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Chapter

Genetic and Epigenetic Influences 
on Cutaneous Cellular Senescence
Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross 

and G. Scott Herron

Abstract

Skin is the largest human organ system, and its protective function is critical to 
survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous 
mixtures of cell types, yet they all display age-related skin dysfunction through 
the accumulation of an altered phenotypic cellular state called senescence. Cellular 
senescence is triggered by complex and dynamic genetic and epigenetic processes. A 
senescence steady state is achieved in different cell types under various and overlapping 
conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, 
DNA damage, metabolic dysfunction, and chromosomal structural changes. These 
inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-
associated secretory phenotype, both of which accumulate as tissue pathology observed 
clinically in aged skin. This review details the influence of genetic and epigenetic factors 
that converge on normal cutaneous cellular processes to create the senescent state, 
thereby dictating the response of the skin to the forces of both intrinsic and extrinsic 
aging. From this work, it is clear that no single biomarker or process leads to senescence, 
but that it is a convergence of factors resulting in an overt aging phenotype.

Keywords: skin, DNA damage, telomeres, epigenetics, immunosenescence, 
inflammaging

1. Introduction

A consensus agreement on the definition of cellular senescence may be stated as a 
viable but non-proliferative condition distinct from the G0 quiescent phase of the cell cycle 
and postmitotic terminal differentiation [1, 2]. While aged living organisms accumulate 
senescent cells, aging and senescence are not synonymous terms—the cellular and molecu-
lar pathways that eventuate in the senescent state can be activated by diverse mechanisms, 
not necessarily chronologic aging nor the limit of replicative cell division. It was the latter 
phenomenon, in fact, that led early investigators to the original concept of cellular senes-
cence as an in vitro observation; that replicating fetal “skin tissue cells” stop dividing at 
a certain passage number, the so-called “Hayflick Limit” [3]. This review focuses on our 
current understanding of how cellular senescence occurs in the skin, its irreversible (and 
possibly reversible) characteristics, description of known trigger points involving genetic 
and epigenetic factors and their clinical implications in health and disease.
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Cellular senescence is characterized by cell cycle arrest [4], the expression of 
senescence associated secretory phenotype (SASP) [5, 6], damage to DNA [7–9], 
deregulated metabolic profile [2, 10], changes to the epigenome [11] and transcrip-
tome [12], resistance to apoptosis [13, 14], and altered immune surveillance [15, 16]. It 
can be triggered by multiple factors [2], the mechanisms of which appear to categorize 
the ‘type’ of senescence into two main groups; so-called replicative senescence (RS) 
due to shortened telomeric DNA resulting from excessive cell division cycles [17–20]; 
and a state generally termed ‘premature senescence’ (PS), in which both oncogene-
induced senescence (OIS), triggered by activation of oncogenes such as ras [21], and 
several other ‘molecular stresses’ [4] also eventuates in the senescent phenotype.

There are a variety of biomarkers for cellular senescence but not all senescent cells 
express the same biomarkers due to these differential molecular induction pathways. 
Several senescent biomarkers have been identified in the skin [22]; however, it is 
currently unclear how the multitude of cell types that comprise this tissue respond to 
senescence-inducing triggers and how this correlates with skin aging, other than the 
fact that senescent cells accumulate in all skin compartments with age, just like other 
organ systems. What is becoming clear, however, is that cellular senescence plays 
critical roles in the pathobiology of skin aging and disease [23].

2. Aging of the skin

Both intrinsic (time, genetic and hormonal) and extrinsic (environmental) factors 
contribute to skin aging. Old skin not only appears clinically different from young 
skin but has altered physiology due to a combination of molecular, cellular, and bio-
chemical processes, and tracing the pathogenic origin of the ‘skin aging phenotype’ 
remains a work in progress. From a clinical perspective however, the skin of most 
people older than 6–7 decades of life, particularly in photo-exposed areas, is thinner, 
looser, less tethered to underlying tissue, more wrinkled, more translucent with more 
visible capillary vessels, more discolored, drier, and less padded by the subcutaneous 
layer [24, 25]. Scalp skin also ages, commonly observed as pigment loss (graying), and 
most people experience hair loss as another inevitable esthetic problem.

Anatomically, the structure of human integument tissue we call ‘skin’ is composed 
of ectodermal-derived epithelial cells layered as stratified squamous epithelium on top 
of mesenchymal-derived dermis separated by a specialized basement membrane zone 
(BMZ) called the dermal-epidermal junction (DEJ). Directly below the dermis is the 
fatty hypodermis (or subcutaneous layer) separating fascia and muscle from the skin. 
Epithelial-mesenchymal interactions that occur during embryogenesis (and wound repair) 
contribute to the formation of glandular structures buried within these compartments 
(called adnexa) which are comprised of eccrine, apocrine, sebaceous and hair follicle 
structures. Peripheral nerves and blood vessels traverse the subcutaneous and dermal lay-
ers and together with all other structures of the integument, serve the functions of barrier 
protection, retention of heat and water, sensation, contractility, and lubrication [26].

This multi-compartmental system is the largest organ of the body and is composed 
of about 20 different cell types responsible for skin function and its stratification [27], 
all of which also change with age to contribute to the overall ‘skin aging phenotype’. At 
the microscopic level, skin tissues of older individuals exhibit common characteristics 
regardless of whether sun protected or chronically exposed to ultraviolet (UV) light 
[28]. The most obvious and well documented structural changes include epidermal 
thinning, loss of rete ridges and flattening of dermal papillae [29, 30], keratinocyte 
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and melanocyte architectural changes [31, 32], BMZ/DEJ alterations [33], less dense 
and altered reticular dermal collagen structure [34], accumulation of altered elastin and 
elastic fiber structural abnormalities [35], altered shape and loss of papillary dermal 
capillary loops [36–38], and size and structural alterations in glandular structures of 
the eccrine, apocrine and sebaceous units [39]. Concomitant with morphologic changes 
observed in aged skin, senescent cell populations increase in all skin compartments.

2.1 Effects of aging on epidermal structure and function

The epidermis, consisting of 5 different layers of keratinocytes, continuously 
renews itself on an approximate 27-day cycle by a differentiation program involving 
basal cells which are maintained and replenished by stem cells residing in the bulge 
region of the hair follicle and the interfollicular epidermis [40]. Of particular impor-
tance to aging of the epidermal compartment is the general concept that the cellular 
microenvironment (or niche) of stem cell populations plays a critical role in homeo-
static resupply of transient amplifying basal cells [41]. The epidermis maintains a 
dynamic equilibrium by proliferating in the basal layer that is attached to the DEJ, 
then cell division ceases and basal keratinocytes undergo terminal differentiation 
while spatially migrating towards the top of the epidermis. During this transition, 
keratinocytes acquire specialized cytoskeletal components and create an intercel-
lular diffusion barrier, eventually forming the outermost epidermal layer called the 
stratum corneum (SC). The SC is a specialized acidic, hydrophobic, protein-lipid-
carbohydrate flexible ‘shell’ resistant to wear and tear, water loss, and invasion of 
microbes [42]. The “barrier function” of the skin is derived from the SC.

