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Chapter

Fractal Scaling Properties in
Rainfall Time Series: A Case of
Thiruvallur District, Tamil Nadu,
India
Ibrahim Lawal Kane and Venkatesan Madha Suresh

Abstract

In the present study, the features of rainfall time series (1971–2016) in 9
meteorological regions of Thiruvallur, Tamil Nadu, India that comprises
Thiruvallur, Korattur_Dam, Ponneri, Poondi, Red Hills, Sholingur,
Thamaraipakkam, Thiruvottiyur and Vallur Anicut were studied. The evaluation of
rainfall time series is one of the approaches for efficient hydrological structure
design. Characterising and identifying patterns is one of the main objectives of time
series analysis. Rainfall is a complex phenomenon, and the temporal variation of
this natural phenomenon has been difficult to characterise and quantify due to its
randomness. Such dynamical behaviours are present in multiple domains and it is
therefore essential to have tools to model them. To solve this problem, fractal
analysis based on Detrended Fluctuation Analysis (DFA) and Rescaled Range (R/S)
analysis were employed. The fractal analysis produces estimates of the magnitude of
detrended fluctuations at different scales (window sizes) of a time series and
assesses the scaling relationship between estimates and time scales. The DFA and
(R/S) gives an estimate known as Hurst exponent (H) that assumes self-similarity
in the time series. The results of H exponent reveals typical behaviours shown by all
the rainfall time series, Thiruvallur and Sholingur rainfall region have H exponent
values within 0.5 < H < 1 which is an indication of persistent behaviour or long
memory. In this case, a future data point is likely to be followed by a data point
preceding it; Ponneri and Poondi have conflicting results based on the two methods,
however, their H values are approximately 0.5 showing random walk behaviour in
which there is no correlation between any part and a future. Thamaraipakkam,
Thiruvottiyur, Vallur Anicut, Korattur Dam and Red Hills have H values less than
0.5 indicating a property called anti-persistent in which an increase will tend to be
followed by a decrease or vice versa. Taking into consideration of such features in
modelling, rainfall time series could be an exhaustive rainfall model. Finding
appropriate models to estimate and predict future rainfalls is the core idea of this
study for future research.

Keywords: Hurst Exponent, Detrended Fluctuation Analysis (DFA), Rescaled
Range (R/S) Method, Fractal Analysis, Long memory
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1. Introduction

It is challenging task to represent many natural phenomena such as rainfall,
earthquakes, wind speed, groundwater flow which vary randomly over time with
a physical model. Normally natural phenomena exhibit a high degree of random-
ness, which will not easily show any pattern beside seasonality and trend. Hydro-
logical phenomena are often regarded as principal examples for non-linear
systems and apprehended as complex systems. Indeed, most hydrological phe-
nomena are considered as the outcome of simple systems with nonlinear
interdependent but sensitive dependence on initial conditions [1]. Studies have
shown that the so called random phenomena exhibit some correlations which can
be exposed with some analytical tools. Most of these natural phenomena are not
subjected to pure chance but exhibit some kind of correlation e.g. [2, 3]. Monoto-
nous trends may lead to an uncorrelated pattern, under the impact of a trend, to
look like long-term correlated pattern [4]. Furthermore, it is difficult to distin-
guish trends from long-term correlations, because stationary long-term correlated
time series exhibit persistent behaviour or long memory and a tendency to stay
close to the momentary value [5].

Rainfall is one of the challenging components of the hydrological cycle that
exhibits a high non-linear and complicated phenomenon and requires standard
and well detailed modelling to obtain accurate prediction. The complex nature
of rainfall time series has been appreciated for decades, for example, Tiwari &
Pandey [6] studied the trend of rainfall long-term record from 1851 to 2006 for
seven meteorological regions of India using the methods of Linear trend analy-
sis, innovative trend analysis, sequential Mann–Kendall test and partial cumula-
tive deviation tests. Rakhecha [7] analysed rainwater features using descriptive
statistics on seasonal features of rainstorms, areal rainfalls, quantum and rain-
water variability that produced droughts and floods in West Rajasthan. He had
used rainfall data of 124 years (1871–1994) in a manner that the information
became useful in utilising water resources for human activities. Graham &
Mishra [8] modelled with 31 years rainfall data (1985–2015) for Allahabad,
Uttar Pradesh-India using Box-Jenkins Methodology. Their results indicated that
the seasonal Autoregressive Integrated Moving Average model (ARIMA) model
provides consistent and satisfactory predictions for rainfall parameters on
monthly scale. Uba & Bakari [9] analysed 372 rainfall data observations for the
period of 1981–2011 in Maiduguri-Nigeria. Their results indicated that ARIMA
(1, 1, 0) provides a good fit for the rainfall data and is appropriate for short
term forecast. Olatayo & Taiwo [10] presented a study that utilised emerging
Fuzzy Time Series (FTS), ARIMA and the Thiel’s regression methods for the
analysis and forecasted the dynamical pattern of rainfall occurrences based on
historic data.

