for cyclotomic number problem for e = 2� 6,

7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 22, l, 2l, l2, 2l2 with l an odd prime had been
investigated by many authors see ([35–40] and the references there in). The section
contains the generalized definition of cyclotomic numbers of order e, useful nota-

tions followed by properties of cyclotomic numbers of order 2l2. These properties

play a vital role in determining which cyclotomic numbers of order 2l2 are sufficient
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for the determination of all 4l4 cyclotomic numbers of order 2l2. The section also

examines the cyclotomic matrices of order 2l2.

2.1 Definition and notations

Let e≥ 2 be an integer, and p � 1 modeð Þ an odd prime. One writes p ¼ ekþ 1 for
some positive integer k. Let Fp be the finite field of p elements and let γ be a
generator of the cyclic group F ∗

p . For 0≤ a, b≤ e� 1, the cyclotomic number a, bð Þe
of order e is defined as the number of solutions s, tð Þ of the following:

γesþa þ γetþb þ 1 � 0 mod pð Þ; 0≤ s, t≤ k� 1: (1)

2.2 Properties of cyclotomic numbers of order 2l2

In this subsection, we recalled some elementary properties of cyclotomic num-

bers of order 2l2 [38]. Let p � 1 mod2l2
� �

be a prime for an odd prime l and we

write p ¼ 2l2kþ 1 for some positive integer k. It is clear that a, bð Þ2l2 ¼ a0, b0
� �

2l2

whenever a � a0 mod2l2
� �

and b � b0 mod2l2
� �

as well as a, bð Þ2l2 ¼

2l2 � a, b� a
� �

2l2
. These imply the following:

a, bð Þ2l2 ¼
b, að Þ2l2 if k is even,

bþ l2, aþ l2
� �

2l2
if k is odd:

8

<

:

(2)

Applying these facts, one can check that

X

2l2�1

a¼0

X

2l2�1

b¼0

a, bð Þ2l2 ¼ q� 2 (3)

and

X

2l2�1

b¼0

a, bð Þ2l2 ¼ k� na, (4)

where na is given by

na ¼
1 if a ¼ 0, 2∣ k or if a ¼ l2, 2 �∣ k,

0 otherwise:

(

3. Cyclotomic matrices

This section presents the procedure to determine cyclotomic matrices of order

2l2 for prime l. We determine the equality relation of cyclotomic numbers and
discuss how few of the cyclotomic numbers are enough for the construction of
whole cyclotomic matrix. Further generators for a chosen value of p will be deter-
mined followed by the generation of a cyclotomic matrix. At every step, we have
included a numerical example for the convenience to understand the procedure
easily.
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Definition:- Cyclotomic matrix of order 2l2, l be a prime, is a square matrix of

order 2l2, whose entries are pair of solutions a, bð Þ2l2 ; 0≤ a, b≤ 2l2 � 1, of the
Eq. (1).

For instance Table 1 depicts a typical cyclotomic matrix of order 8 (assuming
l ¼ 2). Whose construction steps have been given in the next subsection.

3.1 Construction of cyclotomic matrix

Typically construction of a cyclotomic matrix has been subdivided into four
subsequent steps. Below are those ordered steps for the construction of a cyclotomic
matrix;

1.For given l, choose a prime p such that p satisfies p ¼ 2l2kþ 1, k∈Zþ. The
initial entries of the cyclotomic matrix are the arrangement of pair of numbers

a, bð Þ2l2 where a and b usually vary from 0 to 2l2 � 1.

2.Determine the equality relation of pair of a, bð Þ2l2 , which reduces the
complexity of pair of solution a, bð Þ2l2 of Eq. (1), that is discuss in next sub-
section.

3.Determine the generators of chosen p (i.e. generators of F ∗
p ). Let γ1, γ2, γ3,… ,

γn be generators of F
∗
p .

4.Choose a generator (say γ1) of F
∗
p and put in Eq. (1). This will give cyclotomic

matrix of order 2l2 w.r.t. chosen generator γ1.

