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Chapter

Salt and Water Stress Responses 
in Plants
Mirela Irina Cordea and Orsolya Borsai

Abstract

Climate change-driven ecological disturbances have a great impact on freshwater 
availability which hampers agricultural production. Currently, drought and salinity 
are the two major abiotic stress factors responsible for the reduction of crop yields 
worldwide. Increasing soil salt concentration decreases plant water uptake leading 
to an apparent water limitation and later to the accumulation of toxic ions in various 
plant organs which negatively affect plant growth. Plants are autotrophic organisms 
that function with simple inorganic molecules, but the underlying pathways of defense 
mechanisms are much more complex and harder to unravel. However, the most prom-
ising strategy to achieve sustainable agriculture and to meet the future global food 
demand, is the enhancement of crop stress tolerance through traditional breeding 
techniques and genetic engineering. Therefore, it is very important to better understand 
the tolerance mechanisms of the plants, including signaling pathways, biochemical and 
physiological responses. Although, these mechanisms are based on a well-defined set of 
basic responses, they can vary among different plant species.

Keywords: abiotic stress, salinity, drought, response mechanisms, tolerance

1. Introduction

Salinity and drought are the two major constraints that affect plant growth and 
crop production alongside other stress conditions such as extreme temperature, 
heavy metals, flooding etc. thus reducing agricultural productivity worldwide. Both 
the cellular and molecular responses of plants to these environmental stresses have 
already been investigated, however understanding these mechanisms by which plants 
can perceive stress signals and transmit them to cellular machinery to activate adap-
tive responses is a very important chain-link of plant physiology. Besides, extending 
knowledge about stress signal transduction becomes vital for breeding programs and 
genetic engineering to improve stress tolerance in crops.

Due to climate change, it is predicted that drought and salinity will became more 
severe in the upcoming years which could lead to a significant reduction of plant 
growth and yield of several economically important species. It has been estimated 
that worldwide food demand will increase by 70% until the end of 2050 [1] due to a 
population growth of 2.3 billion people. In this context, developing crop plants with 
high yield and better tolerance to harsh environmental conditions becomes an urgent 
need to meet future food demand for next generations.
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In general, plant responses to salinity and drought may vary in morphological, 
physiological and biochemical aspects and processes. Most of the effects induced 
by salinity and drought are negative, however to some extent they can have posi-
tive effects as well [2]. It has been reported that salinity at certain concentrations 
enhanced plant fecundity due to an increase in reproduction, but it has also been 
observed that this enhancement was highly dependent on genotype and plant devel-
opmental stage [3]. Soil water salinity can also have a positive effect on fine particles 
helping them to bind together into aggregates, thus improving soil aeration, root 
penetration and root growth [4]. Nevertheless, salinity cannot be increased in favor of 
soil structure without considering the potential impacts on plant health.

Salt-stress resistance represents the ability of a plant to prevent, reduce or over-
come the possible damaging effects caused directly or indirectly by the presence of 
excessive soluble salts (accumulation of toxic ions) in its root zone. A 50% reduction 
in yield can be considered a measure of salt stress.

Drought stress occurs after a relatively long period with no rains, inducing mois-
ture stress in the soil detrimental to crop growth, especially in rainfed agriculture. 
The severity of drought is strongly related to the timing (growth stage of the plants) 
and intensity (duration of no rain period). Other factors such as soil characteristics 
and agricultural practices can interfere with crop yields.

Previous reports suggest that a positive transgenerational impact on seedling vigor 
of Brassica napus has been observed due to drought stress [5]. This phenomenon was 
explained as a result of the heterotic effects, altered reservoir of seed storage metabo-
lites, and inter-generational stress memory formed by stress-induced changes in the 
epigenome of the seedling. Compared to salt stress, drought stress has more severe 
effects on plants and economy [6] but plant responses are closely related and their 
defense mechanisms even overlap.

The ability of a crop variety to perform better over other varieties under drought 
conditions is known as drought resistance which is linked to achieved yields and 
potential yields achievable in a given environment in the absence of drought condi-
tions. Drought resistance is highly environment specific and yield stability might be 
influenced by crop management practices, and/or physiological mechanisms and 
might not necessarily be associated with the drought resistance ability of a genotype. 
In a drought resistant variety, plant growth and development are well-matched to 
specific drought environment(s) [7].

