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Chapter
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Fusarium Wilt
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Jiawei Guo and Bei Cui

Abstract

Fusarium wilt poses a current threat to worldwide banana plantation areas. 
To treat the Fusarium wilt disease and adjust banana planting methods accord-
ingly, it is important to introduce timely monitoring processes. In this chapter, 
the multispectral images acquired by unmanned aerial vehicle (UAV) was used 
to establish a method to identify which banana regions were infected or unin-
fected with Fusarium wilt disease. The vegetation indices (VIs), including the 
normalised difference vegetation index (NDVI), normalised difference red edge 
index (NDRE), structural independent pigment index (SIPI), red-edge structural 
independent pigment index (SIPIRE), green chlorophyll index (CIgreen), red-edge 
chlorophyll index (CIRE), anthocyanin reflectance index (ARI), and carotenoid 
index (CARI), were selected for deciding the biophysical and biochemical charac-
teristics of the banana plants. The relationships between the VIs and those plants 
infected or uninfected with Fusarium wilt were assessed using the binary logistic 
regression method. The results suggest that UAV-based multispectral imagery 
with a red-edge band is effective to identify banana Fusarium wilt disease, and 
that the CIRE had the best performance.

Keywords: Fusarium wilt, banana, UAV, remote sensing

1. Introduction

Bananas (Musa spp.) are a widely cultivated cash crop in both the tropical 
and subtropical regions. Caused by the soilborne fungus Fusarium oxysporum f. 
sp. cubense (Foc), Banana Fusarium wilt (also known as Panama disease) seri-
ously threatens global banana cultivation and export [1, 2]. As reported, banana 
Fusarium wilt may have affected up to 100,000 hectares of banana plantations. 
Moreover, it continues to spread, through infected plant materials and contami-
nated soil and flowing water, or through farm machinery and inappropriate 
sanitation measures [2]. Externally, the first sign that a plant is infected with the 
disease is the withered plant, with the old leaves turning yellow on the edge. With 
the progression of the disease, the leaves eventually droop and form a ‘skirt’ around 
the pseudo-stem before finally falling off. The new leaves may show irregular 
and wrinkled blades as well as pale margins [3]. Currently, no effective chemical 
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treatment method has been proposed to control Fusarium wilt. “Removal in time” is 
the optimal way to prevent the disease spread once a diseased plant is identified [4].

For treatment of the disease, and for crop planting adjustments, real-time moni-
toring and effective identification of banana Fusarium wilt play a significant role 
[5]. Traditionally, soil investigations have been the only effective means to monitor 
crop diseases, but such surveys take a lot of time and are often expensive. Recent 
years have witnessed the rapid development of the remote sensing technology, which 
has developed into a viable method for disease assessment and monitoring. The leaf 
pigment content, leaf area index (LAI) and water content of a plant which is infected 
with a disease will all undergo changes. And such biochemical and biophysical 
changes in the plant will also present in its spectral reflectance characteristics [6]. 
Remote sensing technology has been applied to monitor diseases, including Fusarium 
head blight [7, 8], rust infection [9–11], and powdery mildew [7, 8, 12, 13] in wheat, 
grey leaf spot in maize [14], bacterial leaf blight in rice [15, 16], and late blight 
disease and bacterial spot in tomatoes [17, 18] in some studies. However, the sensi-
tivity of spectral bands and VIs varies with the category of diseases. For example, 
Bravo et al. [19] calculated the normalised difference vegetation index (NDVI) using 
wavelengths of 620–640 nm and 740–760 nm for extracting powdery mildew from 
wheat patches. Devadas et al. [20] distinguished yellow rusted wheat from healthy 
wheat using the anthocyanin reflection index (ARI). Huang et al. [10] suggested that 
the position of the red edge can be used as a disease indicator. With this in mind, it is 
of essence to identify which spectral bands and VIs are suitable for the identification 
of which specific diseases.

UAV remote sensing technology has been developed rapidly over recent years. 
It has become of interest due to its advantages of long flight time, real-time image 
transmission, effective detection of high-risk areas, low cost and easy manoeu-
vrability. It provides new means for the timely and non-destructive extraction of 
infected plants from the in-season crops [21]. Using UAV multispectral and hyper-
spectral images, a great number of studies have achieved significant progress in 
growth monitoring, crop classification, and the identification of diseases and insect 
pests [22–24]. Within banana production, a few studies have adopted UAV-based 
images to map the spatial patterns of photosynthetic activity in banana plantations 
[25]. Nonetheless, there are few studies that use UAV-based remote sensing to moni-
tor banana Fusarium wilt [26, 27]. Furthermore, the spatial scale for remote sensing 
information and scaling remains one of the fundamental problems in geoscience 
[28]. Selecting an optimal spatial scale for remote sensing imagery plays a signifi-
cant role in agricultural monitoring in particular.

