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Chapter

Review of Insecticide Resistance 
and Its Underlying Mechanisms in 
Tribolium castaneum
U. Shamjana and Tony Grace

Abstract

The red flour beetle Tribolium castaneum has emerged as the genetically  
tractable model insect for population genetics, functional genomics, and evolution-
ary studies. This agricultural pest is notorious for its potential to severely damage 
stored products. T. castaneum has developed resistance to almost all insecticides. The 
reports of insecticide resistance from different parts of the world show that sus-
tained insecticide usage has only aggravated the problem. As insecticides continue 
to be the mainstay of pest control programs, it is essential to identify the factors 
influencing insecticide resistance for implementing effective pest-management 
strategies. The development and progression of insecticide resistance in T. castaneum 
is thus an escalating global issue requiring immediate solutions. Several studies 
have investigated the multiple resistance mechanisms found in T. castaneum, such 
as reduced cuticular penetration, increased metabolic detoxification, and target-
site insensitivity. The availability of Whole Genome Sequence and recent advances 
in Next Generation Sequencing technology has furthered a geneticist’s grasp of 
resistance study in Tribolium. The strategic containment of this organism calls for an 
in-depth understanding of resistance development. The review mainly focuses on 
different kinds of resistance mechanisms and genes mediating insecticide resistance. 
Also, it exhaustively explores the CYP450 gene superfamily in Tribolium to empha-
size its role in governing resistance. The consolidated insights from this study will 
facilitate further research on identifying biological targets, thereby developing novel 
control strategies for effective insect control.

Keywords: Insecticide resistance, Resistance Mechanisms, Detoxification genes, 
CYP450 gene superfamily, Tribolium castaneum

1. Introduction

The global population is expected to cross 9.1 billion by the year 2050 and food 
production is projected to rise to 70% to feed this growing population [1]. Many of 
the fastest-growing populations are in developing countries, several of which are 
already facing moderate or severe food insecurity and a shortfall in food supply. One 
in every six children suffer from hunger in developing countries [2] and the propor-
tion of undernourishment has been steadily increasing since 2015 [3]. The increasing 
trend globally of food insecurity attests to the fact that severe food deprivation or 
hunger is a real threat, and this scenario nullifies the ambitious “zero hunger target” 
by 2030. The severity of “food insecurity” underscores the immense challenge in 
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attaining safe, nutritious, and sufficient food for all people [3]. Tackling problems 
of food insecurity demand intensive food production. However, increasing food 
production alone will not be a viable solution to achieve the “zero hunger target” by 
2030 or for meeting the growing demand for food.

The pre-harvest and post-harvest issues combined with insect infestation 
represent a very strong limitation in optimal food production, causing mass losses 
of grains. After harvest, food grains undergo a series of processes such as thresh-
ing, cleaning, drying, storage, processing, and transportation before it reaches the 
consumer. It has been identified that food losses in the post-harvesting chain start at 
the time of harvest and continue up to food marketing at the consumer’s end [4–6]. 
Grain losses may also take place due to technical limitations such as inadequate 
stock management facilities, improper packaging, and insufficient infrastructure.

In many countries, 15% of food grains are lost during or after harvest [7]. The 
Food and Agricultural Organization (FAO) estimated post-harvest grain loss at 
40% and cereal loss at 30% in India [8]. The post-harvest losses account for on-
farm, processing, and storage loss. Studies attribute massive grain loss in developing 
countries to manual operations in different stages of harvesting, which causes 15% 
loss on the field, 13–20% loss at processing, and 15–25% storage loss [9]. Several 
studies show that insects are the main contributor to storage loss in the food supply 
chain [10–12], which accounts for 10–20% of storage loss [13].