When sensing salinity or drought stresses, plants have the capability to combine a 
range of responses in order to avoid stress injuries and complete their life cycle. By the 
activation of various defense mechanisms plants can store reserves in their organs and 
use them later for yield production or, they can tolerate stress conditions without tis-
sue dehydration [8]. Plant-associated organisms play an important role in improving 
the adaptation strategies of plants to environmental stresses. In this context, micro-
organisms, for example, can rescue plants from the deleterious effects of drought and 
salinity through their activity, such as nutrient solubilization, IST and production of 
phytohormones (IAA, Cytokinin, ABA or GA), EPS and ACC deaminase. The inocu-
lation of plants with arbuscular mycorrhizal fungus can also increase plants’ tolerance 
to short term salinity exposures [9, 10].

With all these fundamentals being provided to understand the underlying defense 
mechanisms of plants against stress conditions, further studies are still needed to 
reveal key mechanisms which govern salinity and drought tolerance responses in 
plants and which can lead us towards better direction in crop improvement, in order 
to obtain potential candidates for future saline agriculture.
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2. Mechanism of salt stress and plant response

Stress factors, such as osmotic, ion toxicity, nutrient imbalance or soil pH alter the 
expression of several morphological, physiological and biochemical characteristics of 
plants. As the stress increases, plant growth is further restricted. Under severe stress 
conditions plants may die prematurely after germination or transplanting or can 
survive longer shriveling [11, 12].

Seed germination is often hindered and/or delayed when environmental stresses 
occur. Seedlings often fail to survive since in this stage of growth plants are the most 
vulnerable [13]. Plant growth is stunted affecting most of the vegetative characters, such 
as leaf number, size, shoot number, plant height etc. [14, 15]. Regarding the reproductive 
traits of the plants, salt stress can often induce an early flowering and abortion of flower 
buds [16, 17]. Furthermore, a significant overall reduction in yield can be observed in 
most of the plant species subjected to salt stress. Achieved yields are usually much lower 
than potential yields under normal growing conditions [18–20].

Plant growth in saline soils is usually affected because of the osmotic effect in the 
soil solution. High salt concentration increases the potential forces that hold water in 
the soil and makes it more difficult for plant roots to extract soil moisture. During dry 
periods, salt in soil solutions may be so concentrated as to kill plants by sucking water 
from them (exosmosis) [21]. Moreover, salt in the soil solution forces a plant to exert 
more energy to absorb water and to exclude salt from metabolically active sites. As 
salinity increases, plant growth is further restricted. A saline soil should be kept wet 
to dilute the salt concentration so as to cause the least salt hindrance to the growing 
plants. Also, plant growth in sodic/alkaline soils is affected due to high ESP through-
out the profile, very low infiltration and hydraulic conductivity rates [22]. The 
exchangeable complex of alkaline soils is largely occupied by sodium ions which cause 
dispersion of soil due to the breakdown of aggregates forming a dense surface crust 
which greatly hinders seedling emergence due to low permeability of the soil to water 
and air. Poor drainage in such soils is due to a high water table which further restricts 
plant’s ability to absorb water and nutrients in required amounts [23]. High pH results 
in reduced availability of some essential plant nutrients [24]. Accumulation of certain 
elements in plant parts at toxic levels may result in plant injury or reduced growth and 
even death in extreme cases. The most common toxic elements are sodium, molyb-
denum and boron. Selenium may also occur in toxic concentrations. Plant growth in 
degraded alkaline or solodic soils is largely due to poor drainage.

Crop species and varieties greatly vary regarding their response to salt stress 
(Figures 1 and 2). Many naturally occurring plants in salt-affected soils (halophytes) 
have certain specific structures and adaptation strategies, for example salt glands 
and salt hairs on their leaves [25, 26]. Detailed studies on salt glands in salt-tolerant 
plants, such as the halophyte kallar grass, Leptochloa fusca, showed the presence of 
enlarged cells protruding above the epidermis of both abaxial and adaxial surfaces of 
leaves and also on the exposed side of the leaf sheath [27]. These glands are associated 
with salt deposition (Na > K > Ca > Mg) on leaf surfaces. Acanthus ilicifolius and other 
crop species have salt glands on the adaxial leaf surface and studies have shown each 
gland to be surrounded by six collecting cells (salt-collecting cells) [28]. One of the 
most salt-tolerant plants, the halophytic wild rice, Porteresia coarctata has unicellular 
salt hairs on the adaxial surface of the leaves. Analysis of its leaf washing showed that 
Na and Cl were predominantly excreted, followed by K, Mg and Ca [29]. In other 
species such as Puccinellia tenuifolia the phenomenon of salt excretion has also been 
observed [30]. Moreover, some crop species have sunken stomata associated with the 
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Figure 1. 
The effect of salinity on salt-sensitive plants.