The epidermal compartment appears to deal with the ravages of extrinsic aging in a 
fundamentally different way than the dermal compartment because terminally differ-
entiated (cell cycle arrested) keratinocytes are continuously shed, thus removing accu-
mulated DNA and other macromolecular damage that otherwise trigger the senescent 
phenotype. But since the epidermis is continuously replenished by stem cells arising from 
the interfollicular niche, its alteration can affect epidermal biology in profound ways. In 
fact, epidermal stem cell niche can be affected during aging by both basal keratinocytes 
[43] and dermal fibroblasts [44]. Niche microenvironments can be altered by intrinsic 
and extrinsic aging at cell-cell, cell-matrix and paracrine signaling levels, leading to stem 
cell depletion and the ‘atrophic epidermal phenotype’ observed in intrinsic aged skin [45].

Many other cell types localize to the epidermis, including pigment-producing 
melanocytes found in the basal layer that protect against UV radiation. Pigment is 
synthesized within the melanocyte but transferred to neighboring basal keratinocytes 
(and specialized hair follicle-associated keratinocytes) via a complex melanosomal 
exo/phagocytosis mechanism localizing at the dendritic tips of melanocytes which 
interdigitate with up to 20 keratinocytes [46]. Melanocyte dysfunction associated with 
extrinsic aging (mostly photoaging) manifests clinically as abnormally dispersed and/
or diminished melanin pigment (i.e., dyschromia, lentigines, and in the scalp, cani-
ties). Senescence of the melanocyte has been observed both in vitro and in vivo and the 
molecular pathways involved identified [47]. In fact, based on biomarker (e.g., P16) 
expression, senescent melanocytes appear to represent most senescent cells in aged 
epidermis [48] and their contributions to development of the epidermal atrophic phe-
notype via autocrine and paracrine (i.e., SASP) mechanisms have been identified [49].

The epidermal immune system is a network of resident antigen-presenting den-
dritic Langerhans cells (LC) thought to function as immune sentinels [50] together 
with trafficking lymphoid immune cells including resident memory T cells as CD8+ 
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and CD4+ cells [51]. Of interest, a specialized CD4 + T cell (Treg) residing near the hair 
follicle bulge areas (located in the dermis) has been shown to play a role in hair growth 
cycling [52]. Skin aging is associated with variable deterioration of both adaptive and 
innate immune function, generally referred to as cutaneous ‘immunosenescence’. This 
term has become controversial in the literature [16] because immune cell senescence 
is, in part, a physiologic adaptive response to survival and fitness of the organism. Its 
use to describe altered skin immune responses with age appears appropriate in the 
context of inflammaging [53], since the concept of immunosenescence encompasses 
both systemic chronic, low-grade inflammation [i.e., elevated serum levels of interleu-
kins IL-6 and IL-8 and increased tumor necrosis factor alpha (TNF-α), etc.] and the 
presence of dysfunctional immune responses in various skin compartments apparently 
related to both tissue level RS and PS. Currently unknown, however, is whether cutane-
ous inflammaging is a cause or an effect of dysfunctional innate immune responses 
observed in the elderly and whether cellular senescence is responsible.

Examples of cutaneous aged-related immune dysfunction include reported 
reductions in the number and functionality of LC in aged skin and this correlates 
with both age related defective epidermal barrier function and inflammaging [54]. 
Likewise, defective physiologic immune clearance of senescent cells that contribute to 
aged skin pathologies have been demonstrated in dermal fibroblasts by the observa-
tion that these cells express a nonclassical major histocompatibility antigen (HLA-E). 
Its increased expression appears to block activation of natural killer (NK) cells and 
CD8+ cells responsible for clearing damaged cells, suggesting that evasion of dermal 
immunosurveillance leads to persistence of senescent dermal fibroblasts [55].

Aging is a clinical comorbidity in many skin diseases pathogenically linked to 
defective cutaneous innate and adaptive immune responses [53]. The incidence and 
prevalence of autoimmune blistering disorders such as bullous pemphigoid (BP), 
pemphigus vulgaris, and epidermolysis bullosa acquisita are all increased in older 
populations, BP being the most common example [56]. Likewise, aging is a comor-
bidity in the development of skin cancers, and the loss of immunosurveillance due to 
dysfunctional LCs is thought to contribute to progression of both non-melanoma skin 
cancer (NMSC) [57] and melanoma [58].

Another unique cell type scattered along the DEJ, considered part of the epidermal 
compartment, and possessing mixed neuronal, endocrine, and immunologic functions 
(as well as embryonic origin) is the Merkel cell (MC) [59]. Its involvement in the skin’s 
somatosensory system is key to the sense of fine touch discrimination, which is decreased 
in the elderly [60]. In glabrous skin MC form complexes with intraepidermal sensory 
neurites found at the DEJ termed ‘touch domes’ or Merkel’s discs. Digital skin of aged 
humans contains less of these complexes, lower density of MC and decreased expres-
sion of the stretch-activated ion-channel component Piezo2 [61]. Occurring mainly in 
aged humans, a rare but very aggressive skin cancer, Merkel cell carcinoma (MCC) has 
attracted recent attention due to its mysterious etiopathogenesis. 80% of MCC is associ-
ated with integration of a newly identified polyoma virus (MCPyV) [62], whereas 20% 
appear linked to accumulation of UV light-induced somatic mutations [63]. As detailed in 
the next section on epigenetics, it is of interest that the majority of MCC display expected 
chronologic age but DNA methylation patterns of epigenetically youthful cells [64].

2.2 Aging and the dermis

The dermal compartment is divided into superficial, reticular, and deep dermis 
with unique cellular, vascular, extracellular matrix (ECM), and adnexal components 
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that define each space. Much of the ‘business-end’ of the dermis is localized to the 
superficial dermal compartment and the DEJ is central to its structure and functionality. 
It is considered part of both the epidermis and the superficial dermis because cel-
lular components of each layer contribute to its synthesis, maintenance, and renewal. 
Serving as an adhesive scaffolding for basal keratinocytes, a shear-resistant Velcro-like 
surface securing the dermis to the epidermis, a complex paracrine factor-sequestering 
and mechano-transducer signaling layer, the DEJ modulates a remarkable number of 
cutaneous cellular processes involved in skin structure, function, regeneration, and 
resistance to trauma [33]. Comprised mainly of Type IV collagen and laminin, like other 
BMZs, DEJ complexity has been dissected at the molecular level to reveal a complex 
network of other collagens (VII, XVII and XVIII), 4 different isoforms of laminin (511, 
521, 311 and 332), perlecan, nidogens, SPARC, fibrulins-1 and -2, dystroglycans, and 
integrins a3b1 and a6b4. All of these DEJ components are altered during aging and these 
changes correlate with age dependent increases in both DEJ thickness and stiffness [65].