Therefore, the goals of this chapter are to: (i) develop an identification method 
for Fusarium wilt based on UAV multispectral remote sensing, (ii) determine the 
optimal VI needed for the establishment of a quality identification model, and 
(iii) evaluate how different image resolutions affect the accuracy of Fusarium wilt 
identification in order to provide guidance for the application of satellite-based data 
in a massive scale.

2. Materials and methods

2.1 Field experiment

The experiments were carried out at two experimental locations in Guangxi and 
Hainan, respectively.

The Guangxi experiment site is located in Guangxi Province of China (23°7′53″ 
to 23°8′4″ N, 107°43′45 to 107°44′7″ E) (Figure 1). It has a subtropical monsoon 
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climate characterised by year-round sunshine and rainfall, with a mean annual 
temperature between 20.8 to 22.4°C, and an average annual rainfall of 1200 mm. 
The soil type according to the FAO soil classification system is Ferralsol [29]. The 
banana variety in the study area was “Williams B6”. The leaf number of this variety 
is 34–36, the plant height is about 2.4–3 m, and the growth period is 10–12 months. 
The banana plantation was established in September 2015, with the planting dis-
tance of 2.0 m by 2.6 m. The first harvest was carried out in November 2016. As of 
August 2018 (the time of the field investigation discussed in this chapter), the third 
generation of bananas was in the fields and more than 40% of the banana plants 
were infected with Fusarium wilt.

The Hainan experiment site is located in Hainan Province, China (19°49′4″ to 
19°49′16″ N, 109°54′40″ to 109°54′53″ E) (Figure 1). It has a tropical monsoon 
climate characterised by year-round sunshine and rainfall, with a mean annual 
temperature between 23.1 to 24.5°C and an average annual rainfall of 1750 mm. The 
soil type according to the FAO soil classification system is Humic Acrisol [29]. This 
experimental field was divided into two sub-fields (left area and right area) with 
the middle road as the boundary (Figure 1). The left area was developed in June 
2017, with the planting distance of 2.0 m by 2.3 m. The first harvest was carried 
out in July 2018. The banana variety was “Baxijiao”. the plant height of this variety 
is about 2.6–3.2 m and the growth period is 9–12 months. In this field, the rate of 
banana Fusarium wilt infection was about 10%.

The right area was developed in August 2018. The planting distance was the 
same as that in the left field. The banana variety was “Nantianhuang”. The plant 
height of this variety is about 2.5–3.0 m and the growth period is 10–13 months. At 
the time of the field investigation in December 2018, no banana plants were found 
to be infected with Fusarium wilt.

Figure 1. 
Location of the experimental sites with the survey sites.
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In this chapter, the experimental data obtained from the Guangxi site was used 
for calibration and validation of the Fusarium wilt identification model, and from 
the Hainan site used for model validation.

2.2 Field investigation

2.2.1 Plant investigation

The experiment at Guangxi site was carried out on August 7, 2018. A total of 120 
sample plots were investigated to assess the occurrence or non-occurrence of Fusarium 
wilt (Figure 1). Among them, there were 57 healthy samples and 63 diseased samples. 
The size of each sample plot encompassed one banana plant. Eventually, 75% samples 
were randomly extracted and employed for the construction of Fusarium wilt iden-
tification model denoted by modelling dataset (MD); and the remaining 25% for 
model validation, denoted by validation dataset 1 (VD1). The experiment at Hainan 
site was performed on December 11, 2018. The survey strategy was in line with that 
of the experiment at Guangxi site. A total of 35 sample plots were finally investigated, 
of which 16 were healthy and 19 were diseased. All the sample plots from Hainan sties 
were served for model validation, denoted by validation dataset 2 (VD2).