Figure 2. 
The effect of salinity on salt-tolerant plants.
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occurrence of high density of trichomes arising from the epidermis, as an adaptive 
mechanism to minimize water loss under stressful habitats [31].

Plants subjected to salt stress face the problem of reduced availability of water 
and response to changes in the processes related to maintenance of a favorable water 
balance [32, 33]. According to previous reports, the increase in salinity resulted in a 
decrease in transpiration in mustard [34], quinoa [35], wheat and pearl millet [36, 
37], whereas leaf diffusive resistance (LDR) and leaf temperature increased. Higher 
LDR coupled with low transpiration might contribute to moisture conservation in 
plants under salt stress conditions [38].

Excessive salt in the root zone not only reduces the availability of water to plants, 
but their excessive absorption of salt increases the risk of ion toxicity and interference 
in the uptake of other essential nutrients [39]. Several reports indicate that increasing 
salinity and sodicity (Na content) decreases K ion concentration [40–42]. The antago-
nistic effect of both cations is well established. Tolerant varieties  
show a tendency to take up less Na while maintaining their K status.

Furthermore, plants growing at sublethal levels of salt stress may often appear 
greener due to increase in chlorophyll [43, 44]. Accumulation of certain amino acids, 
sugars and other osmotically active organic substances in response to salt stress are 
indications of altered nitrogen and carbohydrate metabolism. In this regard, it has 
been observed, for example, that two-week-old wheat plants doubled their amino 
acid content after 24 hours when subjected to electrolyte concentration (EC) of 22. 
Amino acids are very important components of plants, exhibiting various roles. 
Under abiotic stress conditions they can act as osmolytes, regulate the ion transport in 
the plant or regulate the stomatal opening and closure [45]. Besides, they can con-
tribute to diverse enzyme synthesis improving plant abiotic stress tolerance through 
gene expression [46]. Among amino acids, glutamine (Glu), phenylalanine (Phe) and 
proline (Pro) proved to have significant roles in response to salt stress condition such 
as signaling precursors (Glu), building blocks of plant structure (Phe) and beneficial 
solutes (Pro). In this regard, previous research results show a considerable increase in 
glutamine, phenylamine and especially in proline content as a response to salt stress 
improving plant tolerance or indicating its sensitivity [39]. In general, the highest 
proline accumulation occurs in lamina followed by leaf sheath, stems or shoots and 
roots as observed in several plant species such as Phaseolus sp., Portulaca sp., Triticum 
sp., Solanum lycopersicum etc. (Table 1) [57–61]. Moderately tolerant barley varieties 
accumulated more proline than sensitive ones [62].

In wheat, water-soluble proteins increased in leaves in response to salinity [63]. 
Another example, such as rhodes grass, Chloris gayana, could be given for the increase 
of trichloroacetic acid and NaOH soluble proteins in response to salinity [64]. 
Enzymes are also influenced by change in plant water status as well as ionic imbal-
ance [65, 66]. Decrease in (a) amylase activity with increase in salinity was observed 
in wheat and chickpea leaves after short term exposure to salt stress while activity of 
invertase and other enzymes of carbohydrate metabolism significantly increased [67, 
68]. Nitrate reductase activity may also decrease with increase in stress level in many 
species [69, 70]. Tolerant varieties of pearl millet showed a tendency to maintain their 
nitrate-reductase activity [71]. Polyphenol oxidase activity has been reported to be 
higher in sensitive varieties of wheat, barley and rice [72–74].

Due to their occasional or constants exposure to harsh, unfavorable environmen-
tal conditions, plants developed a series of detoxification mechanisms to be able to 
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maintain their growth and alleviate potential damages caused by ‘reactive oxygen 
species’ (ROS) - at cellular level [75].