Immediately beneath the DEJ, forming nipple-like structures projecting into the 
epidermal compartment and containing unique ECM, microvasculature, specialized 
fibroblasts, and dermal mesenchymal stem cells is the papillary dermis (PD). Here, 
undulating dermal protrusions interdigitate with epidermal rete ridges (pegs) to 
increase surface area for nutrient transfer, trafficking of immune cells, and increased 
tensile strength. The transition of superficial to reticular dermis is static and defined 
mostly by changes in ECM structure but dynamic during repair and disease. The 
majority of space in reticular dermis is occupied by thick bundles of interstitial colla-
gens I and III, elastin and fibrillin fibers, and amorphous ‘ground substance’ comprised 
of hyaluronic acid, proteoglycans and glycoproteins. Like the DEJ, most if not all these 
dermal ECM components are altered and/or dysfunctional due to aging [35]. Both 
intrinsic and extrinsic aging correlate with the loss of rete ridges and flattening of 
dermal papillae [29, 30]. Compared to young, non-exposed and old photo-protected 
skin, the PD of chronically photodamaged skin displays marked structural changes, 
the most dramatic feature of which is the presence of “solar elastosis” in the superficial 
dermis. Solar elastosis consists of pathologically altered elastin fibrils [66] that present 
as dense accumulations of amorphous material best visualized with trichrome staining.

The cellular composition of these dermal sub-compartments is a complex mix of 
fibroblasts, endothelial cells, myofibroblasts, macrophages, mast cells, trafficking 
immune cells, adipocytes, various stem cells, sensory neurites, and the differentiated 
cellular components of dermal adnexa (including the hair follicle). An example of such 
cellular complexity, the significance of which continues to evolve, is the apparent post-
natal plasticity of the dermal fibroblast. Single cell RNA sequencing has revealed at least 
four different subpopulations of human dermal fibroblasts [67, 68], and skin aging has 
been demonstrated to have a strong effect on both dermal ‘fibroblast’ phenotype and 
functionality. For example, young papillary dermal fibroblasts can direct reformation 
of youthful DEJ and epidermal structure and function, whereas old papillary and/or 
reticular dermal fibroblast populations cannot [69]. Furthermore, it is the senescent PD 
fibroblast and CD271+, laminin 332-expressing interfollicular stem cells that contrib-
ute to age-associated pathologic remodeling of the DEJ [33, 70]. Recent attention has 
focused on specific dermal fibroblast subpopulations and their involvement in wound 
healing, fibrosis, and loss of epidermal stem cell ‘stemness’ due to niche signaling 
dysfunction. The homeobox gene engrailed-1 (EN-1) expression appears to distinguish 
two types of fibroblasts; those cells expressing EN-1 are associated with fibrotic healing 
phenotype whereas EN-1 negative fibroblasts promote physiologic remodeling [71, 72]. 
Epigenetic modulation of the fibrotic phenotype is reviewed in the next section.
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2.3 Subcutaneous layer involvement in skin aging dysfunction

The subcutaneous compartment (hypodermis) is composed mainly of cellular lipid 
storage units (adipocytes) separated by thin weblike networks of specialized ECM 
stroma containing microvasculature, adipose derived mesenchymal stem cells (ADSC) 
and immune cells. It functions as a thermoregulatory and shock-resistant barrier, as 
well as a reservoir of bioactive factors involved in systemic lipid metabolism, energy 
balance, and endocrine function [73]. Subcutaneous fat also undergoes age-related 
changes that are generally like the epidermal and dermal compartments where an 
‘atrophic’ phenotype becomes clinically evident. With aging, subcutaneous fat depos-
its in various body locations disappear and/or are redistributed to visceral locations 
elsewhere in the body, causing esthetic concerns; this redistribution is associated with 
a variety of systemic age-related disease states, including insulin resistance, meta-
bolic syndrome, cardiovascular disease, and obesity [74, 75]. Of note, senescent cells 
have been shown to accumulate in aged adipose tissue [76], contributing to systemic 
inflammaging. Experimental clearance of senescent cells can dramatically affect the 
redistribution of fat from the visceral to the subcutaneous compartment and decrease 
SASP expression [77]. The mechanism(s) of adipose cell senescence has not been 
clearly defined; however, ADSC exhaustion, oxidative stress by reactive oxygen species 
(ROS), and niche disruption appear to play important roles [78].

The influence of adipogenic hormones in skin aging and senescence has received 
recent attention with the discovery that UVB-light induced PS in human keratinocytes 
can be rescued by adiponectin via its suppression of inflammatory signaling pathways 
and human beta defensin-2 (hBD2) expression [79]. Human dermal fibroblasts express 
adipokine receptors and both leptin and adiponectin have been shown to stimulate 
expression of the ECM components hyaluronic acid and interstitial collagen [80]. These 
adipogenic hormones secreted by subcutaneous fat cells thus appear to represent para-
crine cutaneous anti-aging factors for both the epidermal and dermal compartments.

‘Fat grafting’ has become a popular procedure in esthetic medicine and a variety of 
other clinical indications [81, 82] with special attention focused on ADSC. These cells 
can be isolated from subcutaneous fat removed during liposuction procedures after the 
stromal vascular fraction (SVF) is either mechanically sorted or enzymatically digested 
with bacterial collagenase, decanted (or centrifuged), washed, and grafted [83]. SVF is 
composed of cellular components (pre-adipocytes, adipocytes, histiocytes, endothelial 
cell progenitor cells and ADSCs) and is a rich source of growth factors (i.e., bFGF, 
IGF-1, VEGFs, PDGF-BB), matrikines, and other paracrine cellular factors. The ADSC 
secretome has been well characterized, consisting of soluble protein factors and lipid 
membrane particles (exosomes and ectosomes) that are used internationally in mul-
tiple therapeutic clinical trials for a vast array of indications, including dermatologic 
conditions (esthetics, wound healing, fibrotic diseases, dermatoporosis, etc). It is the 
loss of ADSC stemness, decreased proliferative potential, and dysfunctional secretome 
expression accompanying skin aging that continues to draw intense interest [82].