Rainfalls data modelling is very essential to many hydrological issues, for exam-
ple, in identification of intense, moderate and low rainfall areas; detecting areas
prone to flood, drought, and other hazardous events; and for agricultural purposes
[11]. However, most of the literatures deal either with linear or nonlinear modelling
approaches e.g. [12, 13]; both approaches achieved successes in their domains.
Nevertheless, none of approaches is found to be a common model that is suitable for
all circumstances. These problems strengthen our thinking to extract more infor-
mation from the available rainfall data. In fact, one of the purposes of measuring
data is to learn about the mechanisms in the data themselves and to make conclu-
sion about its present and future state.

Thiruvallur is a region of highly variable rainfall in both spatially and tempo-
rally. Therefore, the study of rainfall variability is fundamental to examine its
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impact on socio-economic activities. Rainfall in Thiruvallur is highly seasonal that is
nonlinear with an organised pattern of clustered structure and may exhibits multi-
scaling features. Understanding the nature of the temporal variability of rainfall is
important to improve the predictability of climatic events such as floods and
droughts [14]. Thus, it is essential to develop a systematic method that will capture
the observed characteristics of the data. This study objectively detects the
Thiruvallur rainfall patterns for better understanding of researchers in modelling
rainfall time series.

2. Data used and study area

The data used in this study is from the Thiruvallur monthly rainfall records of
nine locations such as; Thiruvallur, Korattur_Dam, Ponneri, Poondi, Red Hills,
Sholingur, Thamaraipakkam, Thiruvottiyur and Vallur Anicut for the period of
over 30 years (1971–2016) collected from Institute of Water Studies, Public Works
Department, Government of India. Thiruvallur is one of the fastest developing
districts in Tamil Nadu, India. it lies between 12°150 and 13°15' North latitude and
79°150 and 80°200 East longitude. The district experiences semi-arid sub-tropical
monsoonal climate. Thiruvallur forms part of Coromondal coastal region, topo-
graphically flat with some few hills undulated. The average maximum temperature
is between 29°C to 36.6°C with the minimum within 17.3°C to 24.4°C. The average
normal rainfall of the district is 1104 mm. Out of this about 50% is received during
north east monsoon period and about 40% is received during south west monsoon
period (http://www.tnenvis.nic.in. retrieved 02/04/2021). The geographical map of
the study area is given in Figure 1.

Figure 1.
Geographical map of Thiruvallur district.
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3. Methodology

The analysis focus on characterising rainfall based on historical data. The
descriptive statistics of the data was first discussed followed by the analysis of
fractal scaling properties. The description of the methodology is given in the
flowchart in Figure 2.

3.1 Fractal scaling analysis

Many geophysical fields appear geometrically complex involving high
variability, intermittency and frequent occurrence of extreme values. Fractal scal-
ing analysis, on the other hand presents variety of techniques which can quantify
such properties using Hurst phenomenon. The parameter H (Hurst Exponent),
display the scaling property of a time series. The Hurst exponent takes values from
0 to 1 (0 ≤H ≤ 1). IfH = 0.5, the series is a random walk (Brownian time series) and
there is no correlation between any element and a future element, that is; knowing
one data point does not provide insight into knowing future data points in the
series. If 0.5 < H < 1, the series indicates persistent behaviour or long memory. In
this case, a future data point is likely to be a data point preceding it. If 0 < H < 0.5,
the series is called anti-persistent. In this case, an increase will tend to be followed
by a decrease or vice versa [15]. Among the methods used for quantifying the H
embraced in this paper are; Detrended Fluctuation Analysis (DFA) and Rescaled
Range (R/S) Methods.