Oxidative damage in plants often occurs as a secondary effect of different harmful 
environmental conditions such as drought, salinity, cold, heat, or heavy metals in the 
soil. Under these conditions, the level of ROS can largely increase overwhelming plant 
defense systems, and thus inducing multiple deleterious effects at the cellular level. 
These effects are the result of the oxidation of membrane lipids, amino acid residues 
in proteins and the bases in DNA. In general, plants respond to an increase in ROS 
by activating enzymatic or non-enzymatic antioxidant processes to overcome ROS 
accumulation. Among them, malondialdehyde (MDA), a lipid peroxidation product 
is considered a reliable oxidative stress marker not only in plants but in animals 
also, which is generated by the oxidation of membrane lipids [76]. Several scientific 
reports show an increase of MDA levels in response to abiotic stresses in various plant 
species: rice, Calendula, Miscanthus, basil, Solanum and many others [77–81].

Moreover, phenolic compounds are known to have multiple roles in plants; some 
of them being part of the structural component of cell walls, while others are involved 
in growth regulation and developmental processes or the activation of defense 
mechanisms against biotic and abiotic stresses. Several reports also describe the 
mediatizing effects of antioxidant properties of many phenolic compounds on plant 
responses to salinity and drought showing an increase in their content under high 
salinity and water deficit conditions [82, 83].

Flavonoids, the most complex subclass of phenolic compounds are also involved 
in a wide-range of environmental interactions. The biosynthesis of flavonoids in 
plants is upregulated not only by UV-radiation but also in response to diverse biotic 

Plant species Amino acids Increase of amino acids Salt concentration (NaCl) References

Triticum aestivum Glutamine 1.33-fold
2.02-fold

150 mM
300 mM

[47]

Anacardium occidentale Glutamine 1.37-fold 100 mM [48]

Oryza sativa L. cv. 
Kinuhikari

Glutamine 1.5-fold 150 mM [49]

Helianthus annuus L. cv. 
SH222

Glutamine 6.2-fold 126 mM [50]

Jatropha curcas L. Phenylalanine 1.12-fold 150 mM [51]

Salvia sp. Phenylalanine 12–18-fold 100 mM [52]

Solanum nigrum Phenylalanine 23-fold 150 mM [53]

Zea mays L. Phenylalanine 2.26-fold 150 mM [54]

T. aestivum Proline 2.26-fold
19.29-fold

150 mM
300 mM

[62]

Solanum tuberosum L. Proline 3.4-fold 250 mM [54]

Hordeum vulgare Proline 20–31-fold 300 mM [55]

A. occidentale Proline 22-fold 100 mM [48]

Solanum lycopersicum L. Proline 3-fold 60 mM [61]

Portulaca halimoides Proline 5.66-fold 400 mM [59]

Phaseolus vulgaris L. Proline 2.6-fold 150 mM [56]

Table 1. 
Prominent amino acids and their changes in responses to salt stress.
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and abiotic stresses, from the depletion of mineral nutrients to salinity, cold or 
drought [84]. Previous studies suggest that flavonoid contents increase in plants 
when subjected to abiotic stress conditions and the accumulation of these com-
pounds is tightly coupled with the intensity of the applied stress [85–87].

Ascorbic acid (Vitamin C) is one of the most powerful, water-soluble antioxidants 
as a scavenger ROS produced by most eukaryotic organisms. It occurs in all plant tis-
sues, but mostly in the chloroplast, in mature leaves where these are fully developed 
and the chlorophyll levels are also the highest. It is considered the most important 
ROS detoxifying compound due to its ability to donate electrons in a number of 
enzymatic and non-enzymatic reactions [88].

Beside the above-mentioned compounds, α-tocopherols (vitamin E) are another 
family of antioxidants that can be found in all parts of the plants. They are the most 
biologically active and predominant antioxidants in the chloroplast membranes, and 
are mainly responsible for its protection against oxidative damages [89].

Antioxidant enzymes such as superoxide dismutase (SOD), several peroxidases 
(POD), catalase (CAT) and glutathione reductase (GR) play a crucial role as ROS scaven-
gers in defense mechanisms against abiotic stresses. They are responsible for the main-
tenance of the proper redox equilibrium in plant cells [90]. Enzymatic activities have 
been studied in different plant species including both crop species and ornamental plants 
[91–93]. The results revealed that water stress, in general, led to a continuous increase of 
several antioxidant enzyme activities. In maize, for example, significant enhancements in 
the activities of several antioxidant enzymes (superoxide dismutase-SOD, catalase-CAT, 
ascorbate peroxidase-APX, and glutathione reductase-GR) occurred after 12 h of treat-
ment showing an increase of 21%, 52% and 33% and 38% as compared to the control. It 
was also noticed that after 24 h of water stress treatment, the activities of the antioxidant 
enzymes showed a tendency to decrease when compared to the 12 h treatment [94].