3. Genetic influences on cutaneous cellular senescence

The two major molecular pathways resulting in RS and PS have been observed in the 
skin [23]. These are reviewed in the following section by examining first the genetic aspects 
of cutaneous cellular senescence, followed by epigenetic influences. It should be noted here 
that acquisition of these cellular senescence phenotypes plays a critical role in both normal 
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organismal and tissue level physiology by, for example, dampening fibrotic responses dur-
ing the remodeling phase of wound repair or suppressing tumor formation [84]. However, 
it also appears to be a major pathologic driver in age-related disease states [85].

3.1 DNA damage related to telomere biology

The senescent phenotype can be activated by DNA damage at the ends of all eukary-
otic chromosomes, called telomeres, which consist of DNA loops containing noncoding 
repeats of guanine-rich sequences complexed with protective oligomeric proteins 
(Shelterins). Discovery that chromosomal replicative machinery responsible for somatic 
cell division cannot synthesize exact duplicates of these structures led to the concept 
of the ‘end-replication problem’ during serial passaging [20]; thus, telomeric DNA is 
subjected to attrition because DNA polymerase fails to replicate the 3′ lagging strands.

Telomeric DNA are shortened by approximately 50–200 bp per cell division and 
thus a molecular clock is achieved, reflecting the replicative history of primary cells 
[86]. A specialized DNA polymerase (telomerase) is responsible for fixing the ‘end 
replication problem’, maintaining telomeric length, but its expression and function are 
restricted to immortal postnatal cells; in vivo, comprising stem, progenitor, and cancer 
cells. When cells reach their ‘Hayflick Limit’ telomeres lose enough DNA [87] to trigger 
a genomic instability signal and chromosomes become ‘uncapped’ by loss of Shelterin. 
This genomic instability signal is a specialized DNA damage response (DDR) and gen-
erates telomere dysfunction-induced foci (TIFs). Approximately half of all persistent 
DNA damage foci are localized to telomeres, and these can trigger RS. But senescent 
cells can harbor many other forms of persistent chromosomal DNA damage foci, called 
DNA-SCARS (DNA segments with chromatin alterations reinforcing senescence) [9]. 
These dynamic structures can also trigger cell cycle arrest and SASP induction.

Independent of telomere length or uncapping by loss of Shelterins, guanine-rich 
telomeric DNA repeats can become damaged by ROS, generating DDR telomere-asso-
ciated foci (TAFs), which are associated with triggering the senescence phenotype 
[19]. This observation has particular relevance to the state of chronic inflammation, 
SASP expression, and tissue aging (Inflammaging) in skin and other tissues [15, 88, 
89], as discussed in Section 3.2.

While epidermal, dermal, and subcutaneous cellular compartments all harbor 
evidence of RS in aged skin tissue, direct evidence that telomeric DNA associated RS 
is involved in skin aging is supported by experiments involving ectopic expression of 
human telomerase (hTERT). We reported that neonatal human dermal microvascular 
endothelial cells (HDMEC) undergo RS in vitro but can become immortalized with 
viral transfer of the catalytic subunit of hTERT [90]. Furthermore, these telomerized 
HDMEC formed fully functional microvessels in vivo (perfused with murine blood) 
that exhibited superior durability with time after xenografting in immunodeficient 
mice versus vessels created with in vitro-aged primary HDMEC [91]. As previously 
reviewed, cutaneous microvasculature of aged papillary dermis is markedly reduced 
and abnormally structured versus young dermis [38], presenting clinically as telangi-
ectasia and senile purpura/dermatoporosis. The roles of RS, OIS, and other senescent 
pathways on skin vasculature remain to be determined.

3.2 Genotoxic and exposome insults

As noted in the introduction, cellular senescence can be induced in the absence 
of any telomeric damage or loss and this premature senescence (PS) has similar 
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deleterious effects on aged tissues, including the skin. The triggers for the PS program 
generally fall into (a) accumulation of subcytotoxic, unrepairable, non-telomeric 
DNA damage, including mitochondrial DNA (mtDNA), (b) macromolecular insults 
to cytosolic and secreted proteins and lipids, and (c) metabolic dysfunction involv-
ing an altered mitochondrial-lysosomal axis [92]. All of these PS triggers have been 
demonstrated in skin cells in vitro and in vivo [93].

The molecular and cellular effects of chronic UV light exposure (photoaging) have 
also been well-documented and, in many ways, more extensively than intrinsically 
aged human skin. Both UVA (320–400 nm, less energy) and UVB (280–320 nm, more 
energy) light cause photoaging but UVB is mostly absorbed by the epidermis, where it 
causes sunburns. UVA penetrates the superficial and reticular dermal compartments 
and is considered a major factor in photoaging. While both UVA and UVB wavelengths 
generate reactive oxygen species (ROS), indirectly damaging DNA, UVB is also directly 
mutagenic, causing DNA defects called cyclobutene pyrimidine dimers and 6–4 
photoproducts [94]. Remodeling of dermal ECM favoring an atrophic phenotype is 
triggered in unwounded skin by UV exposure via the activation of mitogen-activated 
protein kinase (MAPK) and activator protein 1 (AP-1) signaling pathways which causes 
downstream expression of matrix metalloproteinases (MMPs) in both the epidermal and 
dermal compartments [95]. These same pathways block transforming growth factor beta 
(TGF-β)/SMAD signaling via TGF-b type II receptor down regulation causing decreased 
collagen synthesis [96, 97]. Dissection of the molecular effects of chronic UV exposure 
on the DEJ and PD have been recently reviewed [33].

Our understanding of the role senescent cells play in cutaneous aging pathologies 
continues to evolve. In the past, senescent cells observed in the skin with biomarkers 
in vivo were believed to be passive, unresponsive bystanders recognized morpho-
logically by their enlarged, seemingly flattened, abnormal shapes and senescence-
associated (SA) β-galactosidase staining. But characterization of SASP expression 
in senescent cells (and their paracrine effects) provided compelling evidence that 
senescent cells are anything but passive.

It is now widely accepted that senescent cells remarkably influence surround-
ing non-senescent neighbors and ECM networks via secretion of inflammatory 
cytokines, chemokines, matrikines, MMPs, tissue inhibitors of metalloproteinases 
(TIMPs), and other proteinase-inhibitor systems that comprise the tissue ‘proteinase 
web’ [98]. One such example is the role played by plasminogen activator inhibitor-1 
(PAI-1) in modulating senescence. PAI-1 is a soluble and matrix bound serine protease 
inhibitor with multiple matricellular functions and can be found at increased levels 
in both dermal fibroblasts from aged donors and premature aging syndrome patients 
[99–101]. Ectopic expression of PAI-1 in fibroblasts induces the senescent phenotype 
and is both necessary and sufficient for RS downstream of p53 [102]. Many other 
examples of SA ECM alterations have been reviewed [33].