2.2.2 UAV multispectral imagery acquisition

The surveys were carried out by a DJI Phantom 4 Pro quadcopter (DJI 
Innovations, Shenzhen, China) equipped a MicaSense RedEdge-M multispectral 
camera (MicaSense, Inc., Seattle, WA, USA). The camera is configured with five 
bands: Blue (475 nm center, 20 nm bandwidth), Green (560 nm center, 20 nm 
bandwidth), Red (668 nm center, 10 nm bandwidth), Red edge (717 nm center, 
10 nm bandwidth), Near-IR (840 nm center, 40 nm bandwidth). The flight experi-
ment at the Guangxi site was performed between 12:30 p.m.–13:30 p.m. on 7 August 
2018, covering an area of 21 ha. While the flight experiment at the Hainan site was 
implemented between 11:00 a.m.–12:00 p.m. on December11, 2018, covering an area 
of 11 hectares. The flight altitude above ground level was 120 m with an 8 cm ground 
sample distance (GSD). Then, the original UAV imagery was resampled to generate 
images with five resolutions (i.e., 0.5-m, 1-m, 2-m, 5-m, and 10-m) by using nearest 
neighbour resampling algorithm.

2.3 Data analysis

2.3.1 Vegetation indices

In this section, the VIs method was applied to assess the infection status of 
Fusarium wilt in banana plantations. Eight VIs that related to plant growth and 
pigment absorption were selected to characterise the biophysical and biochemical 
variations due to individual infections. These VIs included the NDVI, normalised 
difference red edge index (NDRE), structural independent pigment index (SIPI), 
red-edge structural independent pigment index (SIPIRE), green chlorophyll index 
(CIgreen), red-edge chlorophyll index (CIRE), anthocyanin reflectance index (ARI), 
and carotenoid index (CARI). Table 1 lists the formulations of the VIs.

2.3.2 Statistics analysis

The binary logistic regression (BLR) was used to established the relationships 
between the VIs and the plants infected or uninfected with Fusarium wilt. As one 
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of the most common multivariate analysis methods, BLR has a dependent variable 
as a binary variable that represents the presence or absence of an event. The BLR 
dependent variable is a probability function, which can be expressed as [38]:

 ( )1/ 1
yp e−= +  (1)

where p represents the probability of Fusarium wilt occurrence in this chapter, 
ranging between 0 and 1, e is the numerical constant, and y refers to the linear 
combination. They can be expressed in a formula as:

 
0 1 1 2 2 n ny x x xβ β β β= + + +…+  (2)

where β0 refers to the intercept, βi and xi (i = 0, 1, 2, …, n) are the slope coef-
ficients and independent variables, respectively. The logistic regression models were 
fitted with the modelling dataset through SPSS 20.0 software (SPSS Inc., Chicago, 
Illinois, USA) in this section.

Following the model fitting, the validation datasets were used to verify the accuracy 
of Fusarium wilt identification models, with indicators of the Kappa coefficient and 
overall accuracy (OA) [39, 40]. The Kappa coefficient ranges between −1 and 1, kappa 
≥0.75 represents excellent agreement, 0.75 > kappa ≥0.4 represents fair to good agree-
ment, kappa <0.4 represents poor represents [41]. The OA is the sum of the correctly 
identified plots divided by the total number of plots.

3. Banana fusarium wilt recognition

3.1 Statistical characteristics of VIs change after disease infection

Table 2 shows the VI values of the diseased and healthy sample plots. Significant 
differences (independent t-test) were observed in the NDVI, NDRE, CIgreen, CIRE, 
ARI, and CARI values between the healthy plots and diseased plots (p < 0.01), but 
not observed in the SIPI and SIPIRE values (p > 0.05). Hence, we selected NDVI, 
NDRE, CIgreen, CIRE, ARI, and CARI for follow-up analysis.

3.2 Recognition model fitting with different VIs

In this section, the relationships between the VIs and the plants infected or 
uninfected with Fusarium wilt were described by using the BLR method with 

VI Formulation Sensitive Parameter Reference

NDVI (RNIR–Rred)/(RNIR + Rred) Green biomass, LAI [30]

NDRE (RNIR–RRE)/(RNIR + RRE) Green biomass, LAI [31]

SIPI (RNIR–Rblue)/(RNIR – Rred) Leaf pigment content [32]

SIPIRE (RRE–Rblue)/(RRE – Rred) Leaf pigment content [33]

CIgreen RNIR/Rgreen–1 Leaf chlorophyll content [34]

CIRE RNIR/RRE–1 Leaf chlorophyll content [35]

ARI 1/Rgreen–1/RRE Leaf anthocyanin content [36]

CARI RRE/Rgreen–1 Leaf carotenoid content [37]