The first step initializes the entries of cyclotomic matrix of order 2l2. Value of p
will be determined for given l. Assuming l ¼ 2, an example of such initialization of
matrix of order 8 has been shown in Table 1.

For the construction of cyclotomic matrix, it does not require to determine all
the cyclotomic numbers of a cyclotomic matrix which is shown in Table 1 [36]. By

well-known properties of cyclotomic numbers of order 2l2, cyclotomic numbers are
divided into various classes, therefore there are a pair of the relation between the
entries of initial table (Table 1) of a cyclotomic matrix. Thus to avoid calculating
the same solutions in multiple times, we determine the equality relation of

(a,b) b

a 0 1 2 3 4 5 6 7

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

1 (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

2 (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

3 (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

4 (4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

5 (5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

6 (6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

7 (7,0) (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

Table 1.
Cyclotomic matrix of order 8.
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cyclotomic numbers (i.e. equality of solutions of a, bð Þ2l2). In the next subsection,
we will discuss which cyclotomic numbers are enough for the construction of the
cyclotomic matrix. Thus it helps us to the faster computation of cyclotomic matrix.

3.2 Determination of equality relation of cyclotomic numbers

This subsection presents the procedure to determine the equality relation of
cyclotomic numbers (i.e. the relation of pair of a, bð Þ2l2), which reduces the com-
plexity of solutions of pair of a, bð Þ2l2 (see also [36]). For the determination of

cyclotomic matrices, it is not necessary to obtain all 4l4 cyclotomic numbers of

order 2l2. The minimum number of cyclotomic numbers required to determine all
the cyclotomic numbers (i.e. required for construction of cyclotomic matrix)

depends on the value of positive integer k on expressing prime p ¼ 2l2kþ 1. By (2),
if k is even, then

a, bð Þ2l2 ¼ b, að Þ2l2 ¼ a� b,�bð Þ2l2 ¼ b� a,�að Þ2l2 ¼ �a, b� að Þ2l2 ¼ �b, a� bð Þ2l2

(5)

otherwise

a, bð Þ2l2 ¼ bþ l2, aþ l2
� �

2l2
¼ l2 þ a� b,�b

� �

2l2
¼ l2 þ b� a, l2 � a

� �

2l2

¼ �a, b� að Þ2l2 ¼ l2 � b, a� b
� �

2l2
: (6)

Thus by (5) and (6), cyclotomic numbers a, bð Þ2l2 of order 2l
2 can be divided into

various classes.

• 2∣k and l 6¼ 3: In this case, (5) gives classes of singleton, three and six elements.
0, 0ð Þ2l2 form singleton class, �a, 0ð Þ2l2 , a, að Þ2l2 , 0,�að Þ2l2 form classes of three

elements where 1≤ a≤ 2l2 � 1 mod2l2
� �

and rest 4l4 � 3� 2l2 þ 2 of the
cyclotomic numbers form classes of six elements.

• 2∣k and l ¼ 3: In this case, (5) divide cyclotomic numbers a, bð Þ18 of order 18
into classes of singleton, second, three and six elements. 0, 0ð Þ18 form singleton
class, �a, 0ð Þ18, a, að Þ18, 0,�að Þ18 form classes of three elements, where
1≤ a≤ 17 mod18ð Þ, 6, 12ð Þ18 ¼ 12, 6ð Þ18 which is grouped into classes of two

elements and rest 4l4 � 3� 2l2 of the cyclotomic numbers form classes of six
elements.

• 2 �∣k and l 6¼ 3: Using (6), once again we get classes of singleton, three and six

elements. 0, l2
� �

2l2
forms singleton class, 0, að Þ2l2 , aþ l2, l2

� �

2l2
, l2 � a,�a
� �

2l2

form classes of three elements, where 0≤ a 6¼ l2 ≤ 2l2 � 1 mod2l2
� �

and rest 4l4 � 3� 2l2 þ 2 of the cyclotomic numbers form classes of six
elements.