The quintessential example of extrinsic aging involves the postmitotic dermal fibro-
blast population which responds to ‘expososomal’ damage [103] by activating DDR 
pathways, triggering PS and subsequent expression of macromolecular damage profiles 
involving mtDNA damage. One mechanism of mtDNA damage appears to involve UV 
light-induced deletion of a significant length of mtDNA, termed the ‘common deletion’ 
(CD) [104]. This 49 kb mtDNA fragment contains codons for electron transport chain 
(ETC) protein complexes I, IV and V which together express 72 ETC subunits, the loss 
of which cripples physiologic functions of mitochondrial energy metabolism, ROS pro-
tective mechanisms, and calcium homeostasis. Tracking the mtDNA CD in human skin 
revealed that both intrinsic (photo-protected) and extrinsic (chronic UV-damaged) 
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skin contain this marker [105], and that dermal fibroblasts appear to be the culprit for 
subsequent age-related tissue damage of ECM [106, 107].

3.3 Genetic skin diseases associated with DNA repair pathway defects

Analysis of progeroid syndromes have provided insights into molecular mecha-
nisms of intrinsic and extrinsic skin aging. Common skin phenotypic signs and 
symptoms shared by both these premature aging disorders and skin aging in the 
general population include skin atrophy, alopecia, fibrosis, telangiectasia, poikilo-
derma, canities and both NMSC and melanoma. Rare autosomal recessive patterns 
of different mutations in DNA repair genes group these heritable disorders into those 
involving; (1) multiple defects in nucleotide excision repair (NER) genes [e.g., DNA 
polymerase eta (POLH) among six others] coding for repair proteins in xeroderma 
pigmentosum (XP) [108], (2) transcription and transcription-coupled NER genes 
in Cockayne syndrome (CS) and (3) mutations in the gene family of RecQ helicases 
involved in DNA double strand break repair in Werner syndrome, Bloom syndrome, 
and Rothman-Thomson syndrome [109]. In the latter three disorders, mitochondrial 
defects have been well documented and correlate with cellular senescence phenotypes 
[110, 111]. In XP-V null mouse models, loss of POLH leads to obesity and marked 
adipose tissue senescent phenotype expression [112].

3.4 SNPs and transcriptomics

Several genome-wide association studies (GWAS) and meta-analyses performed 
on young and old populations have identified single nucleotide polymorphisms 
(SNPs) in genes thought to be correlated with skin aging [113–118] or ‘perceived’ 
facial age’ [119]. These large cohort-based studies suggest specific allelic variants 
of pigmentation gene (MC1R), aryl hydrocarbon receptor gene (AHR), basonuclin 
2 gene (BCN2), type-1 collagen alpha-2 gene (Col1A2) or SNPs within or near the 
DIAPH2, KCND2 and EDEM1 loci all appear to correlate with both intrinsic and 
extrinsic skin aging phenotypes and/or youthful skin appearance.

Of all these identified genes and their allelic variants, the biology of MC1R gene 
has received perhaps the most recent attention due to its central role in modulating 
human (and murine) skin pigmentation systems, the clinical influence of which led 
to the categorization of Fitzpatrick Skin Phototypes. MC1R signaling is associated 
with both skin cancer and skin aging via its mixed role in UV induced PS in melano-
cytes and promotion of efficient DNA damage repair [120]. Genetic variants of MC1R 
(coding for G protein-coupled transmembrane melanocortin receptor-1 on mela-
nocytes) are strongly linked to increased risk of both NMSC and melanoma in both 
red and brown Caucasian phototype cohorts [121]. Meta-analysis of several GWAS 
studies demonstrated SNPs in or near MC1R (and SLC45A2 and IRF4) correlated with 
different skin aging phenotypes using a skin surface topographic scoring system of 
solar elastosis [116] and the MC1R gene may also affect inflammaging via generation 
of ROS independent of its function in melanin production [122].

Gene expression studies of the skin aging phenotype have revealed several impor-
tant observations about the complexities of distinguishing intrinsic from extrinsic 
mechanisms, as they appear to overlap in many important ways. In human skin, 
gene profiling and transcriptomic analyses [115, 123–128] have identified thousands 
of upregulated and downregulated genes in old vs. young and intrinsically aged vs. 
extrinsically aged (photoaged) skin. One transcriptomic study showed genes associated 



Mechanisms and Management of Senescence

10

with mitigating oxidative stress, control of lipid synthesis, and epidermal differentia-
tion were all downregulated in both exposed and photo-protected skin, whereas, elastin 
expression was increased in exposed skin (consistent with formation of solar elastosis), 
and interstitial collagen expression decreased in sun protected skin (consistent with 
intrinsic aging) [127]. Similarly, confirming histologic studies, expression profiling 
of human aging that spanned subjects between the ages of 24–70 years demonstrated 
younger-appearing skin upregulated expression of the LAMA5 gene (DEJ component) 
and epidermal cell-cell adhesion complex (desmosomal) genes DSC3 and CDH1 [126].

Race, sex, and skin tone of subjects also all play a role in the genetic correlates of skin 
aging. The expression of some aging related genes was found to be sex-dependent in a 
Caucasian sample [129], and studies in a Han Chinese sample showed distinct genetic 
variants and phenotypes from that in a Caucasian population [118]. These discrete 
expression patterns further highlight the complexity of cataloging aging mechanisms 
in the skin and suggest that much more information would be required from a wider 
diversity of samples to understand any potential global age-related changes.

Altogether, genetic factors, including telomere DNA loss, genotoxic accumulation 
of mutations in both genomic and mtDNA, DDR signaling, DNA repair dysfunction, 
and allelic variations in key cutaneous protective genes controlling pigmentation, 
inflammation, dermal, epidermal, and subcutaneous physiology all converge on our 
emerging understanding of the central role cellular senescence plays in skin aging. 
What follows is a review of how epigenetic factors also influence cellular senescence 
in cutaneous biology and the aging phenotype.

4. Epigenetic influences on cutaneous cellular senescence

Though the evolution to senescence is usually characterized as a genomically 
driven phenotype, its manifestation can be largely characterized as an epigenetically 
entrenched state. The baseline definition of a senescent cell is an otherwise mitotic 
cell that has entered permanent cell cycle arrest, but this also begets a broader shift in 
cell behavior and protein production. For these changes to be permanent they must be 
encoded in long-term gene expression tendencies, i.e., in the cellular epigenome. The 
epigenome is the composite architecture consisting of chemical and physical modifi-
cations to the DNA that do not alter the underlying coding and noncoding sequences 
but instead modify its oligomeric structure and transcription. These modifications 
span multiple layers from the local control of specific gene promoters to large scale 
regulation of entire domains of genes.