Table 1. 
List of the VIs used in this chapter.
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dataset MD. The classification accuracy of the relational models was verified via 
both dataset VD1 and VD2. It was found that the use of the NDVI, NDRE, CIgreen, 
and CIRE led to relatively good fitting recognition models with the OA values greater 
than 80% (Table 3). Of all the VIs, CIRE obtained the highest verified OA and 
Kappa coefficient for both VD1 (91.7% for OA and 0.83 for Kappa) and VD2 (80.0% 
for OA and 0.59 for Kappa), thereby indicating that CIRE performed best in the 
identification of Fusarium wilt. It could be seen that those VIs containing red-edge 

Experiment Site VI Sample plot Mean Std. Deviation p Value (t-test)

Guangxi site NDVI Healthy 0.54 0.11 0.00

Diseased 0.34 0.14

NDRE Healthy 0.20 0.08 0.00

Diseased 0.02 0.09

SIPI Healthy 0.88 0.36 0.24

Diseased 1.68 5.26

SIPIRE Healthy 0.58 0.71 0.25

Diseased 2.07 9.77

CIgreen Healthy 1.08 0.32 0.00

Diseased 0.43 0.33

CIRE Healthy 0.56 0.22 0.00

Diseased 0.09 0.22

ARI Healthy 0.85 0.15 0.00

Diseased 0.62 0.16

CARI Healthy 0.34 0.04 0.00

Diseased 0.30 0.06

Hainan site NDVI Healthy 0.44 0.05 0.00

Diseased 0.36 0.06

NDRE Healthy 0.35 0.10 0.00

Diseased 0.12 0.09

SIPI Healthy 1.07 0.07 0.06

Diseased 1.18 0.12

SIPIRE Healthy 1.11 0.11 0.04

Diseased 1.23 0.16

CIgreen Healthy 0.92 0.26 0.00

Diseased 0.49 0.26

CIRE Healthy 0.35 0.10 0.00

Diseased 0.12 0.09

ARI Healthy 0.87 0.30 0.03

Diseased 0.61 0.35

CARI Healthy 0.43 0.16 0.01

Diseased 0.33 0.19

Table 2. 
Statistical characteristics of the VI values of the diseased and healthy sample plots.
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band (e.g., NDRE vs. NDVI and CIRE vs. CIgreen) obtained higher verified OA and 
Kappa coefficients. Nonetheless, CARI and ARI achieved relatively low verified OA 
and Kappa coefficients.

3.3 Recognition model fitting with different resolution images

Evaluating the impact of image resolutions on the accuracy of Fusarium wilt 
recognition can provide guidance for the large-scale application of satellite-based 
data. In this chapter, the original UAV images were first resampled to five different 
spatial resolutions (0.5-m, 1-m, 2-m, 5-m, and 10-m), which were then used for 
Fusarium wilt monitoring. We calculated both the optimal VI without a red-edge 
band (CIgreen) and optimal VI with a red-edge band (CIRE) at different resolutions. 
Table 4 lists the results of Fusarium wilt recognition model for the CIgreen and CIRE 
VIs at different resolutions. As indicated by the verified results, the CIRE at resolu-
tion 0.5-m, 1-m, and 2-m were all obtained the acceptable verified OA (over 70%) 
and Kappa coefficients (over 0.40). When using the dataset VD1, the verified OA at 
resolution 0.5-m, 1-m, and 2-m were 91.7%, 79.2%, and 75.0%, respectively, and the 
Kappa coefficients were 0.83, 0.60, and 0.53, respectively. When using dataset VD2, 
the verified OA at resolution 0.5-m, 1-m, and 2-m were 85.7%, 74.3%, and 71.4%, 
respectively, and the Kappa coefficients were 0.71, 0.48, and 0.41, respectively. 
Despite that, the OA and Kappa coefficients at resolution 5-m and 10-m resolution 
were relatively low, and their values dropped as the resolution decreased. Moreover, 
at the same resolution, the accuracy of the CIgreen-based model for Fusarium wilt 
recognition was lower than that of CIRE-based model. In fact, the only acceptable 
result for the CIgreen was at 0.5-m resolution.

