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Chapter

Engineering of Extracellular 
Vesicles as Nano Therapy for Breast 
Cancer
Sapna Jain and Manjari Singh

Abstract

Extracellular vesicles are membrane-derived nanoparticles that represent a novel 
mechanism of cell-to-cell communication. It is well reported that EVs play a central 
role in the tumor microenvironment by mediating intercellular signaling among 
cancer cells. This has resulted in the development of therapeutic strategies targeting 
various EV signaling pathways in cancer. However, because of their small size and 
endogenous origin, they have been extensively explored for cancer drug delivery. 
Hence, owing to their natural ability to mediate intercellular communication, high 
stability, and low immunogenicity, they have emerged as an attractive platform for 
cancer treatment. However, limited production and insufficient loading with thera-
peutic moieties are some of the issues constraining their clinical translation. In this 
chapter, recent research studies performed in an attempt to develop EVs as cancer 
biomarkers or drug delivery systems will be discussed. Further, it will also discuss 
various strategies such as direct and indirect cell surface modification, which can be 
employed to make EVs successful as cancer therapeutics. Furthermore, it will high-
light the current and completed clinical trials using naturally derived EVs as cancer 
therapeutics.

Keywords: breast cancer, extracellular vesicles, engineering, drug delivery, 
biomarker

1. Introduction

In women, breast cancer is a prevalent cause of cancer worldwide [1]. It affected 
2.3 million women globally in 2020, with 685,000 deaths. It has been diagnosed in 7.8 
million women in the past 5 years, making it the most common type of cancer in the 
world [1]. Although breast cancer diagnostic methods and therapeutic procedures 
have improved in the past decade, the long-term survival of these patients remains 
low due to a high rate of postsurgical relapse. The efficacy of breast cancer treatment 
is limited by drug toxicity, multidrug resistance, and a lack of definitive prognostic 
biomarkers [2]. Thus, there is an urgent need to develop novel biomarkers and thera-
peutics to cure the disease.
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In recent years, many studies have suggested that intercellular communication 
plays a key role in driving various cellular functions and homeostasis in physiological 
as well as pathological conditions such as cancer, cardiovascular diseases, and neuro-
logical disorders. Cancer development is mainly dependent on interactions between 
cancerous cells and their microenvironment components. Some of these interac-
tions are mediated by extracellular vesicles, which alter the phenotype of recipient 
cells [3–5].

Extracellular vesicles (EVs) are spherical nanoparticles shed by all types of cells, 
including archaea, prokaryotes, eukaryotes, and fungi in the extracellular milieu [6]. 
These typically range from 30 nm to 5 μm in diameter based on their type and vary 
widely in composition [7]. In addition to being released during disease pathology, 
EVs allow various cells to send and receive messages to crosstalk with other cells, 
thus carrying out various biological functions [7]. These are mainly composed of 
different proteins, lipids, nucleic acids, and enzymes [8]. EVs circulate through many 
body fluids, such as blood, serum, and urine. Owing to their structural similarity to 
the parental source, they are considered potential biomarkers for diseases such as 
cancer [9]. To study the characteristics and functions of EVs, they are isolated using 
different techniques such as differential ultracentrifugation, size-exclusion, and 
 ultrafiltration [10].

EVs are generally categorized into exosomes, microvesicles, and apoptotic bod-
ies according to their release mechanism, size, and composition [3]. Exosomes are 
30–150 nm in diameter and are formed by inward budding of the plasma membrane 
of the cell [9]. Microvesicles are formed by direct outward budding of the cell’s 
plasma membrane and range in size from 100 to 1000 nm in diameter. Consequently, 
they are reported to contain mainly cytosolic and plasma membrane proteins, such as 
tetraspanins. Apoptotic bodies are shed during cell death into the extracellular space, 
ranging from 50 to 5000 nm in diameter. These generally contain intact organelles, 
glycosylated proteins, and chromatin, unlike the other two types of EVs. Among 
these, exosomes have been widely studied since their role in intercellular commu-
nication has been reported. This chapter will focus on exosomes and their potential 
applications as therapeutics for breast cancer.

2. Biogenesis, contents and functions of exosomes

Exosomes are generated by the endocytic pathway from late endosomes (LE) 
[11, 12]. LEs are formed by inward budding of the multivesicular body (MVB) mem-
brane. LE membranes invaginate to form intraluminal vesicles (ILVs) within MVBs. 
During this process, some proteins are engulfed and packaged within the ILVs. ILVs 
then fuse with the cell’s plasma membrane and release the vesicles into the extracel-
lular space.