Canonically, the epigenome is most strongly associated with cell identity, as it makes 
accessible the portions of genomic DNA needed for the cell’s functional role while 
segregating and silencing irrelevant regions. Thus, the most dramatic epigenetic shifts 
are observed when cells differentiate from stem or progenitor states. In this full and 
dramatic state transition, the function of the cell is redefined, affecting everything from 
its morphology to its protein production and factor secretion [130]. For skin this can 
mean, for instance, a transiently amplifying cell in the basal epidermis fully differentiat-
ing to a corneocyte through natural turnover or endothelial progenitor cells differentiat-
ing into new endothelium in response to an angiogenic signal. Conversely, cells undergo 
constant but more minor epigenetic events as they are exposed to regular stimuli from 
the environment, which can lead to upregulation or downregulation of certain behav-
iors [131]. For instance, methylation sequencing of the same cell type across patients 
(e.g., epidermal keratinocytes) will show a distribution with perturbation on the mean 
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population value based on internal and local external stimuli [132]. This heterogene-
ity evolves with different stressors, and with aging itself becomes more prominent. 
Eventually the stressors can lead to enough diversity to characterize pseudostates 
and pseudostate transitions that may by-and-large retain the cell’s identity but with a 
different grade of functionality across multiple genes. We will discuss a few additional 
examples of this in the following sections, like fibrotic versions of connective tissue cells 
and pro-/anti-inflammatory versions of macrophages; however, the focus of this section 
that could also be considered an epigenetic pseudostate is senescence. It meets the 
criteria in that it still retains core cell identity but also dramatically affects a multitude of 
genes to alter protein production and secretion profile, and thus requires a core epigen-
etic component. In this section we will review the multitude of epigenetic changes that 
accompanies this pseudostate evolution in skin cells, what role they play in establishing 
the senescent phenotype and how they may potentially be engaged therapeutically.

4.1 Sequence specific modulation

One modality of epigenetic is sequence specific meaning it targets specific regions 
of the genetic code—either DNA or RNA. DNA base pair methylation is a well-known 
example of this modality. Cytosine is the most commonly methylated base in eukaryotic 
cells and when methylated, often serves to block the activity of RNA polymerase, as in 
the context of CpG islands. Found in the promoter region of many genes, CpG islands 
are clusters of methylated cytosine followed by guanine, wherein the methylation 
inhibits (silences) the transcription of that gene [132]. Widespread hypomethylation 
has been documented in aging and senescent fibroblasts, and in some cases, impairs 
cell cycling pathways through the suppression of cyclin pathways. Specifically, a lack of 
methylated sites leads to the upregulation of p16INK4a which inhibits cyclin D/CDK4 to 
suppress G1 phase progression, while upregulation of p14ARF leads to activation of p53/
p21 and inhibits cyclin E/CDK4 to prevent S phase progression [7]. The global methyla-
tion status of fibroblasts is directly and strongly correlated with donor chronological 
age through regression algorithms known as ‘epigenetic clocks.’ These algorithms calcu-
late a weighted linear combination of the beta coefficients (the percent signal from the 
methylated out of the total unmethylated and methylated alleles) [133]. When dermal 
fibroblasts were passaged towards replicative senescence (RS) these epigenetic clocks 
show aggregated methylomic evolution. The cell cycle was reengaged by overexpressing 
the telomerase gene hTERT, causing cells to progress to further doubling. However, the 
epigenetic clock did not reverse and the cells continued to age, bypassing RS, further 
hinting that a broader epigenetic change was occurring through the progression to 
senescence rather than just the suppression of a few mitotic arrest genes [134].

Conversely, sequence specific epigenetic regulation on the level of transcribed RNA is 
accomplished through feedback mechanisms by families of non-coding RNA-including 
microRNAs, siRNAs, long and short non-coding RNAs, and others. These non-coding 
RNAs will interact with other DNA, RNA, and proteins to regulate their expression, fur-
ther enhancing the complexity of the transcriptome over the more rigid landscape of the 
methylome [135]. Thus, non-coding species are often used to not just reinforce but also 
propagate the senescence response. The particular influence of miRNAs, short sequences 
that complement and bind to specific regions of mRNAs to limit their stability and thus 
their translation likelihood, has been explored in the context of cutaneous cell senescence 
[136]. For instance, UV-induced senescent fibroblasts are known to produce miR-34 
which targets a number of transcripts within these cells for cell cycle regulatory genes like 
MYC and BCL2 as well as genes for other epigenetic factors such as E2H and SIRT1 [137]. 
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Meanwhile, in wounding-induced senescence the extracellular secretion of miR-21 as 
part of the SASP phenotype triggers the activation of resident macrophages to drive the 
local inflammatory response [138], but these represent only a few of a handful of drivers. 
Senescent keratinocytes, for instance, have displayed upregulation of over a hundred 
different microRNAs correlated with expression of the senescence biomarkers p16, p53, 
and senescence-associated β-galactosidase (SA-β-Gal) [136]. Together, these mechanisms 
represent the precise regulation of specific genomic targets and interfering with transcrip-
tion machinery as one mode of enforcing the senescent epigenetic state.

4.2 Compaction

For regulation across gene domains (~150 base pairs or greater), the epigenome uses 
methods of physical compaction to close off regions of the genome from transcription. 
The negative charge of the DNA attracts it to wrap around the positively charged protein 
octamer spools called histones, which segregate the sequences away from transcription 
machinery. Chemical modifications like methylation, acetylation, and ubiquitination of 
the amino acid residues on the tails of these histone proteins alter the charge interaction 
with DNA and with other histones influencing oligomeric structure [139]. Senescence 
engages in this mechanism by modulating the enzymatic activity that regulates these 
histone tails. For example, the activity of methyltransferases like EZH2, which adds 
trimethylation to the lysine residue 27 of histone 3 (H2K27me3), is reduced in senescent 
cells. This reduction in the resulting H3K27me3, especially at the INK4a/ARF locus 
mentioned previously, reinforces the discontinuation of the cell cycle [8]. Other forms of 
histone tail modification include acetylation, which tends to promote more transcription. 
One of the most well-studied classes of deacetylation enzymes is the sirtuin family of 
proteins. In both fibroblasts and keratinocytes, Sirt1 and Sirt6 directly respond to DNA 
damage and inflammation, but their expression is diminished in senescent cells [140]. 
Interestingly, both Sirt1 and Sirt6 also play an active role in regulating collagen balance, 
thus their downregulation could be conceptually likened to senescence of the dermal 
ECM and its turnover, just like that of cellular turnover.