• 2 �∣k and l ¼ 3: In this situation, (6) partitions cyclotomic numbers a, bð Þ18 of
order 18 into classes of singleton, two, three and six elements. Here 0, 9ð Þ18
form singleton class, 0, að Þ18, aþ 9, 9ð Þ18, 9� a,�að Þ18 form classes of three
elements, where 0≤ a 6¼ 9≤ 17 mod18ð Þ, 6, 3ð Þ18 ¼ 12, 15ð Þ18 which is grouped

into classes of two elements and rest 4l4 � 3� 2l2 of the cyclotomic numbers
form classes of six elements.
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Algorithm 1 Equality relation of cyclotomic numbers.

1: START
2: Declare integer variable e, l, p, k, flag.

3: INPUT l, an odd prime and e ¼ 2l2

4: Declare an array of size e� e, where each element of array is 2 tuple structure
(i.e. ordered pair of a, bð Þ2l2 , where a and b are integers).

5: INPUT p, prime number greater than 2
6: if p� 1ð Þ%e ¼¼ 0 then
7: k ¼ p� 1ð Þ=e
8: if k even then
9: Update table (E)

10: else
11: Update table (O)
12: end if
13: end if

Here Update table (E) means each entry a, bð Þ2l2 of the table will be updated by
applying the relations a, bð Þ2l2 ¼ b, að Þ2l2 ¼ a� b,�bð Þ2l2 ¼ b� a,�að Þ2l2 ¼

�a, b� að Þ2l2 ¼ �b, a� bð Þ2l2 , and Update table (O) means each entry a, bð Þ2l2 of

the table will be updated by applying the relations a, bð Þ2l2 ¼ bþ l2, aþ l2
� �

2l2
¼

l2 þ a� b,�b
� �

2l2
¼ l2 þ b� a, l2 � a2l2

� �

¼ �a, b� að Þ2l2 ¼ l2 � b, a� b
� �

2l2
.

Further, if entries of the updated table are non-negative, then each entry should

be replace by mod2l2
� �

, otherwise add 2l2. It is clear from above exploration,

cyclotomic numbers of order 2l2 are divided into different classes depending on the
values of k and l. For l ¼ 2 and let k be even, then 0, 0ð Þ8 give unique solution,
cyclotomic numbers of the form �a, 0ð Þ8, a, að Þ8, 0,�að Þ8 where 1≤ a≤ 7 mod8ð Þ
gives the same solutions and rest of cyclotomic numbers (i.e. 42) which forms
classes of six elements has maximum 7 distinct numbers of solutions. Therefore the
initial table (i.e. Table 1) of cyclotomic matrix reduces to Table 2. Similarly, for
l ¼ 2 and let k be odd, then 0, 4ð Þ8 give unique solution, cyclotomic numbers of the
form 0, að Þ8, aþ 4, 4ð Þ8, 4� a,�að Þ8 where 0≤ a 6¼ 4≤ 7 mod8ð Þ gives the same
solutions and rest of cyclotomic numbers (i.e. 42) which forms classes of six
elements has maximum 7 distinct numbers of solutions. Therefore the initial table

(a,b) b

a 0 1 2 3 4 5 6 7

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

1 (0,1) (0,7) (1,2) (1,3) (1,4) (1,5) (1,6) (1,2)

2 (0,2) (1,2) (0,6) (1,6) (2,4) (2,5) (2,4) (1,3)

3 (0,3) (1,3) (1,6) (0,5) (1,5) (2,5) (2,5) (1,4)

4 (0,4) (1,4) (2,4) (1,5) (0,4) (1,4) (2,4) (1,5)

5 (0,5) (1,5) (2,5) (2,5) (1,4) (0,3) (1,3) (1,6)

6 (0,6) (1,6) (2,4) (2,5) (2,4) (1,3) (0,2) (1,2)

7 (0,7) (1,2) (1,3) (1,4) (1,5) (1,6) (1,2) (0,1)

Table 2.
Cyclotomic matrix of order 8 for even k.
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(i.e. Table 1) of cyclotomic matrix reduces to Table 3. One can observe that 64
pairs of two parameter numbers a, bð Þ8 reduced to 15 distinct pairs (see Tables 2
and 3).