As reported previously, the formation of ILVs can occur either dependent or 
independent of the ESCRT complex. The ESCRT complex is a set of proteins that 
function together to facilitate the formation of MVBs, vesicle release, and protein 
cargo sorting [13–15]. ESCRT 0 has two subunits, HRS and STAM ½, which bind 
together and recognize specific ubiquitinated proteins in early endosomes. This leads 
to the recruitment of ESCRT 1 containing Tsg 101, Vps28, Vps37, and Mvb 12, which 
further recruits ESCRT II. ESCRT II is composed of four subunits, Vps22-EAP30, 
Vps36—EAP45 and Vps25—EAP20 which starts the invagination of endosomal mem-
branes encapsulating different molecules/cargo such as proteins and nucleic acids. 
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The ESCRT II subunit Vsp25 then binds with Vsp20 to activate and recruit ESCRT III. 
It deubiquitinates proteins and allows complete membrane invagination, generating 
ILVs. Other adaptor proteins such as Vps4 interact with ESCRT III to finally start 
budding of the membrane, ECSRT subunit removal, and cargo delivery. Hence, the 
ESCRT complex regulates the whole process of vesicle budding and cargo sorting into 
exosomes [16, 17]. In cancer, an increased amount of exosomes is often observed in 
the bodily fluids of cancer patients as a result of deregulation of exosomal formation 
and secretion [18]. Specifically, in breast cancer, the amount of exosomes released 
by the human tumor cell line B42 clone 16 was much larger than that released by the 
parental normal mammary epithelial cells (HMEC B42), as shown by Azmi et al. [19].

Exosomes are composed of a heterogeneous set of cytosolic, nuclear, mitochon-
drial, ribosomal, and membrane-bound proteins derived from donor cells [20]. 
Some of these proteins are conserved irrespective of their origin; therefore, they are 
considered exosomal markers such as tetraspanins, ESCRT proteins, and major histo-
compatibility complex (MHC) molecules [21]. In addition, some proteins are related 
to the phenotype of producing cells, such as cancer-derived exosomes, which in turn 
determines their biological mechanisms. The lipid bilayer membrane of exosomes 
contains transmembrane proteins, transporter proteins, adhesion molecules, and 
lipid raft-associated proteins. Exosomes contain nucleic acids such as DNA (ssDNA, 
mtDNA, dsDNA, and RNA (mRNA, miRNA, and lncRNA) [22]. Exosomal miRNAs 
and mRNAs are transferred from donor cells to recipient cells, thus modulating the 
latter’s phenotype. Although there are numerous reports indicating the presence 
of DNA within exosomes, the mechanisms leading to this phenomenon remain 
unclear. Exosomes also exhibit an exclusive set of lipids distributed in their bilay-
ers, such as sphingolipids, arachidonic acid, cholesterol, phosphatidylserine, and 

Figure 1. 
Schematic representation of exosome biogenesis and composition. Exosomes originate from multivesicular bodies 
and shed into extracellular space packaging motley of proteins such as ESCRT associated protein, chaperones, 
along with ssDNA, RNA and dsDNA, miRNA and lncRNA.
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ganglioside [23, 24]. Lipids such as lysobisphosphatidic acid are abundant in the inner 
membranes of multivesicular bodies and play a crucial role in exosome formation 
[25, 26]. ExoCarta is a database containing all the data on exosomal content, with 
over 47,000 protein, mRNA, and lipid entries. Furthermore, ExoCarta is an excellent 
source of information for exosome characterization (Figure 1) [27].

3. Functional role of exosomes in breast cancer development

Metastasis is the process by which primary tumor cells/tumor cells/cancer cells 
invade the surrounding tissues and colonize the blood vessels to proliferate and give 
rise to the tumor [28]. Controlling metastasis, which is mainly responsible for high 
patient mortality, is the main challenge in breast cancer therapy. Hence, several inves-
tigations are ongoing to understand the molecular mechanisms underlying metastasis 
in breast cancer. Recently, exosomes have attracted great attention as key players in 
regulating complex intracellular pathways from initiation to progression to metastasis 
in the development of breast cancer [29–31]. These mainly interact with the recipient 
cells in three ways: direct fusion with the cell membrane, interaction with the surface 
receptors, or internalization via endocytosis. Upon cellular uptake, exosomes deliver 
their cargo and initiate a cascade of events leading to various biological functions. 
Many breast cancer cell lines have been shown to release exosomes containing several 
proteins with signaling molecules, miRNAs, and long non-coding RNAs involved in 
migration, invasion, angiogenesis, and metastasis [32–34]. Proteomic profiling of 
exosomes secreted from breast cancer cell lines was shown to contain matrix metal-
loproteinases, which might be linked to the enhanced metastatic properties of breast 
cancer cells [32]. These findings suggest that exosomes act as key mediators in the 
tumor microenvironment by communicating various signaling molecules essential for 
breast cancer development [31].

Exosome-mediated transfer of genetic material from breast cancer cells has 
been shown to mediate resistance to chemotherapy and enhance tumor growth 
[35, 36]. Accumulating evidence suggests that exosomes may also play a role in the 
resistance of breast cancer radiotherapy and cancer immunotherapy [37, 38]. In 
breast cancer, drug-resistant cancer cells transmit resistance in drug-sensitive cells 
via the intercellular horizontal transfer of exosomal miRNAs [38]. Exosomes also 
transfer the drug efflux pump from docetaxel-resistant to sensitive ones in MCF-7 
breast cancer cells [39]. Lv MM et al. showed that exosomes from drug-resistant 
cancer cells contain miRNAs that alter the phenotype of recipient breast cancer cells 
by altering their transcriptome [40]. Exosomes from stromal fibroblasts transmit 
non-coding RNA to breast cancer cells, thus contributing to treatment resistance by 
expanding therapy-resistant cells [41]. Thus, exosomes contribute to drug resistance 
in breast cancer.