3. Mechanism of drought resistance

Over the centuries plants have been exposed to different environmental conditions 
and applied diverse adaptation strategies to be able to cope with these challenges. Water 
deficit in plants occurs when the transpiration rate exceeds water uptake. Such water 
deficit is usual in most plants as a component of some developmental processes [95], 
but cellular water deficit can cause harmful changes in cell volume and membrane 
shape, disruption of water potential, decreased turgor pressure, or disruption of 
membranes. A total loss of free water will result in dehydration and plant loss. Plant 
responses to water deficit (Figure 3) primarily depend on the species and genotype, 
but also on the length and quantity of water loss, and the age and developmental stage 
of the plants. Among the complex plant mechanisms and regulatory networks for 
drought, osmotic adjustment plays an important role in water deficit avoidance, by 
lowering the water potential of the cells to support water uptake and maintain turgor. 
At molecular level, the accumulation of mRNA during water deficit may indicate gene 
induction, but in order to obtain a fully functional gene product, other additional 
mechanisms such as translational regulation and posttranslational modification may be 
required. In general, plants respond to water deficit by employing some basic mecha-
nisms to avoid water loss, protect the cellular machinery and repair damage [96, 97].

Susceptibility to drought can occur during the early vegetative seedling stage, 
during the period of panicle development prior to flowering, or/and during the post 
flowering stage of grain development [97]. Susceptibility during post-flowering 
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stage is characterized by reduced seed size and grain yield, pre-mature plant and leaf 
senescence and increased stalk lodging [98]. Terminal post flowering drought results 
in an abbreviated period of grain development and therefore reduces seed size [97, 
99]. Genotypes with a high rate and reduced duration of grain filling may be more 
tolerant under terminal post flowering conditions [100].

Identification of critical stages of crop growth, those at which a crop is more 
severely affected by drought and more particularly its response to stress, if any, is 
important to be known to be able to understand the mechanism of drought resistance. 
This knowledge could further help to develop appropriate methodology for develop-
ing drought-resistant varieties. The usual mechanisms are as follows:

1. Drought escape: is a strategy applied by plants in early maturing crops/crop 
varieties to complete the critical stages of crop growth before severe deficit 
occurs, focusing more on flowering and reproduction instead of developing new 
shoots and increasing leaf area [101]. Early growth vigor may enable a variety to 
establish a good plant stand rather quickly while the moisture supply is suitable. 
Thus, crops or crop varieties applying this strategy can escape the adverse effects 
of drought and perform relatively better. Many indeterminate crops respond to 
reirrigation by resuming their growth and still perform better [102].

2. Avoidance: Drought avoidance is an alternate mechanism by which plants can 
maintain positive tissue water relations even under limited soil moisture condi-
tions. Mechanisms of drought avoidance typically involve water conservation 
at the whole plant level. Avoidance is accomplished by decreasing water loss 
from the shoot or by more efficiently extracting moisture from the soil [103]. 
Many crop varieties/crops with deep as well as dense root system may be able to 
maintain minimal water uptake from soil to avoid internal stress, at least during 
the initial stages [104]. High varietal resistance to water loss has also been ob-
served in a few cases, for example, in wheat, rice the amount of epicuticular wax 
deposition is reportedly associated with water loss [105, 106]. Previous findings 
suggest that different species such as Catharanthus roseus, Sorghum sp. and Oryza 
sativa reduced transpiration rate by as much as 44 to 82% due to water stress 
[107–109].

Figure 3. 
Schematic representation of water stress effects and plant adaptation.
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3. Tolerance: Drought tolerance is defined in a number of ways, namely, the per-
formance per se, the stability of performance under drought and last but not 
least specific physiological or morphological traits that are believed to be associ-
ated with the expression of drought tolerance. The mechanisms responsible for 
drought tolerance are functioning at tissue or cellular level [99]. When the tissue 
desiccates, these mechanisms are activated to stabilize and protect the cellular 
and metabolic integrity of the plant. Crop varieties may differ in their ability to 
thrive under drought conditions. This has been demonstrated through various 
test regarding physio-morphological and biochemical traits including desicca-
tion survival, heat tolerance, osmolytes, ion homeostasis etc. [110–115].