A diverse community of stored product species are associated with different 
environments where farmers store grains and cereals; from farm bins to process-
ing facilities, to feed mills, to flour mills, to retailer stores [14–16]. Among this 
complex pest system, 600 species from Coleoptera and 70 species from Lepidoptera 
can cause substantial losses by eroding the quality of grains [17]. Coleoptera is the 
largest order of insects with over 250,000 described species and contains in its fold 
some of the most notorious stored grain pests. In these, T. castaneum requires spe-
cial attention because of the significant harm that it can have on stored products. It 
attacks a large variety of stored and processed commodities and is the most harmful 
insect in the pest complex for its ability to inflict severe damage on stored products. 
Curtailing Tribolium infestations in the supply chain would be one critical step that 
can help strengthen food quality, reduce storage loss, and improve food security.

2. Tribolium castaneum and its damage

The red flour beetle, Tribolium castaneum, is an important model organism and 
a common inhabitant of milled cereal products, stored flour, and fungus-infested 
grain [18–21]. T. castaneum causes severe damage in flour mills and wherever dried 
foods and cereal products are stored or processed. They rank among the most harm-
ful pests inhabiting grain storage facilities and processing facilities [16, 22, 23]. 
These insects frequently leave storage locations and migrate across heterogeneous 
landscapes on a daily, seasonal, or irregular basis to find new mates and resources 
[24]. The movement of grains from producers to consumers generates a complex 
network of grain storage and transportation that facilitates the dispersal of pests 
and pathogens associated with the grain [25]. The dispersal of the T. castaneum, 
through transportation and storage networks, allows them to find suitable habitats 
where they feed and reproduce, ultimately exploiting the resource patches of grain.

The adult females of T. castaneum lay eggs on the flour, complete their life 
cycle, and deplete the nutritional quality of grains over time. In the case of seri-
ous infestation, the flour becomes adulterated with a pungent odor, diminished in 
nutritional and market value [26, 27]. In addition to direct feeding, T. castaneum 
contaminates the food products through molting and excretion, which makes the 
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product commercially undesirable. Depending on the level of infestation, the grain 
can be rejected or downgraded [28]. Product deterioration can also result from the 
production of quinones secreted from glands on the thorax and abdomen [29–31] 
leading to significant loss of quality and economic loss. The customer demand for 
infestation-free flour/grain has increased widely, raising the stakes of T. castaneum 
management in grain storage facilities. In a way, consumer demand for infestation-
free products has been a fillip to the use of insecticides such as organophosphates 
and pyrethroids during storage.

Thus, a wide variety of insecticides has been applied as a primary strategy for 
Tribolium control by targeting the insect’s neurological sites, including voltage-
gated ion channels and acetylcholine system, causing irreversible disruption 
of neurological function, resulting in insect mortality. It has brought down the 
infestation rate, ensured long-term protection of stored commodities, and is 
relatively convenient to apply [32, 33]. But the incessant application of insecticides 
in storage facilities has accelerated the development of insecticide resistance in T. 
castaneum and resulted in the formation of particular resistant alleles in succeed-
ing generations. The occurrence of insecticide resistance in T. castaneum found in 
grains and cereals during storage and shipping was recorded in many countries. 
The first instance of insecticide resistance was reported in Tribolium between 1959 
and the early 1960s [34, 35]. Halisack and Beeman [36] applied discriminating 
doses of malathion to T. castaneum populations collected from cereal storages in the 
US and detected 20-fold resistance in 31 of 36 T. castaneum populations. In Canada, 
54 strains of T. castaneum showed resistance to malathion at an LC99.9 value of 
0.012 mg a.i/cm2 [37]. The populations of T. castaneum collected from flour mills 
in the USA were exposed to discriminating doses of malathion to measure their 
resistance status. Of 28 strains, 93% of the T. castaneum population tolerated the 
discriminating doses of malathion [38]. The resistance status of Egyptian popula-
tions of T. castaneum was studied using the filter paper bioassay method against 
three contact insecticides and populations of T. castaneum were found to be more 
resistant against pirimiphos-methyl [39]. T. castaneum resistance is extended to 
pyrethroid insecticides, which is one of the most widely-used classes of insecticides 
in food and fodder houses as it is effective on a wide range of insects, has high effi-
cacy at the minimum dose, and low toxicity on mammals [40–42]. Cases of pyre-
throid resistance have been detected in T. castaneum populations from Pilot-Scale 
Warehouses [43] and peanut storage warehouses [44]. Several cases of resistance 
have been reported in different populations of T. castaneum collected from different 
countries across the world such as Italy [45], United States of America [46–50], 
Africa [51], Serbia [52], Bangladesh [53], Philippines [54], Pakistan [55, 56], Iran 
[57] Australia [58]. The occurrence of insecticide resistance in T. castaneum has 
been reported against various fumigants-methyl bromide and phosphine [59–66], 
synthetic pyrethroids, e.g., cypermethrin, deltamethrin, cyfluthrin, fenvalerate, 
and permethrin [67, 68], organophosphates [47, 52, 69, 70].