Histones can also be modified through changes within the core octamer proteins 
themselves and a hallmark example of this phenomenon is the variant species of the 
H2A protein known as H2A.J. This modified protein is prevalent in a lot of senescent 
skin cell types where it weakens the binding of another histone in the complex, H1, 
triggering a signaling cascade that preempts the interferon response and contributes to 
initiation of SASP expression [141]. In senescent epidermal keratinocytes in particular, 
the increase in H2A.J variants is correlated with arrested cell cycle and maturation of 
the basal cells into mature corneocytes, thus it may play a direct role in the morpho-
logic phenomena of epidermal thinning seen with age [142]. The broader contribution 
of these histone changes, along with local DNA methylation shifts, is the transition to 
wide-reaching genome compaction in senescent cells, for example the condensation 
of senescence associated heterochromatin foci, as in H3K9me3 rich regions of nuclease 
resistant compact facultative heterochromatin [11]. These foci are seen across skin cell 
types like fibroblasts and keratinocytes and are thought to entrench the senescent state 
by long term segregation and silencing of mitotic genes [143]. However, the evolution 
of these foci seems to be specific to the type of senescence induction, most prominent 
in OIS, suggesting that senescence itself may even be a family of pseudo-states rather 
than a distinct, singular manifestation [144]. Nevertheless, in general, these forms of 
epigenetic modification which bias entire regions of genes from active to passive and 
vice versa truly embody a cell state/pseudostate.
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4.3 Alternative epigenetic pseudostates

The natural and prevalent engagement of senescence, even in young tissues, reflects 
its role as a form of stress response. In fact, a major function of senescence is to prevent 
the evolution of alternate, more detrimental states of the cells and tissue under these 
conditions. One such competing epigenetic pseudostate is fibrosis. The fibrotic transi-
tion is a common feature in the pathological evolution of many tissues, i.e., hypertro-
phic scarring and keloids in the skin, idiopathic pulmonary fibrosis in the lung, cirrhosis 
in the liver [145]. A key component of fibrosis is the differentiation of various cell types 
including fibroblasts, adipocytes, epithelial cells, and endothelial cells into a population 
known as myofibroblasts [146]. As mentioned, differentiation is canonically an epigen-
etic event as cells convert and specify their functional gene regions while silencing other 
unused regions. It involves the same modalities of control—methylation, histone tags, 
chromatin structure, etc.—often with more dramatic and permanent modifications. 
These activated myofibroblasts are critical for the repair response in that they secrete 
superfluous extracellular matrix (ECM) components (Collagen 1, alpha-smooth muscle 
actin (α-SMA), fibronectin, etc) that accumulate in the connective tissue [147]. At the 
same time, these cells diminish the process of anabolic degradation of ECM through 
reduction of MMPs [148]. Unbridled overgrowth of these myofibroblasts, as evidenced 
by the overactivation of growth factors like connective tissue growth factor (CTGF), 
leads to the buildup and disorganization of the connective tissue [149]. Senescence in 
this context is thought to be a responsive, secondary epigenetic evolution that is engaged 
to shut down this population and stop the overgrowth [150]. These processes—from 
the epigenetic cell identity shift (e.g., epithelial-to-mesenchymal or fibroblast-to-
myofibroblast transitions, depending on the starting cell types) to the epigenetic 
proliferation-suppressed state (induction of senescence)—represent relatively fast 
epigenetic turnovers. As such, a key mediator of this rapid transition is thought to be the 
slew of non-coding RNAs, like let-7 g to engage TGFbeta driven myoblast conversion 
and miR-127-3p to induce p53/p21 drivers of senescence [151, 152].

Another alternative pseudostate that competes with senescence is of course cancer 
and more particularly for skin, melanoma. Like senescence, cancer is a state transition 
that involves bypassing apoptotic pathways, yet these aberrant cells also bypass the 
suppression of their cell cycle gene networks [14]. It is thought that melanoma cells 
are able to undo the senescence epigenetics and re-engage the cell cycle due to the 
deleterious recruitment of epigenetic enzymes, like histone demethylases and Jumonji 
proteins [153]. This means a host of pathways whose methylation would otherwise 
lead to cell cycle suppression, like the p15INK4B or the p27Kip1 pathways, are methyl-
ated without cell cycle arrest in melanoma [154–156]. The use of inhibitors to target 
these epigenetic enzymes seems to be a promising methodology to restore the cell 
cycle arrest and control the cancerous growth [157].

An interesting intersection of epigenetic and oncogenic pseudostates is high-
lighted in Merkel cell carcinoma (MCC). This aggressive, non-melanoma skin cancer 
is rare but occurs primarily in the elderly and immunosuppressed. Interestingly, 
methylation clock analysis of MCC cells shows their epigenetic age as significantly 
younger than the chronologic age of the patients from which they were derived—a 
stark contrast from the continually progressing epigenetic age of senescent cells. 
Further analysis of these MCC cells did not indicate any signs of pluripotency [64]. 
The mechanism by which MCCs reverse their epigenetic age is still unknown, how-
ever, it may be related to other epigenetic alterations recently discovered in this cell 
type, including decreased H3K27me3 expression [158, 159] and overactivity of the 
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lysine-specific histone demethylase 1A [160, 161]. These are just some examples of 
this fundamental need to tightly control and disengage mitotic networks and why 
senescence requires a complex regulatory architecture like the epigenome.