4. Therapeutic implication of EVs in breast cancer

The role of exosomes in carcinogenesis has been extensively investigated in recent 
years. Cancer cells have been shown to use exosomes as a novel mechanism to transfer 
the malignant phenotype to normal healthy cells and establish a niche for tumor growth. 
Cancer cell-derived exosomes are reported to contain miRNAs, proteins, or long 
non-coding RNAs that mediate cancer development, growth, and progression [42, 43]. 
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Exosomes derived from breast cancer cells contain a variety of proteins and RNAs that 
are transmitted among these cells as well as normal cells, thus altering the phenotype 
of healthy mammary epithelial cells. Wang J et al. showed that cancer exosomes were 
able to transform normal mammary epithelial cells into cancerous cells via transfer of 
microRNAs packaged within exosomes [44]. Similarly, Melo et al. showed enhanced 
expression of exosomal miR-10b in metastatic breast cells compared to non-metastatic 
or non-malignant breast cells [45]. Thus, it can be used as a therapeutic target for breast 
cancer therapy.

These characteristics make exosomes ideal biomarkers, and exosomal profiling in 
the absence of tissue holds great promise for early diagnosis. Owing to their crucial 
functional role in breast cancer, exosomes have been investigated for their potential 
development as breast cancer biomarkers and therapeutic targets. Singh R et al. have 
shown that psoralen reduces the formation and secretion of exosomes, thus revers-
ing multidrug resistance in breast cancer cells [46]. The presence of diverse content 
within and on the surface of exosomes has led to their application as biomarkers, 
diagnostics, and drug delivery. A large number of exosomes circulate within bodily 
fluids of not only healthy individuals but also cancer patients, according to some 
studies. Since exosomes play various significant roles in breast cancer, exosomes can 
be developed as potential therapeutic agents in biomarkers, diagnostics, and drug 
delivery. Kumar et al. investigated the release of exosomes from breast cancer stem 
cells to characterize their constituent exosomal markers. They detected tetraspanin 
proteins, Alix, and tumor susceptibility gene-101 (TSG101) in breast cancer stem 
cell-derived exosomes. This study indicates that secreted exosomes can be utilized 
as biomarkers for breast cancer to understand their development, progression, and 
metastasis [47]. Kumar et al. showed that miRNAs 155 and 205 are expressed in 
serum exosomes derived from breast cancer cells and modulate the epithelial-to-
mesenchymal transition (EMT), growth, and metastasis of cancer, suggesting their 
employability as breast cancer biomarkers [48]. Zhang et al. studied the role of long 
non-coding RNA MALAT 1 which is highly expressed in exosomes derived from 
breast cancer cells in tumor progression, representing a potential treatment strategy 
for breast cancer [49]. Dong et al. investigated the role of exosomal long non-coding 
RNA in the chemoresistance of HER2+ breast cancer cells. They found that exosomal 
lncRNA-SNHG14 was not only upregulated in trastuzumab-resistant cells but also 
transmitted the lncRNA into drug-sensitive cells, thus disseminating trastuzumab 
resistance. Furthermore, when compared to patients who responded to trastuzumab, 
the expression level of serum exosomal lncRNA-SNHG14 was higher in patients who 
were resistant. This suggests that lncRNA-SNHG14 is a promising therapeutic target 
for HER2+ breast cancer patients [50].