3.4 Fusarium wilt Banana distribution mapping at different resolutions

With the aim to further explore the visual effects of image resolutions, the 
distribution of Fusarium wilt infected and uninfected areas at the Guangxi site were 
mapped using different resolution images. CIRE-based and CIgreen-based Fusarium 
wilt identification models were respectively used to create the Fusarium wilt distri-
bution maps. As can be seen in Figures 2 and 3, the maps with 0.08-m, 0.5-m, 1-m 
and 2-m resolution show quite similar distributions of the occurrence of Fusarium 
wilt; however, the maps with 5-m and 10-m resolutions exhibited very little detail. 
Table 5 lists the area and percentage of the areas infected with Fusarium wilt at dif-
ferent resolutions. For the maps based on CIRE models, the total areas of Fusarium 
wilt were between 5.69 ha and 6.59 ha, accounting for 38.2% and 44.3% of the 

VI Recognition model Dataset VD1 Dataset VD2

OA (%) Kappa OA (%) Kappa

NDVI y = 5.373–11.851 × NDVI 83.3 0.66 62.9 0.22

NDRE y = 1.802–15.775 × NDRE 87.5 0.75 65.7 0.39

CIgreen y = 3.118–4.144 × CIgreen 87.5 0.74 74.3 0.47

CIRE y = 1.935–6.110 × CIRE 91.7 0.83 80.0 0.59

ARI y = 5.326–7.247 × ARI 83.3 0.66 68.6 0.37

CARI y = 3.172–9.966 × CARI 66.7 0.35 60.0 0.21

Table 3. 
Recognition models of banana fusarium wilt for different VIs.
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Resolution Recognition model Dataset VD1 Dataset VD2

OA (%) Kappa OA (%) Kappa

CIRE

0.5-m y = 1.987–5.826 × CIRE 91.7 0.83 85.7 0.71

1-m y = 1.645–4.896 × CIRE 79.2 0.60 74.3 0.48

2-m y = 1.475–4.178 × CIRE 75.0 0.53 71.4 0.41

5-m y = 1.027–2.854 × CIRE 70.8 0.42 65.7 0.30

10-m y = 0.761–1.817 × CIRE 62.5 0.25 62.9 0.24

CIgreen

0.5-m y = 3.166–3.946 × CIgreen 87.5 0.75 74.3 0.48

1-m y = 2.633–3.266 × CIgreen 75.0 0.51 65.7 0.32

2-m y = 2.421–2.936 × CIgreen 75.0 0.51 62.9 0.26

5-m y = 1.552–1.862 × CIgreen 66.7 0.35 48.6 0.01

10-m y = 1.044–1.158 × CIgreen 58.3 0.18 45.7 −0.01

Table 4. 
Recognition models of banana fusarium wilt for the CIRE and CIgreen at different resolutions.

Figure 2. 
Maps of the distribution of fusarium wilt based on the CIRE with different resolution images at the 
Guangxi site.
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banana plantation area. Taking a map with a resolution of 2 m as an example, the 
incidence of Fusarium wilt is between 40.8% and 43.6%. For the maps based on 
CIgreen models, the total areas of Fusarium wilt were between 5.09 ha and 6.63 ha, 
accounting for 34.2% and 44.6% of the banana plantation area. Among them, the 
percentages of Fusarium wilt of the 0.08-m and 0.5-m resolution maps were 40.1% 
and 44.6%, respectively.

3.5 Discussion

It was found that among all the VIs used in this chapter, CIRE was the best red-
edge VI and CIgreen was the best non-red-edge VI for Fusarium wilt identification. 
This is because these two VIs are sensitive to the changes of chlorophyll content of 
a plant, and Fusarium wilt infection in banana will cause a decrease in leaf chloro-
phyll content [34, 35, 42]. Furthermore, compared with VIs without the red-edge 
band, VIs with the red-edge band had higher OA and Kappa coefficients (e.g., 
NDRE vs. NDVI, and CIRE vs. CIgreen). It has been widely proved that the red-edge 
position is very sensitive to the changes of the plant chlorophyll content [43, 44]. 
Nevertheless, the UAV-based multispectral imagery used in this chapter only pos-
sessed 5 bands, which still cannot fully characterise the differences of the spectral 
characteristics between the diseased and healthy plants. It is therefore of great 

Figure 3. 
Maps of the distribution of fusarium wilt based on the CIgreen with different resolution images at the 
Guangxi site.
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significance to use hyperspectral data to further study the sensitivity of certain 
wavebands to banana Fusarium wilt.