3.1.1 Detrended fluctuation analysis (DFA)

Consider a fluctuating time series xi for i ¼ 1, 2, 3, … ,N sampled at equal time
interval i∆t. Assuming that xi are increments of a random walk process around the

mean x ¼ N�1PN
i¼1xi ¼ 0, the ‘trajectory’ of the signal following integration is

given as: y j ¼
P j

i¼1xi, thus, by dividing the profile into distinct segments indexed

by k ¼ 1, 2, … , N
n

� �

, the confined trend is fitted in each segment, by the polynomial

f
pð Þ
k jð Þ of order p, and the profile is de-trended using the expression;

Z
p
j ¼ y j � f

pð Þ
k jð Þ, for j ¼ 1, 2, … ,N (1)

Input Data

Data Descrip�ve Sta�s�cs

Fractal Scaling Analysis

DFA Method R/S Method

Display results

Figure 2.
Flowchart of the methodology.
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Following [16], the possible fluctuations can be measured using the root mean
square for a given segment of length n.

Fp nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n N=n½ �

s

X

n N=n½ �

j¼1

Z
p
j

� �2
(2)

A power-law relationship between Fp nð Þ and n designates scaling with an
exponent δ

Fp nð Þ � nδ (3)

and such a process has a power-law autocorrelation function
C τð Þ ¼ ⟨x jx jþr⟩ � τ

�α, where 0< α< 1, and the relationship between the correlation
exponents is α ¼ 2 1� δð Þ [17]. Hurst exponent H can be obtained directly from the
scaling exponent α, that is, α ¼ H.

3.1.2 Rescale range method

The Rescale Range formula is given as [18]:

R=Sð Þn ¼ cnH (4)

where R=Sð Þn represent the rescaled range R=Sð Þ statistic measured over a time
index n, the terms c andH represents a constant and the Hurst exponent respectively.
The estimation of the Hurst exponent is done by taking the logarithm of (4) to give:

log R=Sð Þn ¼ log cð Þ þHlog nð Þ (5)

H can be estimated as the slope of log/log plot of R=Sð Þn versus n.
Consider a rainfall time series xt, for t ¼ 1, 2, …N, the R=Sð Þ can be defined as

the series representing cumulative deviations from the mean of the rainfall series
rescaled by its standard deviation. In the (R/S) logic, long memory or long term
dependence is considered as the extended periods of whole similar behaviour with
unequal duration. The methodical process to estimate R=Sð Þn values can be
described in the steps below following [15]:

Step1: The time period of a time series of length N is grouped into m adjoining
sub groups of length n such that m � n = N with sub group carrying xij where i ¼
1, 2, … , n denotes the number of terms in each sub group and j ¼ 1, 2, … ,m denotes
the sub group index. For each sub group j the R=Sð Þ statistic can be estimated as:

R=Sð Þ j ¼ S�1
j max 1≤ k≤ n

X

k

j¼1

xij � x
� �

� min 1≤ k≤ n

X

k

j¼1

xij � x
� �

" #

(6)

where S j denote the standard deviation for each sub group. In Eq. (5), the kth

deviations from the sub group mean have mean equal to zero, therefore the last
value of the cumulative deviations for each sub group will equally be zero. Hence,
the maximum value of the cumulative deviations will be greater than or equal to 0,
whereas the minimum value of the cumulative deviations will be less than or equal
to 0. Thus the bracketed term, that is, the range value will be non-negative.

Step2: The R=Sð Þn is computed by taking the average of R=Sð Þ j for all the m

adjoining sub groups with length n resulting to:
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R=Sð Þn ¼ 1=m

X

k

j�1

R=Sð Þ j (7)

Step 3: Note that Eq. (6) calculates the (R/S) value corresponding to a certain
groups of length n. While applying Eq. (5), steps 1 and 2 are repeated by increasing
n values until n ¼ N=2. After these steps, it is apparent that the time width is
contained in the (R/S) analysis by examining whether the range of the cumulative
deviations depends on the length of the whole time period. After Eq. (7) is esti-
mated for different n periods, the Hurst exponent can be estimated through an
ordinary least square regression from Eq. (5).

4. Results

4.1 Descriptive statistics of the rainfall data sets

The descriptive statistic of the considered 9 monthly rainfall series is given in
Table 1. It could be observed from the table that S01-S08 series follow the same
statistical patterns with standard deviation less than the mean and S09 has standard
deviation greater than the mean. The Coefficient of Variation (C.V) measure the
distribution of data points around the mean. It symbolises the ratio of the standard
deviation to the mean. Data with a C.V value less than 1 is considered to have low-
variability, while that with a C.V value higher than 1 is considered to have high
variability [19]. From Table 1, the C.V’s for all the data sets are higher than 1 which
indicate that the rainfall fluctuates significantly through time except that of S09
which shows negligible C.V from the mean.