In the Indian context, the first cases of insecticide resistance were reported 
in 1971 by Bhatia et al. [71] who found T. castaneum collected from the Food 
Corporation of India, Delhi, to be resistant to malathion. Since then, high frequen-
cies of insecticide resistance were recorded in T. castaneum collected from different 
storage facilities across India. Saxena et al. [72] monitored the dicholorvos resistance 
status of 13 samples from warehouses of the Food Corporation of India located at 
Mirzapur and Allahabad. The results revealed that strains from Allahabad exhibited 
more than ten-fold resistance compared to the Mirzapur strain. The T. castaneum 
population collected from different types of storage premises in Punjab varied in 
malathion resistance and was measured at a maximum in the populations of beetles 
collected from a public warehouse in Ropar [73].
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Similarly, malathion resistance level in Indian populations of T. castaneum col-
lected from thirteen different seed centres was tested and high levels of resistance 
were found in the Coimbatore strain. Eleven strains differed in terms of resistance 
levels in the range of 1.18 to 24.53 folds [74]. Insecticide resistance in T. castaneum 
has been studied in most Indian states vis-à-vis different insecticides such as 
malathion [75], dichlorvos [72], deltamethrin [76, 77], cypermethrin [78]. This 
rapid increase of resistance against different insecticide classes in India jeopardizes 
effective pest management strategies. The situation has only worsened with the 
recurring use of the same insecticide in grain storage facilities, which exert strong 
selection pressure on T. castaneum and hence reduce the efficacy of insecticides. 
The foregoing results confirm that the development and progression of insecticide 
resistance in T. castaneum is widespread and requires immediate solutions. Since 
insecticides exist as the mainstay in pest control programs, identifying the factors 
influencing insecticide resistance is essential in devising new and effective pest 
management strategies. This review presents a comprehensive picture of different 
resistance mechanisms and genes governing insecticide resistance in T. castaneum.

3. Insecticide resistance mechanisms in T. castaneum

The emergence and spread of insecticide resistance in an insect population is a 
slow and gradual evolutionary process. Following the initial exposure to the insec-
ticide, there is a latent period in which resistance genes are segregated and linked 
with other genes that contribute favorable conditions for resistance development. 
During the evolution of resistance under insecticide selection pressure, the target 
species show a noticeable increase of tolerance to the pesticide. In the next stage, 
insecticide resistance slowly develops, followed by a period of rapid development, 
during which many factors influence the selection of resistance to insecticides. 
Rapidly developing resistance results in explosive population growth of the pests in 
stored products that become almost impossible to control. It is challenging to detect 
the resistance mechanism because they emerge over evolutionary time. Many key 
factors such as intensive application of insecticides, control operations, mode of 
inheritance of resistance genes, change in fitness of individuals, and genetic back-
ground of insects influence resistance [79]. Despite species diversity and chemical 
diversity of insecticides, only three mechanisms are known to cause insecticide 
resistance in T. castaneum: i) Target site insensitivity, where changes in sensitivity 
of target site inhibit insecticide binding ii) Metabolic resistance, where the elevated 
quantity of enzymes lead to increased activities of metabolic detoxification iii) 
Lack of penetration, where cuticular thickening or cuticular modification prevents 
penetration of insecticides and render them bound to the target.