Remark 3.0 By Algorithm 1, to compute 2l2 cyclotomic numbers, it is enough to

compute 2l2 þ 2l2 � 1
� �

2l2 � 2
� �

=6
� �

, if 2l2 � 1
� �

2l2 � 2
� �

∣6, otherwise 2l2 þ

2l2 � 1
� �

2l2 � 2
� �

=6
� �

þ 1. Further, when l is the least odd prime i.e. l ¼ 3,

then 2l2 � 1
� �

2l2 � 2
� �

�∣6. Therefore l ¼ 3, it is enough to calculate 64 distinct

cyclotomic numbers of order 2l2 and for l 6¼ 3, it is sufficient to calculate

2l2 þ 2l2 � 1
� �

2l2 � 2
� �

=6 distinct cyclotomic numbers of order 2l2.

3.3 Determination of generators of F∗

p

To determine the solutions of (1), we need the generator of the cyclic group F ∗
p .

Let us choose finite field of order p that satisfy p ¼ 2l2kþ 1; k∈Zþ. Let γ1, γ2, γ3,… ,
γn be generators of F

∗
p . We consider finite field of order 17 (i.e. F17), since the

chosen value of p ¼ 17 with respect to the value of l take previously. Now to
determine the generators of cyclic group F ∗

17. The detail procedure to obtain the
generator of F ∗

17 has been depicted in Algorithm 2. If G17 is a set that contain all the
generator of F ∗

17, we could get elements of G17 as f3, 5, 6, 7, 10, 11, 12, 14g.

Algorithm 2 Determination of generators of F ∗
p .

1: Declare integer variable p, count
2: Declare integer array arrFp p½ �, arrFpflag p½ �

3: for i ¼ 1 to p� 1 do
4: arrFp i½ � ¼ i, arrFpflag i½ � ¼ 0
5: end for
6: Declare integer array arrGp max½ �

7: Declare integer variable flag ¼ 0, r, γ

8: for i ¼ 1 to p� 1 do
9: count = 0

10: for f ¼ 1 to p� 1 do
11: arrFpflag f½ � ¼ 0
12: end for
13: γ ¼ arrFp i½ �

(a,b) b

a 0 1 2 3 4 5 6 7

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

1 (1,0) (1,1) (1,2) (1,3) (0,5) (0,3) (1,3) (1,7)

2 (2,0) (2,1) (2,0) (1,7) (0,6) (1,3) (0,2) (1,2)

3 (1,1) (2,1) (2,1) (1,0) (0,7) (1,7) (1,2) (0,1)

4 (0,0) (1,0) (2,0) (1,1) (0,0) (1,0) (2,0) (1,1)

5 (1,0) (0,7) (1,7) (1,2) (0,1) (1,1) (2,1) (2,1)

6 (2,0) (1,7) (0,6) (1,3) (0,2) (1,2) (2,0) (2,1)

7 (1,1) (1,2) (1,3) (0,5) (0,3) (1,3) (1,7) (1,0)

Table 3.
Cyclotomic matrix of order 8 for odd k.
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14: for a ¼ 1 to p� 1 do
15: r ¼ power γ, að Þ modpð Þ
16: for j ¼ 1 to p� 1 do
17: if r is equal to arrFp j½ � then
18: arrFpflag j½ � ¼ 1
19: end if
20: end for
21: end for
22: for k ¼ 1 to p� 1 do
23: if arrFpflag k½ � is equal to 1 then
24: count++
25: end if
26: end for
27: if count is equal to p� 1 then
28: γ is generator
29: end if
30: end for