4.2 Fractal scaling analysis

Figure 3a–i depicted the results of the (DFA) with fractal scaling properties.
DFA gives estimates of the degree of detrended fluctuations at different periods
(window size t) of the rainfall time series. It measures the scaling association
between estimates and the window size. The estimation of the Hurst parameter H
by (DFA) method shoulders self-similarity in the rainfall series. The signal is said to
be self-similar if the detrended fluctuations increases as a power law function of
time scale and yield a straight line on a log–log fluctuation plot as the association

Station Station code Mean Std. dev. Skewness Kurtosis C.V

Thiruvallur S01 108.74 139.99 2.05 8.33 1.29

Korattur_Dam S02 102.24 138.23 2.49 12.79 1.35

Ponneri S03 114.63 160.33 2.23 9.52 1.39

Poondi S04 101.11 133.30 2.89 18.93 1.32

Red Hills S05 117.61 174.87 2.88 15.21 1.49

Sholingur S06 73.30 94.92 2.08 9.14 1.28

Thamaraipakkam S07 99.55 128.83 2.13 9.97 1.29

Thiruvottiyur S08 77.85 115.49 2.54 11.38 1.48

Vallur Anicut S09 113.64 110.19 0.47 1.77 0.97

Table 1.
Summary of the descriptive statistics of the rainfall data sets.
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between the estimates and window size t. The slope of the plot is the scaling
exponent estimate which gives the fractal scaling property also summarised in
Table 2 for the 9 locations.

The statistical technique based on (R/S) is designed to assess the nature and
extent of variability in data over a time period with the purpose of providing an
assessment of how the apparent variability of the rainfall series changes with the
length of the time-period 1971 to 2016. (R/S) reveals whether or not a time series
exhibits persistence or anti-persistence. A log–log plot of the (R/S) statistic versus
the number of points of the aggregated series (Figure 4a–i) formed a straight line
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with the slope being an estimate of the Hurst parameter value. The (R/S) results are
summarised in Table 2.

The evidences in Figures 3 and 4 for (R/S) and DFA methods clearly shows that
monthly rainfall time series of Thiruvallur and Sholingur have Hurst exponent
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Figure 3.
Hurst exponents results based on DFA method for (a) Thiruvallur, (b) Korattur Dam, (c) Ponneri, (d) Poondi
(e) Red Hills, (f) Sholingur, (g) Thamaraipakkam, (h) Thiruvottiyur, and (i) Vallur Anicut.

Station Station code DFA (R/S)

Thiruvallur S01 0.57 0.58

Korattur_Dam S02 0.47 0.44

Ponneri S03 0.48 0.52

Poondi S04 0.45 0.51

Red Hills S05 0.44 0.42

Sholingur S06 0.57 0.56

Thamaraipakkam S07 0.40 0.40

Thiruvottiyur S08 0.46 0.45

Vallur Anicut S09 0.47 0.48

Table 2.
Summary results for Hurst exponents based on detrended fluctuation analysis and rescaled range methods.
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values within 0.5 < H < 1 which is an indication of strong persistence or long
memory, as such the series have a predictable component. Thamaraipakkam,
Thiruvottiyur, Vallur Anicut, Korattur Dam and Red Hills have H values less than
0.5, indicating a property called anti-persistent where in an increase will tend to be
followed by a decrease or vice versa [14]. Ponneri and Poondi have conflicting
results based on the two methods, however, their H values are approximately 0.5
showing a random walk behaviour, and in this, there is no correlation between any
part of the data. That is, knowledge of one data point does not provide insight to
predict future data points in the series.
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5. Conclusion

Monthly rainfalls in different locations of Thiruvallur district exhibit a tendency
of randomness in the long run. The presence of a changing deterministic pattern
was examined through a method that allows detecting both apparent and hidden
features in rainfall time series. The fractal Scaling analysis based on DFA and the
(R/S) methods reveals typical behaviours shown by all the rainfall time series, some
are persistent and purely random, some behaves as random walk and some have
anti-persistent behaviour. This shows that there is no universal model for predicting
rainfall in Thiruvallur district. Rather, rainfall in a location need to be treated based
on its associated features. Non consideration of fractal features in hydrological
variable modelling may lead to spurious estimates. Finding appropriate model to
estimate and predict future rainfalls with consideration to the observed
characteristic would be a subject for future research.
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Figure 4.
Plots of (R/S) Hurst estimates for (a) Thiruvallur, (b) Korattur Dam, (c) Ponneri, (d) Poondi (e) Red Hills,
(f) Sholingur, (g) Thamaraipakkam, (h) Thiruvottiyur, and (i) Vallur Anicut.
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