4. Recovery: Drought stress conditions may vary in duration, but when rainfall 
does commence the ability of a genotype (or crop variety) to recover quickly 
and resume active growth is an important character. In rice, recovery capacity 
from drought is strongly related with characters such as vegetative growth vigor, 
high tillering ability, shallow root system and rather long growth duration [116]. 
Similar characters have been observed in different annual and perennial species, 
in wheat, sugarcane etc. [117–119]

3.1  Assessment of drought resistance and plant traits associated with drought 
resistance

Drought resistance of an annual crop plant can at present be assessed for agro-
nomic purposes only on the basis of yield [120]. Few of the many screening tests 
proposed have been adopted by breeders.

Several plant traits, such as dehydration avoidance and dehydration tolerance 
have been found to be positively associated with yield under stress across genotypes 
of wheat and barley [121]. Leaf rolling, root system, pubescence of aerial organs, 
reflectance of incoming solar radiation, increased heat dissipation through decreased 
boundary layer resistance at the organ level (narrow leaves, awns), etc., are the 
main traits that contribute to dehydration avoidance. In nature, a better balance is 
associated with a higher proportion of energy dissipated as latent heat and hence a 
lower canopy temperature. Dehydration tolerance related to cellular and subcellular 
processes can be readily assessed by measurements of membrane stability with the 
electrolyte leakage test [122]. It is difficult, however, to relate this type of test to plant 
production. Nevertheless, visual scores on morphological traits, such as leaf roll-
ing, root habit, etc., and/or observations recorded through other methods, if any, in 
relation to the above-mentioned characters should invariably be used as an indirect 
measurement of drought resistance for practicing selection in a breeding programme.

In sorghum, the ‘stay-green’ character is reportedly associated with post-flowering 
drought tolerance. Stay-green is characterized as resistance to premature leaf and 
stalk death induced by post-flowering drought. Resistance to premature leaf and stalk 
death is thought to increase the potential period of grain development and thereby 
stabilizing the expression of seed weight [123]. Sorghum lines with high levels of stay-
green have been identified and are being used in some breeding programs [124–126].

3.2 Genetics of plant traits associated with drought resistance

A variety of adaptive plant characteristics related to environmental stress have been 
investigated and were shown to exhibit genetic variation. The variability of traits extends 
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to the physiological, morphological and chemical characteristics of the plants. These 
three groups of traits are the most representative and useful markers for stress tolerance 
identification. Drought stress can cause many changes in the physiological traits, affect-
ing the capability of plants to maintain high level of leaf-water potential under water 
deficit conditions, the osmotic adjustment and last but not least the capability of plants 
to recover after short or long-term rehydration. The regulation of photosynthesis, by sto-
matal closure and the stability of cellular membranes and its maintenance are crucial for 
plants to tolerate stress conditions. Osmolytes, such as Pro, glycine betaine and soluble 
sugars also play an important role in osmotic adjustment under various stress conditions, 
where accumulation may greatly vary among species. Morphological or phenotypic 
characters are considered important in the adaptation of plant to stress conditions, their 
responses being reflected and becoming quantifiable through root growth and density, 
leaf number size and canopy area, leaf orientation, stem or shoot length and number, 
flower development (number and fertility, seedling survival or any other trait specific 
for every species (leaf succulence, pubescence etc.) [127–133].

‘Stay-green’ or the capacity of green color retaining for longer time of the leaves 
after flowering is a desirable attribute for crop production. Sorghum genetic studies 
of ‘stay-green’ have generally indicated a complex pattern of inheritance. It has been 
reported that both dominant and recessive expression were strongly influenced by the 
environment. Previous reports reveled the inheritance of stay-green in a set of recom-
binant inbred lines of sorghum [134]. Due to a quantitative trait loci (QTL) mapping 
in sorghum for the extension of photosynthetic period 13 regions of the genome were 
identified and associated with the stay-green phenotype of post-flowering drought 
adaptation [135]. Two QTLs were successfully identified as the ones influencing yield 
and ‘stay-green’ capacity under post-flowering drought conditions. The same loci 
were also linked to yield under successful irrigation conditions indicating the pleio-
tropic nature of these tolerance loci on yield under favorable environmental condi-
tions [136]. Similarly, the QTL mapping results suggested many other loci that were 
linked to the rate and duration of yield development [137]. The findings also revealed 
that high yield and short grain development were associated with instability of yield 
performance under water paucity [138].

It may be noted that associations between markers and QTL were somewhat 
variable across testing environments. This highlights the importance of multi-envi-
ronment testing when evaluating drought tolerance.