5. Engineering exosomes as therapeutics for breast cancer

Exosomes are emerging as promising therapeutic agents because of their role 
in tumor-related processes and their ability to deliver their cargo, such as proteins, 
lipids, and nucleic acids, into the tumor sites. However, their full clinical applicability 
has not yet been realized. This is because of many factors, including low yield and 
relatively low percentage loading to the therapeutic moiety. As such, new approaches 
for mass production and enhancement of the percent loading need to be explored. In 
general, these approaches are divided into two categories: passive and active loading, 
which are discussed in detail in the following sections.
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Direct modification, also known as non-cell-based loading or exogenous load-
ing, refers to the direct loading of therapeutic moieties such as siRNA, miRNA, 
drugs, and proteins after the isolation and purification of exosomes from the cells. 
This may encompass a series of procedures such as incubation, freeze-thaw cycles, 
sonication, and electroporation, and thus can further be categorized into passive and 
active loading. Passive loading includes loading of therapeutic moiety into exosomes 
by diffusion; on the other hand, active loading includes disrupting the exosomal 
membrane by electroporation, sonication, or freeze thawing, thus allowing the 
therapeutic moiety to enter into these vesicles. In passive drug loading, exosomes are 
incubated with drugs and allowed to diffuse into vesicles along a concentration gradi-
ent. Because exosomes consist of a lipid bilayer, the drug loading efficiency depends 
largely on the hydrophobicity of the drugs. Dong et al. loaded curcumin into milk 
exosomes by incubating at 4°C overnight and reported 70.46% drug loading using an 
incubation method [51]. Similarly, Sun et al. incorporated curcumin into exosomes 
derived from a mouse lymphoma cell line by incubating in PBS at room temperature 
(22°C) for 5 min and showed a binding capacity of 2.9 g curcumin to 1 g of exosomes 
[52]. Sun et al. packaged Cho-miR159 (cholesterol-modified miRNA 159) along 
with doxorubicin into exosomes derived from the human monocytic cell line THP-1 
by incubating in PBS at 37°C to deliver to triple-negative breast cancer cells [53]. 
Linezolid was incorporated into exosomes derived from the mouse macrophage cell 
line RAW 264.7, by mixing both and incubating at 37°C for 1 h, resulting in ~5% drug 
loading. The exosomal formulation of linezolid was more effective against MRSA 
infections than the free drug [54]. Although several studies have reported the use of 
incubation with exosomes for drug or any therapeutic agent loading, it often suffers 
from issues of low percent drug loading, urging a requirement for improved methods 
for higher drug loading percent. Another method (less common) of passive loading 
includes incubating the exosome donor cells with the drugs/therapeutic agents. First, 
the donor cells are exposed to drugs or therapeutic agents, followed by isolation of 
released exosomes (supposedly) containing the loaded drugs or therapeutic agents. 
This method was used in a study by Pascucci et al., wherein they exposed bone 
marrow-derived mesenchymal stromal cells (MSCs) with a very high concentration 
of paclitaxel followed by incubation at 37°C for 24 h. After incubation, the cells were 
washed twice with PBS, trypsinized, and seeded in a fresh flask for 48 h. After 48 h, 
cell-conditioned medium was collected to isolate exosomes containing paclitaxel. 
They found that MSC-PTX-derived exosomes had a greater inhibitory effect on tumor 
cell proliferation (Figure 2) [55].

For active cargo loading, the exosomal membrane is temporarily disrupted using 
different methods and then restored once the drug/therapeutic agent was loaded. 
These methods may include sonication, extrusion, freeze-thawing, electroporation, 
use of membrane permeabilizers, conjugation using click chemistry, and antibodies 
against exosomal surface proteins. Electroporation uses an electric field to generate 
small pores in the exosomal membrane to disturb the phospholipid bilayer of exo-
somes. Drug/therapeutic agents can enter these vesicles via the generated pores. Once 
they entered, the pores were closed to recover the exosomal membrane integrity. This 
method has mostly been used to encapsulate siRNA or miRNA into exosomes and 
has been reported to enhance the percent loading compared to the simple diffusion 
method. Jia et al. loaded exosomes derived from RAW 264.7 cells with curcumin and 
superparamagnetic iron oxide nanoparticles (SPIONs) synchronously using optimal 
electroporation conditions of 400 V, 150 μF, and 1 ms discharge time. They observed 
that electroporation had no effect on the membrane integrity of exosomes and 
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Figure 2. 
Illustration representing different methods of cargo loading in exosomes. (A) Passive cargo loading is achieved by 
incubating the therapeutic moiety directly with isolated exosomes or by exposing to the exosome secreting donor 
cells followed by isolation of loaded exosomes. (B) Active cargo loading methods include use of physical treatments 
to disrupt the membrane integrity thus allowing entry of cargo in the interiors of exosomes. These treatments 
include sonication, electroporation, freeze thawing cycles and extrusion method.
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efficiently encapsulated curcumin and SPIONs [56]. Similarly, Jia et al. incorporated 
doxorubicin into exosomes isolated from MDA-MB-231 and HCT-116 cell lines using 
an electroporation method, which resulted in ~1.5% drug loading [57]. According to 
published studies, although electroporation enhanced the percentage of drug loading 
in exosomes compared to the incubation method, it was still low. Therefore, scientists 
have employed sonication methods to load cargo more efficiently. The mechanical 
shear force of a sonicator/homogenizer probe is applied to disrupt the membrane 
integrity of exosomes, thus allowing the mixed drug/therapeutic agent to enter into 
the exosomes. In 2017, Kim et al. compared the incubation, electroporation, and 
sonication method of cargo loading in RAW264.7 cell derived exosomes to develop an 
exosomal formulation of paclitaxel (PTX). For the incubation method, the authors 
mixed and incubated PTX with exosomes at 37°C for 1 h. Using electroporation, 
exosomes and PTX were added to a pre-chilled electroporation cuvette and applied at 
1000 kV for 5 ms followed by incubation at 37°C for half an hour to fully recover the 
exosome membrane. For sonication, the PTX-exosome mixture was sonicated at 20% 
amplitude, given 6 cycles of 30 s on/off for 3 min and a 2 min cooling period between 
each cycle. After sonication, the solution was incubated at 37°C for 1 h to fully recover 
the membrane of the exosomes. They showed the highest percent drug loading of 
~28% using sonication followed by ~5% using electroporation and the lowest at 
~1.4% with the incubation method [58].