4.4 Enablers of senescence

The phenomenon of senescence is promoted by the epigenetics of not just the 
arrested cells in question, but also that of the other resident cells that enable this transi-
tion. Though senescence is thought to be a permanent state, the persistence of senescence 
in the tissue is only meant to be transient. This is because the key function of this state 
is to respond to stressors by retaining cells, despite their damage, to maintain the tissue 
temporarily while preventing them going down the more detrimental alternate routes 
mentioned, all the while signaling the immune system and other repair mechanisms. 
When the immune system is young and efficient its cells are recruited to the skin and 
other tissues to clear out the senescent cells [162]. With aging, however, the number 
and lifetime of these senescent populations increases due to the altered epigenetic 
pseudostates of the senescent clearing cells as well, contributing to innate immunosur-
veillance dysfunction of the skin. One example of this is in the dominance of the pro-
inflammatory M1 macrophage pseudostate over the anti-inflammatory M2 macrophage 
pseudostate [163]. There are a number of histone methylation and acetylation modifiers 
that play a role in pseudostate fate decision, for instance histone deacetylase 3 promoting 
M1 macrophages or the SYMD family of methyltransferases promoting M2 macrophages 
[164]. With the accumulation of stressors over a lifetime, the more pro-inflammatory 
epigenetic pseudo-states are favored in skin and other tissues, especially in response to 
factors like SASP or inflammaging [165]. In addition, in some disease states like type 2 
diabetes, the wound healing response and inflammation tends to exaggerate the M1 state 
response with focal DNA methylation components at sites like peroxisome proliferator 
activated receptor gamma (PPARγ) or and elevation of miR-125b [164]. This epigenetic 
shift in the balance of macrophage cells then ties back to senescence as the M1 macro-
phage predominantly engages in more phagocytic clearance of foreign pathogens, while 
the M2 macrophages carry out more phagocytic clearance of damaged host cells (effe-
rocytosis) [166]. This, coupled with the fact that senescent cells develop ways to better 
evade apoptosis, means that they are more likely to accumulate [167] in aged tissue. 
There are additional immune cell types that are similarly driven by the pro-inflammatory 
transition, yet become impaired at senescent cell clearance, including NK cells and neu-
trophils [167]. Altogether, this epigenetic evolution of the regulator cells, part of inflam-
maging, proves just as critical to the manifestation of a sustained senescence pressure in 
cutaneous tissue as epigenetic changes engaged in the non-dividing cells themselves.

4.4.1 Distinction from temporary cell cycle arrest

Though sometimes associated with senescence, somatic stem cells (as opposed to dif-
ferentiated cells) are typically associated with another form of cell cycle arrest, known as 
quiescence. Because their role is to remain as a niched tissue reserve, they often enter peri-
ods of temporary cell cycle arrest with a prolonged G0, instead of a permanent one, until 
they are called to activate, to proliferate and differentiate, by a stressor [168]. One major 
epigenetic distinction that enables this temporary quiescence vs. permanent senescence is 
the utilization of bivalent domains. These are regions of genes that are regulated by both a 
repressive histone tag as well as an activating one, that allows the region to rapidly switch 
from one state to another depending on stimulus [169]. A prime example of the use of this 
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is in the coinciding utilization of repressive H3K27me3 and activating H3K4me3, which 
maintains a tenuous baseline suppression of the gene region. This pair forming a bivalent 
domain is widely used throughout the embryonic stem cell genome, establishing its broad 
potency as a cell type with the potential to express a lot of different proteins [170]. But 
when the same domains were searched for in dermal hair follicle stem cells (HFSC), they 
were found to be substantially restricted to lineage-specific factors like Sox9 and Nfatc1 
and growth factor FGF18 [171]. Then, when these HFSC were stimulated to activate, many 
of the genes with H3K4me3 activating markers, which are located primarily near the gene 
promoters, were further reinforced by additional H3K79 dimethylation in the gene body, 
to tip the scale from suppression to activation [171]. These genes included many cell cycle 
regulators which, when combined with the cell lineage factors, properly executed differ-
entiation. Thus, this mechanism of readily switchable suppression to expression estab-
lishes a major distinction in epigenetic regulation from cell cycle in quiescence from that of 
senescence where the cell cycle genes are more permanently, epigenetically suppressed.

4.4.2 Manipulability of senescent epigenetics

Earlier, we mentioned how drugs targeting epigenetic enzymes represent one meth-
odology for modulating some of the epigenetic changes that drive senescence, such as 
senolytic therapies. However, a broader and more dramatic approach of epigenetic evo-
lution is through the process of cellular reprogramming. This technology was inspired 
by the core epigenetic reset that occurs during the process of reproduction in which 
sperm and egg, two cells with very precise roles and epigenetic identities, are repro-
grammed to make embryonic cells—epigenetically plastic cells that can differentiate 
into any cell in the body. The isolation and recapitulation of this process in any desired 
cell type was achieved through the discovery of core transcription factors [172]. When 
overexpressed in cells, this set of core transcription factors would drive a full epigenetic 
remodeling to produce embryonic-like cells with all their differentiation potential. This 
process is called induced pluripotent stem cell reprogramming (iPSC) and has been uti-
lized in a variety of different cell types with dermal fibroblasts being the gold standard 
for many studies [173]. Even fully senescent fibroblast populations established from 51 
population doublings and maintained for two months in culture, successfully showed 
iPSC reprogramming, as evidenced by revived proliferation, reduced p16 and p21, and 
re-differentiation after reaching the pluripotent state [174]. Crucially, the re-differenti-
ated progeny were once again able to be passaged into senescence, thus suggesting that 
malignant transformation was not induced during the entire process. Furthermore, one 
of the key reprogramming factors Oct4, has been shown to independently re-engage 
senescent hair follicle mesenchymal stem cells back into cycling by engaging a host of 
DNA methyltransferase to inhibit the p21 pathway [175]. More recently researchers 
have shown that the prevalence of senescence in a population can be reduced with even 
a transient application of the reprogramming factors [176–178]. Though whether this 
means a re-engagement of senescent cells in the cell cycle or simply competitive growth 
advantage of healthy cells remains to be seen. This represents an enticing new possibil-
ity in that epigenetic manipulation may possibly counter the accumulation of senescent 
cells in many aged and diseased tissues, including the skin.

5. Conclusion

The skin represents an excellent organ system in which the effects of cellular 
senescence manifest as observed clinical changes in organismal health and disease. 
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A myriad of processes drives the genomic erosion that instigates the transition to 
senescence. Some of these processes are more stereotyped, engineered into the cell 
by design, and are observed in chronologically aged skin, while others are stochastic 
and driven by environmental conditions, exemplified by exposomal damage. Either 
way, the result is an evolution of the entire state of the cell. This means more than just 
the direct arrestation of the cell cycle, but also entails changes through the cellular 
transcriptome, proteome, and secretome as encoded by alterations to the core cellular 
epigenome. This also involves a myriad of changes to the many layers of architecture 
that encode a cell’s function and identity. The global process is critical for the skin’s 
ability to retain functional integrity upon stress and insult as the first line of defense 
for the body, and in many ways, senescence represents the least of multiple evils.

This review gives a glimpse of how and why intrinsic and extrinsic factors trigger 
cutaneous cellular senescent phenotypes, leaving several important questions unan-
swered. For example, which genetic and epigenetic factors determine the dominant 
decision pathways favoring senescence vs. apoptosis or any other disease states for 
different skin compartments? How are the various types of senescence manifestations 
comparable in terms of evolution and manipulability? What are the molecular and 
cellular consequences of therapeutic re-engagement of senescent cells into the cell 
cycle? As the focus on aging grows as an ever more prominent factor in clinical and 
investigative dermatology, insights on these questions into the nature of senescence 
become a critical step towards both dermatologic therapeutic advancement specifi-
cally and translational medicine in general.
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