Similar studies have been carried out in maze, where 15 green-leaf-area related 
QTLs were detected thus identifying the most important genomic region responsi-
ble for maintaining green leaf area at the final developmental stage of maize [139].

However, the current screening and breeding techniques allow to explore the genetic 
basis for various plants and identify diverse traits which help the plants to perform under 
stress conditions, high yield performance, good quality and stress resistance remains the 
eternal flame for crop breeders. These desirable crop production traits and their trans-
mission from one genotype to another will remain attractive and unexplored [140].

In this regard, selection for drought and salt resistance will therefore continue to 
be primarily based on yield assessment under stress conditions [141].

4. Selection and breeding for salt and drought resistant varieties

Salt tolerance thresholds are usually set based on the relative crop yield at defined 
stress levels of salt stress. Besides, the biological traits of the plant are also of a great 



11

Salt and Water Stress Responses in Plants
DOI: http://dx.doi.org/10.5772/intechopen.101072

importance in the selection process since, these characters are the summary of genetic 
and environmental effects upon plant growth as a result of physiological processes, 
effects which confer salinity tolerance. Therefore, two primary selection criteria can 
be established for plant selections follow:

1. Seed germination capacity and seedling survival: Seed germination and seedling 
development, are the very early stages of plant development which are critical. 
Therefore, plants that can cope with salt stress conditions in these stages of their 
life cycle should be the prime requisite in the selection process for salt toler-
ance. Various crops and genotypes that even fail to establish themselves under 
defined stress conditions cannot be expected to do any better at a later stage of 
their growth.

2. Yield: Varieties highly tolerant to salinity are those that exhibit minimum  
reduction in relative economic yield with per unit increase in stress. The slope of 
regression of yield against stress gives a fairly reliable estimate of salt tolerance 
of a crop/genotype. This is by far the best index for identification and screening 
of salt-tolerant genotypes.

A number of other plant attributes, namely Na and K content in shoots/leaves, 
Na/K ratio, pH of the cell sap, proline content and enzyme response may also have 
some potential use. The only limitation to their practical use so far however, is, 
that the differential genotypic response observed in various crops cannot always be 
explained on the basis of these data. For this reason, the use of physiological charac-
ters is highly recommended to obtain more reliable information and select potential 
candidates for future saline agriculture.

The first step that should be taken to develop drought and salt resistant varieties is 
to identify drought-resistance QTLs, which are essential to set valuable candidates for 
crop breeding. Regarding the selection criteria, there are several promising traits to be 
targeted in breeding programmes as follows:

1. Root architecture – which plays an important role in drought avoidance of crops. 
Transcriptomic differences between deep and shallow rooting systems strongly 
influences the ATP synthesis. Such traits can significantly improve abiotic stress 
resistance in crops by introducing or manipulating a single gene;

2. ABA-synthesis which can improve drought resistance even at seedling stage in 
different crops;

3. Direct-deep-seeding tolerance of different species which could significantly con-
tribute to water saving and drought resistance, for example in rice production;

4. Yield capacity under stress conditions;

5. Exploitation or domestication of wild relatives (halophytes) of crop plants. In-
terspecific hybridization has an important role in the improvement of crop plant 
performance under abiotic stress conditions.

In the evaluation process for plant tolerance to salt and drought stress, it is 
important to take into consideration all the three groups of traits (physiological, 
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morphological and chemical characters) and evaluate plant responses as a whole. Due 
to great genetic variation of the plants, in some cases it is not enough to solely analyze 
the physiological, chemical or morphological profile since they are interconnected.

5. Conclusions

Recently, several research have been carried out to depict the complex underlying 
mechanisms (physiological, morphological and chemical) that control abiotic stress 
responses in crop plants. However, the exact genes, and their activation, which control 
plant defense mechanisms are still unclear. Tolerance against abiotic stresses in dif-
ferent crop plants has been improved by the application of transgenic technology of 
reactive oxygen species components, but future research studies are still needed to 
determine and increase yield performance and quality under harsh environmental 
conditions. Genetic improvement of crops needs to identify further genetic variations 
that allow plants to increase their tolerance against the upcoming abiotic stress levels 
than the ones we are facing today. It has to employ new tools to analyze the genetic, 
physiological and molecular basis of stress tolerance and to identify genes associ-
ated with improved resistance and integrate them into practical breeding to develop 
“smart” crop varieties which require lower input and provide high yield.
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