3.4 Generation of cyclotomic matrices

This subsection, present an algorithm for the generation of cyclotomic matrices

of order 2l2. Note that entries of cyclotomic matrices are solutions of (1). Thus we
need the generator of the cyclic group F ∗

p , which is discussed in the previous

subsection. On substituting the generators of F ∗
p in Algorithm 3, we obtain the

cyclotomic matrices of order 2l2 corresponding to different generators of F ∗
p . The

chosen value of p ¼ 17 implies k ¼ 2 w.r.t. assume value of l ¼ 2. Therefore the
cyclotomic matrix will be obtain from Table 2. Let us choose a generator (say γ1 ¼ 3)
from setG17. On substituting γ1 ¼ 3 in Algorithm 3, it will generate cyclotomic matrix
of order 8 over F17 w.r.t. chosen generator γ1 ¼ 3. Matrix B0 show the corresponding
cyclotomic matrix of order 8 w.r.t. chosen generator 3∈F ∗

17.

B0 ¼

0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 1

1 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Algorithm 3 Generation of cyclotomic matrix.

1: INPUT: The value of p, l, γ
2: Declare an array arr ROW½ � COL½ � (where elements are two tuple structure)
3: Declare integer variable p, l, k, γ, x, y, A, s, t, a, b, count ¼ 0, p1, p2
4: for a equal to 0 to number of rows do
5: for b equal to 0 to number of columns do
6: for x is equal to 0 to k do
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7: for y is equal to 0 to k do

8: p1 ¼ 2l2 ∗ sþ arr a½ � b½ �:l

9: p2 ¼ 2l2 ∗ tþ arr a½ � b½ �:m

10: A ¼ power γ, p1
� �

þ power γ, p2
� �

þ 1
11: if A modpð Þ is equal to 0 then
12: countþþ
13: end if
14: end for
15: end for
16: arr a½ � b½ �:n ¼ count
17: count ¼ 0
18: end for
19: end for

Remark 3.1 It is noted that if we change the generator of F ∗
p , then entries of

cyclotomic matrices get interchanged among themselves but their nature remains
the same.

Remark 3.2 It is obvious that (by (4)) cyclotomic matrices of order 2l2 is always
singular if the value of k ¼ 1.

4. The public-key cryptosystem

In this section, we present the approach for designing a public key cryptosystem
using cyclotomic matrices discussed in Section 3. The scheme employ matrices of

order 2l2, whose entries are cyclotomic numbers of order 2l2. The public key is a
non-trivial generator, say γ0 of a set of generator in F ∗

p along with p and l. The set of

generator is obtain by Algorithm 2. The chosen public keys generate a cyclotomic

matrix as of required order (i.e. order of 2l2) make use of Algorithm 3. Here, we

define a trapdoor one-way function ϕ : F ∗
p ! F ∗

p as ϕ r0ð Þ ¼ log γ0 γ
00ð Þ; r0 ∈N

!
, γ0, γ00

are non-trivial generators of F ∗
p . Thus, the secret key are the values of p, l, γ00 & r0.

To encrypt a message, define composition of matrix as M2l2 A ∗Bð Þ ! M2l2 Cð Þ,
where A is a message block matrix, B is a cyclotomic matrix w.r.t. γ0 ∈F ∗

p and C is

the ciphertext matrix. Other way one can define M2l2 B ∗Að Þ ! M2l2 Cð Þ. Therefore,

the length of the ciphertext in CAC is equal to 2l2.
To decrypt a message, an algorithm is required to expand the secret keys

provided by the secret values. Therefore, the Algorithm 4 is utilized for this
purpose.

Algorithm 4 Secrete key expansion.

1: SECRET INPUT: The values of p, l, r0 and γ00

2: Algorithm 1
3: Algorithm 2

The main purpose, to utilize the above algorithm is to construct a non-singular

cyclotomic matrix of order 2l2 w.r.t. non-trivial generator γ00 (γ00 6¼ γ0) in F ∗
p . Now to

decrypt the message, we define inverse composition relation of matrices, which is
M2l2 C ∗Zð Þ ! M2l2 Að Þ, where matrix Z is obtain by some efficient algebraic
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computation of matrix. Other way one can define M2l2 Z ∗Cð Þ ! M2l2 Að Þ

respectively.