The advances in genomic research (e.g., transcriptomic sequencing and whole-
genome sequencing) have made significant progress in understanding resistance 
mechanisms such as metabolic resistance, penetration resistance, and knockdown 
resistance in T. castaneum. An even more fascinating and rapidly advancing area of 
microbiome research that blends entomology with microbiology is the study of the 
potential of entire communities of bacteria, viruses, and fungi, that live within the 
insect hosts, to detoxify insecticides. Existing studies highlight candidate resistance 
mechanisms such as symbiont-mediated insecticide resistance in various insects 
and have documented the major bacterial taxa in the adaptation to detoxify xenobi-
otic compounds [80–83].

Researchers around the world have begun to evaluate the symbiotic associations in 
different pest populations, how they interact with their hosts and whether they have 
the potential to detoxify insecticides. Interestingly, bacterial symbionts have been 
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involved in insecticide degradation and resistance development in some insect pests, 
weeds, and nematodes. There are a growing number of reports where pest resistance 
to insecticides is not only due to the mechanisms within the pest genome but also due 
to the organisms in the microbiome community [84]. However, the microbial com-
munities inhabiting T. castaneum and the unique intricate connection between sym-
bionts and insecticide resistance have not yet been investigated. Many fundamental 
questions about the microbial shifts in response to insecticides and the functions of 
particular microorganisms in mediating resistance in T. castaneum remain unresolved.

3.1 Target site insensitivity

Insecticides such as organophosphates, carbamates, and pyrethroids produce 
neurotoxicity by inhibiting the enzyme acetylcholine esterase associated with the 
central nervous system [85–88]. These insecticides also affect other target sites such 
as voltage-gated sodium channels (VGSC) and gamma aminobutyric acid (GABA) 
receptors in the insect nervous system [89]. The DDT and pyrethroid insecticides 
primarily target VGSC in the nervous system [90]. Several potential insecticides 
such as cyclodienes and fipronil bind to the GABA receptor and block the receptor 
function [91]. Most commonly used insecticides primarily target different receptors 
on the nervous system (Figure 1).

Insecticide-resistant insects perform normal neurological functions despite the 
presence of insecticide because they have evolved insensitive acetylcholine recep-
tors which provide resistance to organophosphate and carbamate insecticides. The 
reduced sensitivity of acetylcholinesterase to OP and carbamate insecticides has 
been studied in many resistant insect species of agricultural and veterinary impor-
tance [92–96]. The reduced target site sensitivity is a result of altered insecticide 
target molecules. There are mainly four types of target site insensitivity mechanisms 
observed in various insect species. These include a) Altered Acetylcholinesterase 
(AChE) resistance mechanism, which provides resistance to organophosphates and 
carbamates b) Knockdown resistance (kdr) mechanism which confers resistance 
to DDT and pyrethroids c) Reduced GABA receptor sensitivity mechanism, which 
causes resistance to phenylpyrazoles and cyclodienes and d) Altered nAChRs, 
which provide resistance to neonicotinoids [89, 97, 98].

Figure 1. 
Diagrammatic representation of pre and post synaptic neurons, showing the different target sites of most 
commonly used insecticide classes. Source: Adapted and modified from [85–91].
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3.1.1 Altered acetylcholine esterase (AChE) resistance mechanism

Acetylcholinesterase (AchE) is a vital enzyme required for regulating the 
neurotransmitter acetylcholine (ACh). It terminates the synaptic transmission by 
hydrolyzing acetylcholine into acetate and choline at cholinergic synapses in insects 
[99]. The inhibition of AchE increases the concentration of the acetylcholine at the 
synaptic cleft, which leads to a prolonged binding of ACh to its postsynaptic recep-
tor. The high quantity of acetylcholine at the postsynaptic receptor causes neuro-
excitation and produces intoxication symptoms such as tremors, convulsions, and 
eventually paralysis-related death. This enzyme is a target site of organophosphates 
and carbamates insecticides, which are bound to a serine residue on the active site 
of AchEs and convert the AchEs into their non-functional form. This causes the 
accumulation of acetylcholine at the nerve endings and disrupts nerve activity, 
resulting in paralysis and the death of insects [100].