In the extrusion method, exosomes mixed with the drug are passed through 
a syringe-based lipid extruder with a membrane ranging from to 10 to 400 nm 
pore size. In this process, the membrane of exosomes is disrupted by the extensive 
mechanical force of the extruder. In a study by Kim et al. when breast cancer cell-
derived exosomes loaded with porphyrin were extruded, it altered the surface charge 
of blank exosomes, leading to cytotoxic effects [59]. On the other hand, in another 
study by Fuhrmann et al., loading cargo in exosomes using the extrusion method 
did not render them cytotoxic [60]. In the freeze-thaw method, the drug was first 
incubated with exosomes at ambient temperature and then frozen at −80°C. The 
mixture was then repeatedly thawed at room temperature to ensure drug loading 
into these vesicles. The main disadvantage is that this method often leads to particle 
aggregation, resulting in a wide size distribution. This method has also been reported 
to result in a lower percent drug loading than other methods, such as sonication.

6.  Exosomes for drug delivery in breast cancer: progress and future 
promise

Although exosomes have been shown to mediate cancer development, they are 
an emerging platform for drug delivery to cancerous sites because of their excellent 
biocompatibility, low immunogenicity (since they are derived from the patient’s own 
cells), good tolerance, and remarkable biodistribution. Owing to their small size, 
they can readily pass through different bodily barriers such as the blood-brain barrier 
[61]. Compared to synthetic nanoparticles, exosomes are relatively easy to manipulate 
through surface modification in order to enhance their targeting efficiency to cancer 
cells. Recently, the use of exosomes for drug delivery in breast cancer cells has been 
proven to be efficient. Alvarez-Erviti et al. delivered the chemotherapeutic drug 
doxorubicin to breast cancer tissues in a mouse model [62]. First, they engineered 
these cells by expressing Lamp2b, a lysosome-associated membrane glycoprotein 2b, 
on their surface and fused with a targeting peptide for integrins. They then isolated 
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exosomes from immature dendritic cells (with low immunogenicity because of the 
absence of immunostimulatory markers on their surface) and used an electroporation 
technique to load doxorubicin within. They have shown that the exosomal formula-
tion of doxorubicin has greater efficiency in targeting mouse tumors and hence, 
exhibits a novel propitious approach in breast cancer treatment in the clinical context. 
Li et al. loaded milk exosomes with doxorubicin to target CD44 overexpressed human 
breast cancer cell lines and found an exosomal formulation capable of delivering the 
drug into cancerous sites in a target-specific manner [63]. Vakshiteh et al. used dental 
pulp-derived mesenchymal stem cells to isolate exosomes and loaded them with 
miRNA, which was then targeted to breast cancer cells. They found that exosomes 
significantly decreased the proliferation of cancer cells and reduced the migratory 
and invasive properties of breast cancer cells in vitro [64, 65]. These studies indicate 
that exosomes are promising candidates for drug delivery in breast cancer therapy.

Currently, there are some hurdles in realizing the clinical potential of exosomes 
as drug delivery nanovehicles. These include low yield, long-term stability, and 
lack of understanding of their therapeutic effects. Hence, more research is required 
to develop techniques that can be used universally to enhance the yield in a time-
efficient manner and increase the stability of exosomes.

Conflict of interest

The authors declare that they have no competing interests.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy

10

[1] How common is breast cancer? 
[Internet]. Cancer.org. Available from: 
https://www.cancer.org/cancer/breast-
cancer/about/how-common-is-breast-
cancer.html [Accessed: September 
24, 2021]

[2] Harbeck N, Gnant M. Breast cancer. 
Lancet. 2017;389(10074):1134-1150

[3] Raposo G, Stoorvogel W. Extracellular 
vesicles: Exosomes, microvesicles, and 
friends. The Journal of Cell Biology. 
2013;200(4):373-383

[4] Yu D-D, Wu Y, Shen H-Y, Lv M-M, 
Chen W-X, Zhang X-H, et al. Exosomes 
in development, metastasis and drug 
resistance of breast cancer. Cancer 
Science. 2015;106(8):959-964

[5] Adem B, Vieira PF, Melo SA. Decoding 
the biology of exosomes in metastasis. 
Trends in Cancer. 2020;6(1):20-30

[6] Deatherage BL, Cookson BT. 
Membrane vesicle release in bacteria, 
eukaryotes, and archaea: A conserved yet 
underappreciated aspect of microbial 
life. Infection and Immunity. 
2012;80(6):1948-1957

[7] Doyle LM, Wang MZ. Overview of 
extracellular vesicles, their origin, 
composition, purpose, and methods for 
exosome isolation and analysis. Cells. 
2019;8(7):727