4.1 Determination of matrix Z

The following steps have been taken for the determination of matrix Z.

1.Determine the equality of cyclotomic matrix of order 2l2 corresponding to the
secret values of p & l, which is perform by Algorithm 1.

2.Each entry of equality of cyclotomic matrix is multiplied by r0.

3.Compute the inverse of equality of cyclotomic matrix generated in step 2.

4.Finally, on substitution the values of the generated cyclotomic matrix
corresponding to γ00 to an inverse matrix in step 3.

The following two algorithms (i.e. Algorithm 5 & 6) are utilized to encrypt and
decrypt a message in the proposed CAC, respectively.

Algorithm 5 Encryption.

1: Transfer the plain text (message) into its numerical value and store in matrix

of order 2l2

2: PUBLIC INPUT: The values of p, l and γ0

3: Execute Algorithm 3
4: Check: Generated cyclotomic matrix in step 3 is non-singular
5: Cipher matrix: Multiply cyclotomic matrix and the matrix generated in step 1
6: Ciphertext: The corresponding text values of matrix generated in step 5

Algorithm 6 Decryption.

1: Input: The cipher matrix/ciphertext
2: Execute Algorithm 4
3: Each entries of equality of cyclotomic matrix (i.e. output matrix of
Algorithm 1) is multiply by r0. The entries of the generated matrix are pair of
cyclotomic number

4: Compute the inverse of generated matrix in step 3 and substitute the value of
each pair of cyclotomic number from generated matrix in step 2

5: Nowmultiply the cipher text matrix to generated matrix in step 4, we get back
to the original plain text message.

4.2 Computational complexity of the CAC

In this section, we would validate the computational complexity of the
proposed CAC. The computational complexity measures the amount of
computational effort required, by the best as of now known techniques, to break a
system [2]. However, it is exceptionally hard to demonstrate the computational
complexity of public-key cryptosystems [2, 3]. For instance, if the public modulus
of RSA is factored into its prime components, at that point the RSA is broken. Be
that as it may, it is not demonstrated that breaking RSA is identical to factoring its
modulus [41]. Here, we study the computational complexity of the CAC by
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providing arguments related to the inversion of the one-way function in CAC to a
best known computational algorithm. The complexity of anonymous decryption
could be understood as; if we assume that an attacker wants to recover the secret
key by using all the information’s available to them. Then they need to solve the
discrete logarithm problem (DLP) to find the secret key followed by a number of
steps described in Algorithm 6. Since, the one-way function is define analogous to
discrete logarithm problem (DLP). However, although most mathematicians and
computer scientists believe that the DLP is unsolvable [42]. The complexity of the
DLP depends on the cyclic group. It is believed to be a hard problem for the
multiplicative group of a finite field of large cardinality. Therefore even
determining the very first step is nearly unsolvable.

If it is the case that somehow attacker manages to solve the DLP, then they have
to determine Eq. (1) and calculate all the solutions corresponding to different pairs
a, bð Þ2l2 . Further, it is required to determine the relation matrix based on equality
relation among the solutions of Eq. (1). Where entries of the relation matrix are the
two-tuple structure of a, bð Þ2l2 . Finally, entries of inverse of the relation matrix are
required to replace through the implication of DLP.

Here we could observe the computational complexity as it increases with the

value of p and 2l2. Therefore it is nearly impossible to determine the secret key for a

large value of p and 2l2; hence uphold the secure formulation claim of the proposed
work.

4.3 An example of the CAC

In this section, we provide an example for the proposed CAC. The example is
designed according to guidelines described in Section 4. The main purpose of this
example is to show the reliability of our cryptosystem. It is important to note that
this example is non-viable for the proposed CAC, since the values of the parameters
are too small.