Several Organophosphorous compounds have been used to protect agricultural 
commodities from insect infestation. But most of the insects have developed resis-
tance against these insecticides due to insensitive AchE. Target insensitivity of AchE 
to insecticides occurs through the mutations in the active site of “Ace” genes that 
encode acetylcholinesterase enzyme, which is the most common reason for confer-
ring insecticide resistance. Because of the incessant application of insecticides, 
different mutations are induced in the Ace genes either singly or in combination, 
which reduces the sensitivity of AchE to the insecticides [101, 102]. The first major 
research in insects was conducted on Drosophila melanogaster that mapped the Ace 
locus at the molecular level and the genomic sequencing effort confirmed that Ace 
encodes the acetylcholinesterase enzyme [103]. The existence of the Ace gene and 
its genome structure has been identified in many insects such as Drosophila melano-
gaster [104], Musca domestica [105], Anopheles gambiae [106], Lucilia cuprina [107], 
Tribolium castaneum [108], Pieris rapae [109], Sitobion avenae [110], Bemisia tabaci 
[111], Bombyx mori [112], Aphis gossypii [113], Plutella xylostella [114], Blattella 
germanica [115], Aedes aegypti [116]. The gene sequence and genomic organization 
of Ace genes in different insects revealed that most insect species possess two Ace 
genes (Ace 1 and Ace 2) except Drosophila melanogaster, M. domestica, and Lucilia 
cuprina. The introduction of the point mutation in Ace genes through single amino 
acid substitution reduces the sensitivity of AChE to insecticides inhibition. These 
insensitive acetylcholinesterases impart resistance to carbamate and organophos-
phorus insecticides.

Recent evidence for resistance-conferring mutations in Ace genes has focussed 
on their involvement in insecticide resistance and their biochemical and physi-
ological properties in different insects. Lu et al. [108] studied the genome organi-
zation, expression patterns, phylogenies, and three-dimensional models of two 
Ace genes in T. castaneum extensively to better understand the functional role of 
Ace genes and the molecular basis of insecticide resistance. The gene sequencing 
and comparative analysis of AChE1 and AchE2 genes (Tcas Ace 1 & Tcas Ace 2) in 
Tribolium revealed that both genes possess different features in the length of their 
genomic DNA, chromosome locations, and intron/exon organizations. Sequencing 
full-length cDNAs of AChE genes showed that AChE1 is distributed on chromo-
some 5 and AchE2 on chromosome 2. In addition, AChE1 consisted of one intron, 
whereas AchE2 consisted of five introns. Further, extensive protein simulation 
studies provided evidence that AChE1 has been associated with the hydrolysis of 
acetylcholine, whereas AChE2 has not been involved in the hydrolysis of acetyl-
cholinesterase substrates. This novel finding prompted Lu et al. [108] to investigate 
the functional differences of two AChE genes in cholinergic, non-cholinergic 
neurotransmission, and insecticide resistance by gene-silencing in T. castaneum. 
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RNAi results of both TcAce1 and TcAce2 in T. castaneum larvae were consistent with 
the observations of protein modeling studies. Thus, the protein simulation studies 
of AchE coupled with RNAi experiments have proved that AChE1 is essential for 
cholinergic neurotransmission and is the target for anticholinesterase insecticides 
such as organophosphorous and carbamates, which disable the hydrolysis activity 
of AchE1and cause incapacitation. Whereas, AChE2 is not responsible for neuro-
transmission in T. castaneum. This study also suggested that genetic modifications 
of AchE1 are most likely responsible for the insensitivity of acetylcholinesterase 
to organophosphorus and carbamate insecticides. It is remarkable that target site 
insensitivity is due to different mutations (mainly point mutation) at the catalytic 
sites of AchEs and conferred resistance in Drosophila melanogaster [117], M. domes-
tica [105], Bactrocera oleae [118], Leptinotarsa decemlineata [119], Chilo auricilius 
[120], Apolygus lucorum [121]. Sequencing of the gene encoding AchE has generated 
insights on different point mutations which causes the alteration of AchE genes 
and a decrease in the sensitivity of anti-cholinesterases insecticides inhibition. In 
addition, the efficacy of organophosphates and carbamates has been challenged 
by multiple mutations in the same AchEs of the insects [117, 122]. Thus, the point 
mutations and multiple mutations result in decreased hydrolytic efficiency of AchE 
and are associated with insecticide resistance.