[8] Zaborowski MP, Balaj L, 
Breakefield XO, Lai CP. Extracellular 
vesicles: Composition, biological 
relevance, and methods of study. 
Bioscience. 2015;65(8):783-797

[9] Pang B, Zhu Y, Ni J, Thompson J, 
Malouf D, Bucci J, et al. Extracellular 
vesicles: The next generation of 

biomarkers for liquid biopsy-based 
prostate cancer diagnosis. Theranostics. 
2020;10(5):2309-2326

[10] Konoshenko MY, Lekchnov EA, 
Vlassov AV, Laktionov PP. Isolation of 
extracellular vesicles: General 
methodologies and latest trends. BioMed 
Research International. 2018;2018: 
8545347

[11] Willms E, Cabañas C, Mäger I, 
Wood MJA, Vader P. Extracellular vesicle 
heterogeneity: Subpopulations, isolation 
techniques, and diverse functions in 
cancer progression. Frontiers in 
Immunology. 2018;9:738. DOI: 10.3389/
fimmu.2018.00738

[12] Hessvik NP, Llorente A. Current 
knowledge on exosome biogenesis and 
release. Cellular and Molecular Life 
Sciences. 2018;75(2):193-208

[13] Kalluri R, LeBleu VS. The biology, 
function, and biomedical applications of 
exosomes. Science. 2020;367(6478): 
eaau6977

[14] Williams RL, Urbé S. The emerging 
shape of the ESCRT machinery. Nature 
Reviews Molecular Cell Biology. 
2007;8(5):355-368

[15] Henne WM, Buchkovich NJ, Emr SD. 
The ESCRT pathway. Developmental 
Cell. 2011;21(1):77-91

[16] Vietri M, Radulovic M, Stenmark H. 
The many functions of ESCRTs. Nature 
Reviews Molecular Cell Biology. 
2020;21(1):25-42

[17] Hurley JH, Hanson PI. Membrane 
budding and scission by the ESCRT 
machinery: It’s all in the neck. Nature 
Reviews Molecular Cell Biology. 
2010;11(8):556-566

References



11

Engineering of Extracellular Vesicles as Nano Therapy for Breast Cancer
DOI: http://dx.doi.org/10.5772/intechopen.101149

[18] Teng F, Fussenegger M. Shedding 
light on extracellular vesicle biogenesis 
and bioengineering. Advance Science 
(Weinh). 2020;8(1):2003505

[19] Azmi AS, Bao B, Sarkar FH. Exosomes 
in cancer development, metastasis, and 
drug resistance: A comprehensive review. 
Cancer Metastasis Reviews. 2013;32(3-4): 
623-642

[20] Riches A, Campbell E, Borger E, 
Powis S. Regulation of exosome release 
from mammary epithelial and breast 
cancer cells - a new regulatory pathway. 
European Journal of Cancer. 2014;50(5): 
1025-1034

[21] Mathivanan S, Ji H, Simpson RJ. 
Exosomes: Extracellular organelles 
important in intercellular 
communication. Journal of Proteomics. 
2010;73(10):1907-1920

[22] van Niel G, Porto-Carreiro I, 
Simoes S, Raposo G. Exosomes: A 
common pathway for a specialized 
function. Journal of Biochemistry. 
2006;140(1):13-21

[23] Poliakov A, Spilman M, Dokland T, 
Amling CL, Mobley JA. Structural 
heterogeneity and protein composition 
of exosome-like vesicles (prostasomes) in 
human semen. The Prostate. 2009;69(2): 
159-167

[24] Vidal M, Sainte-Marie J, Philippot JR, 
Bienvenue A. Asymmetric distribution of 
phospholipids in the membrane of vesicles 
released during in vitro maturation of 
guinea pig reticulocytes: Evidence 
precluding a role for “aminophospholipid 
translocase.”. Journal of Cellular Physiology. 
1989;140(3):455-462

[25] Chu Z, Witte DP, Qi X. Saposin 
C-LBPA interaction in late-endosomes/
lysosomes. Experimental Cell Research. 
2005;303(2):300-307

[26] Minciacchi VR, Freeman MR, Di 
Vizio D. Extracellular vesicles in cancer: 
Exosomes, microvesicles and the 
emerging role of large oncosomes. 
Seminars in Cell & Developmental 
Biology. 2015;40:41-51

[27] Bissig C, Lenoir M, Velluz M-C, 
Kufareva I, Abagyan R, Overduin M,  
et al. Viral infection controlled by a 
calcium-dependent lipid-binding module 
in ALIX. Developmental Cell. 
2013;25(4):364-373

[28] Mathivanan S, Fahner CJ, Reid GE, 
Simpson RJ. ExoCarta 2012: Database of 
exosomal proteins RNA and lipids. 
Nucleic Acids Research. 2012;40 
(Database issue):D1241-D1244

[29] Valastyan S, Weinberg RA. Tumor 
metastasis: Molecular insights and 
evolving paradigms. Cell. 2011;147(2): 
275-292