Example 1 Let us consider 2l2 ¼ 8 (i.e. l ¼ 2) and p ¼ 17. Suppose we want to
send a message X whose numerical value store in matrix A of order 8.

A ¼

2 3 5 9 8 0 2 1

1 5 9 2 9 3 0 5

2 1 3 2 5 6 8 7

5 3 0 7 8 7 3 1

4 2 3 1 9 8 7 3

0 9 2 3 5 6 8 9

1 0 2 9 6 7 9 8

9 1 3 2 4 4 5 6

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

We choose two distinct non-trivial generators of a set of generator in F ∗
17 (the set

of generator is obtain by employing Algorithm 2), say γ0 ¼ 11 and γ00 ¼ 3. Now, we
evaluate the complex relation between these chosen generators, which can perform

by DLP. One can write 37 ¼ 11 mod17ð Þ. Consider that r0 ¼ 7. The public key is the
public values l ¼ 2, p ¼ 17 & γ0 ¼ 11 and the private key is the secret values l ¼ 2,
p ¼ 17, r0 ¼ 7 & γ00 ¼ 3. The public values generated cyclotomic matrix of order 8 as
required, which is
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B3 ¼

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

1 0 0 0 0 0 0 1

0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 0 0 1 0

0 0 0 0 0 1 1 0

0 0 1 0 1 0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Determinant of B3 is equal to 1, implies non-singular. Now we encrypt the
message A by multiplying matrix B3 and A, which is as follows:

C ¼ B3 �A ¼

2 1 3 2 5 6 8 7

5 12 2 10 13 13 11 10

11 4 8 11 12 4 7 7

5 7 12 3 18 11 7 8

14 4 3 9 12 11 8 7

2 5 11 11 15 10 9 13

1 9 4 12 11 13 17 17

6 3 6 3 14 14 15 10

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

The matrix C is a ciphertext matrix. To transmit the message, entries of the
matrix converted into text. To decrypt the message, first, we expand the secret keys
which are performed by Algorithm 4. It generates a non-singular cyclotomic matrix
of order 8, which is shown by matrix B0. Now each entry of equality of cyclotomic
matrix (i.e. output matrix of Algorithm 1) is multiplied by r0 ¼ 7. We get matrix D
whose entries are pair of cyclotomic numbers.

D ¼

0, 0ð Þ 0, 7ð Þ 0, 6ð Þ 0, 5ð Þ 0, 4ð Þ 0, 3ð Þ 0, 2ð Þ 0, 1ð Þ

0, 7ð Þ 0, 1ð Þ 1, 2ð Þ 1, 6ð Þ 1, 5ð Þ 1, 4ð Þ 1, 3ð Þ 1, 2ð Þ

0, 6ð Þ 1, 2ð Þ 0, 2ð Þ 1, 3ð Þ 2, 4ð Þ 2, 5ð Þ 2, 4ð Þ 1, 6ð Þ

0, 5ð Þ 1, 6ð Þ 1, 3ð Þ 0, 3ð Þ 1, 4ð Þ 2, 5ð Þ 2, 5ð Þ 1, 5ð Þ

0, 4ð Þ 1, 5ð Þ 2, 4ð Þ 1, 4ð Þ 0, 4ð Þ 1, 5ð Þ 2, 4ð Þ 1, 4ð Þ

0, 3ð Þ 1, 4ð Þ 2, 5ð Þ 2, 5ð Þ 1, 5ð Þ 0, 5ð Þ 1, 6ð Þ 1, 3ð Þ

0, 2ð Þ 1, 3ð Þ 2, 4ð Þ 2, 5ð Þ 2, 4ð Þ 1, 6ð Þ 0, 6ð Þ 1, 2ð Þ

0, 1ð Þ 1, 2ð Þ 1, 6ð Þ 1, 5ð Þ 1, 4ð Þ 1, 3ð Þ 1, 2ð Þ 0, 7ð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Now compute the inverse of D and substitute the value from B0 to each pair of
cyclotomic numbers. The matrix becomes
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D ∗ ¼

�1 1 1 �1 �1 1 �1 1

1 0 0 1 0 0 0 �1

1 0 0 0 0 0 0 0

�1 1 0 �1 0 1 �1 1

�1 0 0 0 0 0 0 1

1 0 0 1 0 �1 1 �1

�1 0 0 �1 0 1 0 1

1 �1 0 1 1 �1 1 �1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Finally, we obtain D* � C = A.