The results also showed the potential of combining BLR and VIs to accurately 
identify Fusarium wilt of banana. Based on this method, an ideal framework 
for the use of spectral features can be obtained, so as to clarify the pathological 
mechanisms. In this chapter, the dependent variable was the occurrence of banana 
Fusarium wilt. Under the circumstance that the predicted variable has a binary 
nature, BLR can be regarded as a suitable approach [38]. In addition, BLR can 
deliver better performance than discriminant analysis in the case that the predic-
tor variables are continuous, categorical, or a combination of the two [45]. BLR 
is highly interpretable, very efficient, and does not require large computational 
resources, so it is widely used to describe the relationship between a dependent 
variable and multiple independent variables [38]. Moreover, due to its linear deci-
sion surface, non-linear problems cannot be solved by the logistic regression. With 
the development of artificial intelligence, pattern recognition and machine learning 
methods will become more common in the use of remote sensing to monitor and 
predict plant diseases [46].

The Fusarium wilt detection models were verified both using the dataset VD1 
VD2. It can be seen from the verification results that both CIRE and CIgreen performed 
well in the identification of Fusarium wilt (OA > 70%, and Kappa values >0.4). This 
indicates that the detection models of Fusarium wilt have a good transferability in 
other fields. Tables 3 and 4 show that the Kappa coefficients of the dataset VD2 
were lower than those of the dataset VD1, thus indicating that applying the detec-
tion methodology of Fusarium wilt in other fields would cause some precision 
loss. This situation may be due to the following factors. First of all, one of the most 
important factors affecting the verification results could be the fact that there were 
two different banana varieties at the experimental sites (“Williams B6” in VD1 and 
“Baxijiao” in VD2). These showed that there were differences in their biophysical 
and biochemical characteristics, which may cause differences in spectral character-
istic information. Secondly, due to the differences in the planting time and climatic 

Resolution Diseased area (ha) Proportion of diseased area (%)

CIRE

0.08-m 6.04 40.8

0.5-m 6.59 44.3

1-m 6.28 42.2

2-m 6.47 43.6

5-m 5.70 38.5

10-m 5.69 38.2

CIgreen

0.08-m 5.95 40.1

0.5-m 6.63 44.6

1-m 6.44 43.3

2-m 6.63 44.6

5-m 5.69 38.4

10-m 5.09 34.2

Table 5. 
Areas of fusarium wilt based on the CIRE and CIgreen with different resolution images at the Guangxi site.
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conditions of the two experimental sites, their growth stages differed greatly. In 
fact, the banana plants of two experimental areas were at different growth stages 
during the investigation. Moreover, soil types, planting density, and environmental 
conditions for crop growth are also important factors that affect the applicability of 
the Fusarium wilt identification model. Therefore, it is recommended to appropri-
ately optimise the BLR parameters when applying this method in other regions.

In this chapter, the original UAV images were resampled to generate five reso-
lution images (i.e., 0.5-m, 1-m, 2-m, 5-m, and 10-m) to evaluate the impact of 
different resolutions on the accuracy of Fusarium wilt monitoring. It was found that 
imagery with a resolution smaller than 2 meters had a good accuracy for Fusarium 
wilt monitoring, which may be related to the planting spacing and the canopy size 
of banana. With the reduction of the resolution, the mixed pixel problem influences 
the precision of object recognition and classification. However, image resolution is 
not the only difference seen between UAV-based and satellite-based sensors. The 
wavelength information captured by the satellite-based sensor is different from that 
of UAV-based sensors. Thus, the simulation results at different resolutions should 
be further verified with actual satellite-based data. In this chapter, single-period 
multispectral images were used, which limits the spectral response mechanism 
to determine the changes in the biophysical and chemical parameters caused by 
Fusarium wilt. In order to overcome this problem, it is necessary to use multi-
temporal and hyperspectral images for dynamic monitoring of the occurrence of 
Fusarium wilt. Additionally, it is also of great value to explore the differences in the 
spectral response characteristics of Fusarium wilt and other yellowing stresses (i.e., 
nutrition deficiency and drought stress).

4. Conclusions

This research used UAV multispectral images to develop a method for iden-
tifying Fusarium wilt of banana. The results revealed that the VIs method with 
BLR analysis can well identify Fusarium wilt. of all the VIs investigated, the CIRE 
exhibited the optimal performance, with the OA and Kappa coefficients of 91.7% 
and 0.83 for dataset VD1 and 80.0% and 0.59 for dataset VD2. VIs that included a 
red edge band obtained better results than those that did not have one. According to 
the analysis of different resolutions, a resolution smaller than 2 m produced a good 
identification accuracy of Fusarium wilt. As the resolution decreased however, the 
identification accuracy decreased. The results indicate that UAV-based multispec-
tral imagery can be applied to identify Fusarium wilt of banana, thus providing 
reference for disease treatment and crop planting adjustments.
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