[30] Lowry MC, Gallagher WM, 
O’Driscoll L. The role of exosomes in 
breast cancer. Clinical Chemistry. 
2015;61(12):1457-1465

[31] Liu T, Hooda J, Atkinson JM, 
Whiteside TL, Oesterreich S, Lee AV. 
Exosomes in breast cancer - mechanisms 
of action and clinical potential. Molecular 
Cancer Research. 2021;19(6):935-945

[32] Giordano C, La Camera G, 
Gelsomino L, Barone I, Bonofiglio D, 
Andò S, et al. The biology of exosomes 
in breast cancer progression: 
Dissemination, immune evasion and 
metastatic colonization. Cancers (Basel). 
2020;12(8):2179

[33] Kruger S, Abd Elmageed ZY, 
Hawke DH, Wörner PM, Jansen DA, 
Abdel-Mageed AB, et al. Molecular 
characterization of exosome-like vesicles 
from breast cancer cells. BMC Cancer. 
2014;14(1):44



Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy

12

[34] Gangoda L, Liem M, Ang C-S, 
Keerthikumar S, Adda CG, Parker BS,  
et al. Proteomic profiling of exosomes 
secreted by breast cancer cells with 
varying metastatic potential. Proteomics. 
2017;17(23-24):1600370

[35] Palazzolo G, Albanese NN, DI 
Cara G, Gygax D, Vittorelli ML, 
Pucci-Minafra I. Proteomic analysis of 
exosome-like vesicles derived from breast 
cancer cells. Anticancer Research. 
2012;32(3):847-860

[36] Ciravolo V, Huber V, Ghedini GC, 
Venturelli E, Bianchi F, Campiglio M,  
et al. Potential role of HER2-
overexpressing exosomes in countering 
trastuzumab-based therapy. Journal of 
Cellular Physiology. 2012;227(2):658-667

[37] Shedden K, Xie XT, Chandaroy P, 
Chang YT, Rosania GR. Expulsion of 
small molecules in vesicles shed by 
cancer cells: Association with gene 
expression and chemosensitivity profiles. 
Cancer Research. 2003;63(15):4331-4337

[38] Hayes JD, Wolf CR. Molecular 
mechanisms of drug resistance. The 
Biochemical Journal. 1990;272(2): 
281-295

[39] Chen W-X, Liu X-M, Lv M-M, 
Chen L, Zhao J-H, Zhong S-L, et al. 
Exosomes from drug-resistant breast 
cancer cells transmit chemoresistance by 
a horizontal transfer of microRNAs. 
PLoS ONE. 2014;9(4):e95240

[40] Lv M-M, Zhu X-Y, Chen W-X, Zhong 
S-L, Hu Q, Ma T-F, et al. Exosomes 
mediate drug resistance transfer in 
MCF-7 breast cancer cells and a probable 
mechanism is delivery of P-glycoprotein. 
Tumour Biology. 2014;35(11): 
10773-10779

[41] Jaiswal R, Gong J, Sambasivam S, 
Combes V, Mathys J-M, Davey R, et al. 

Microparticle-associated nucleic acids 
mediate trait dominance in cancer. The 
FASEB Journal. 2012;26(1):420-429

[42] Boelens MC, Wu TJ, Nabet BY, Xu B, 
Qiu Y, Yoon T, et al. Exosome transfer 
from stromal to breast cancer cells 
regulates therapy resistance pathways. 
Cell. 2014;159(3):499-513

[43] Greening DW, Gopal SK, 
Mathias RA, Liu L, Sheng J, Zhu H-J,  
et al. Emerging roles of exosomes during 
epithelial-mesenchymal transition and 
cancer progression. Seminars in Cell & 
Developmental Biology. 2015;40:60-71

[44] Wang J, Hendrix A, Hernot S, 
Lemaire M, De Bruyne E, Van 
Valckenborgh E, et al. Bone marrow 
stromal cell-derived exosomes as 
communicators in drug resistance in 
multiple myeloma cells. Blood. 
2014;124(4):555-566

[45] Melo SA, Sugimoto H, O’Connell JT, 
Kato N, Villanueva A, Vidal A, et al. 
Cancer exosomes perform cell-
independent microRNA biogenesis and 
promote tumorigenesis. Cancer Cell. 
2014;26(5):707-721

[46] Singh R, Pochampally R, Watabe K, 
Lu Z, Mo Y-Y. Exosome-mediated transfer 
of miR-10b promotes cell invasion in 
breast cancer. Molecular Cancer. 
2014;13(1):256

[47] Wang X, Xu C, Hua Y, Sun L, 
Cheng K, Jia Z, et al. Exosomes play an 
important role in the process of psoralen 
reverse multidrug resistance of breast 
cancer. Journal of Experimental & 
Clinical Cancer Research. 2016;35(1):186

[48] Kumar D, Gupta D, Shankar S, 
Srivastava RK. Biomolecular 
characterization of exosomes released 
from cancer stem cells: Possible 
implications for biomarker and treatment 