5. The complexity of CAC

Time and space are usually prominent factors to establish the effectiveness of
security solutions. In the before seen sections, we have established the computa-
tional difficulty to break the proposed work. Further, we would demonstrate the
complexity of the solution in terms of worst-case running time.

The time complexity of Algorithm 1 in worst case is O e2ð Þ. Since formation of
matrix of order e and Update_Table() individually will take O e2ð Þ. In algorithm 2,
for loop in line number 9, 15, and 17 contributes O e3ð Þ in worst case. Since,

e ¼
p� 1

k

) e3 ¼
p� 1

k

� �3

�
p3

k3

� �

Since k is a positive integer, therefore when k attains its minimum value i.e. 1,

p3

k3
� p3 � e3:

For any higher value of k, there is guarantee that

p3

k3
< e3:

Hence, we conclude that Algorithm 2 can take O e3ð Þ in worst case.
Similarly, in Algorithm 3, for loop in line number 4, 5, 6, 7 contributes e: e: k: k

or say O e2k2
� �

running time in worst case. Using similar analogy as in case of

Algorithm 2, worst case complexity will be O e2ð Þ.

5.1 Encryption

Encryption as expressed in Algorithm 5 constitutes of three logical divisions and
the complexity of encryption would be the sum of the complexity of its part. The
state divisions within are as follows;

1.Generating cyclotomic matrix
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2.Checking the singularity of the cyclotomic matrix.

3.Multiplication of generated cyclotomic matrix and matrix corresponds to plain
text.

Starting from the generation of the cyclotomic matrix, comprises the total com-
plexity O e2ð Þ as stated earlier. Further, checking singularity involves the computa-
tion of determinants of the matrix of order e. In worst case computing determinant
of a matrix of order n by fast algorithm [43] takes O n2:373ð Þ. Hence, singularity of
the cyclotomic matrix of order e could be computed in O e2:373ð Þ time. Finally,
multiplication of cyclotomic matrix of order e and matrix corresponds to plain text

of order e will take O e2:3728639
� �

time. Therefore, Complexity of Encryption would

become O e2ð Þ þO e2:373ð Þ þO e2:3728639
� �

� O e2:373ð Þ. Thus a polynomial time com-
plexity seems to be quite worthwhile.

5.2 Decryption

Decryption as expressed in Algorithm 6 that include Algorithm 4 which sums
the complexity of Algorithm 1 and 3, therefore takes O e2ð Þ + O e2ð Þ � O e2ð Þ time.
Further, multiplication of cyclotomic matrix of order e by a constant value r0,
therefore yield O e2ð Þ complexity. Likewise, inverse of a matrix of order n can be
computed by a fast algorithm [43] in O n2:373ð Þ, therefore, inverse of generated
matrix of order e could be computed in O e2:373ð Þ time. Finally multiplication of two

matrix of order e could be computed in O e2:3728639
� �

by best known algorithm [44]

till date. Therefore, Complexity of decryption would beO e2ð Þ +O e2ð Þ +O e2:373ð Þ +

O e2:3728639
� �

, which becomesO e2:373ð Þ.

6. Conclusion

In this chapter, we have introduced a secured asymmetric key cryptography
model applying the principle of cyclotomic numbers over a finite field. Procedure to
generate cyclotomic matrix along with public & private key have been presented,
where the relation between the public & private key has acquired by discrete
logarithm problem (DLP). Finally, a convincing argument to strengthen the claim
has been presented followed by the method of encryption, decryption & a
numerical example.
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