13

Engineering of Extracellular Vesicles as Nano Therapy for Breast Cancer
DOI: http://dx.doi.org/10.5772/intechopen.101149

of cancer. Oncotarget. 
2015;6(5):3280-3291

[49] Gorczynski RM, Zhu F, Chen Z, 
Kos O, Khatri I. A comparison of serum 
miRNAs influencing metastatic growth 
of EMT6 vs 4THM tumor cells in wild-
type and CD200R1KO mice. Breast 
Cancer Research and Treatment. 
2017;162(2):255-266

[50] Zhang P, Zhou H, Lu K, Lu Y, Wang Y, 
Feng T. Exosome-mediated delivery of 
MALAT1 induces cell proliferation in 
breast cancer. Oncotargets and Therapy. 
2018;11:291-299

[51] Dong H, Wang W, Chen R, Zhang Y, 
Zou K, Ye M, et al. Exosome-mediated 
transfer of lncRNA-SNHG14 promotes 
trastuzumab chemoresistance in breast 
cancer. International Journal of 
Oncology. 2018;53(3):1013-1026

[52] Vashisht M, Rani P, Onteru SK, 
Singh D. Curcumin encapsulated in milk 
exosomes resists human digestion and 
possesses enhanced intestinal 
permeability in vitro. Applied 
Biochemistry and Biotechnology. 
2017;183(3):993-1007

[53] Sun D, Zhuang X, Xiang X, Liu Y, 
Zhang S, Liu C, et al. A novel 
nanoparticle drug delivery system: The 
anti-inflammatory activity of curcumin 
is enhanced when encapsulated in 
exosomes. Molecular Therapy. 
2010;18(9):1606-1614

[54] Gong C, Tian J, Wang Z, Gao Y, 
Wu X, Ding X, et al. Functional 
exosome-mediated co-delivery of 
doxorubicin and hydrophobically 
modified microRNA 159 for triple-
negative breast cancer therapy. Journal of 
Nanobiotechnology. 2019;17(1):93

[55] Yang X, Shi G, Guo J, Wang C, He Y. 
Exosome-encapsulated antibiotic against 

intracellular infections of methicillin-
resistant Staphylococcus aureus. 
International Journal of Nanomedicine. 
2018;13:8095-8104

[56] Pascucci L, Coccè V, Bonomi A, 
Ami D, Ceccarelli P, Ciusani E, et al. 
Paclitaxel is incorporated by 
mesenchymal stromal cells and released 
in exosomes that inhibit in vitro tumor 
growth: A new approach for drug 
delivery. Journal of Controlled Release. 
2014;192:262-270

[57] Jia G, Han Y, An Y, Ding Y, He C, 
Wang X, et al. NRP-1 targeted and 
cargo-loaded exosomes facilitate 
simultaneous imaging and therapy of 
glioma in vitro and in vivo. Biomaterials. 
2018;178:302-316

[58] Toffoli G, Hadla M, Corona G, 
Caligiuri I, Palazzolo S, Semeraro S, et al. 
Exosomal doxorubicin reduces the 
cardiac toxicity of doxorubicin. 
Nanomedicine. 2015;10(19):2963-2971

[59] Kim MS, Haney MJ, Zhao Y, 
Mahajan V, Deygen I, Klyachko NL,  
et al. Development of exosome-
encapsulated paclitaxel to overcome 
MDR in cancer cells. Nanomedicine. 
2016;12(3):655-664

[60] Fuhrmann G, Serio A, Mazo M, 
Nair R, Stevens MM. Active loading into 
extracellular vesicles significantly 
improves the cellular uptake and 
photodynamic effect of porphyrins. 
Journal of Controlled Release. 
2015;205:35-44

[61] Haney MJ, Klyachko NL, Zhao Y, 
Gupta R, Plotnikova EG, He Z, et al. 
Exosomes as drug delivery vehicles for 
Parkinson’s disease therapy. Journal of 
Controlled Release. 2015;207:18-30

[62] Alvarez-Erviti L, Seow Y, Yin H, 
Betts C, Lakhal S, Wood MJA. Delivery 



Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy

14

of siRNA to the mouse brain by systemic 
injection of targeted exosomes. Nature 
Biotechnology. 2011;29(4):341-345

[63] Tian Y, Li S, Song J, Ji T, Zhu M, 
Anderson GJ, et al. A doxorubicin 
delivery platform using engineered 
natural membrane vesicle exosomes for 
targeted tumor therapy. Biomaterials. 
2014;35(7):2383-2390

[64] Li D, Yao S, Zhou Z, Shi J, Huang Z, 
Wu Z. Hyaluronan decoration of milk 
exosomes direct tumor-specific delivery 
of doxorubicin. Carbohydrate Research. 
2020;493(108032):108032

[65] Vakhshiteh F, Rahmani S, Ostad SN, 
Madjd Z, Dinarvand R, Atyabi F. 
Exosomes derived from miR-34a-
overexpressing mesenchymal stem cells 
inhibit in vitro tumor growth: A new 
approach for drug delivery. Life Sciences. 
2021;266(118871):118871