3.1.2 Knockdown resistance (kdr) mechanism

Over the years, Pyrethroids have come to be the most sought-after class of 
insecticides for pest control in commercial and household environments because 
of their affordable and durable qualities [123]. However, their utility has been 
limited by the widespread development of insecticide resistance in many major 
pests. Pyrethroids are synthetic derivatives of pyrethrin, and the pyrethroids were 
classified into two groups namely class I and class II based on their physical charac-
teristics and knockdown effect against insects. Class I pyrethroids contain a basic 
structure of cyclopropane carboxylic ester. These compounds include permethrin, 
resmethrin, phenothrin, bifenthrin, allethrin, tefluthrin, and tetramethrin. Class 
II pyrethroids contain a cyano group and these compounds include cypermethrin, 
deltamethrin, cyhalothrin, fenvalerate, cyfluthrin, fenpropathrin, flumethrin. The 
toxicity of pyrethroids was found to be 2250 times higher in insects than mammals 
due to their increased sodium channel sensitivity, lower body temperature, and 
smaller structure [124]. When an insect is intoxicated with non-cyano pyrethroids 
(class I), it produces strong excitatory action and tremors on the nervous system. 
The cyano pyrethroids trigger a quite different action, which includes salivation 
and choreoathetosis. It has been suggested that poisoning symptoms differ based 
on the cyano or non-cyano pyrethroids [125]. The pyrethrin and pyrethroid 
insecticides primarily target the VGSC in the nervous system. Pyrethroids and 
DDT produce their toxicity by binding onto the voltage-gated channels in axonal 
membranes, altering their gating properties, and the channels remain open for a 
long time. This causes a prolonged sodium influx, thereby depolarizing the axonal 
membrane and stimulating the neurons to produce repetitive discharges, finally 
resulting in paralysis [90, 126]. In insects, modification of voltage-gated sodium 
channel structure by point mutation or substitution causes insensitivity and 
reduces the binding affinity of the insecticides to protein.

Knockdown resistance (kdr) is one of the major mechanisms involved in resis-
tance to all pyrethroids, pyrethrins, DDT, and its analogs [127]. The kdr resistance 
was first identified in the house fly [126]. Since then, kdr has been described in 
several insects against pyrethroids and an organochlorine class of insecticides [128]. 
Knockdown resistance occurs due to different point mutations in voltage-gated 
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sodium channels. These sodium channels are composed of a larger α-subunit 
(260 kDa) and smaller β-subunits (30–40 kDa). The pore-forming α-subunit has 
four homologous domains (I – IV), and each domain possesses six transmembrane 
helices (S1 – S6). The domains are joined together to form a central aqueous pore 
and the pore is lined by S5, S6 linkers, and S5, S6 helices. In each domain, the S4 
segment is involved in voltage sensing, and a positively charged amino acid residue 
is embedded in every third position [129, 130]. In mammals, the sodium channel 
encodes nine genes [131] whereas, in insects, the sodium channel encodes only 
a single gene known as para [132, 133]. However, para undergoes an extensive 
alternative splicing process to increase the heterogeneity and functional diversity 
of sodium channel [133, 134]. These distinct variants of the para sodium channel in 
insects produce different levels of sensitivity to pyrethroids and DDT. The different 
amino acid substitutions in the para sodium channel variants of nerve membranes 
have been demonstrated in M. domestica [135, 136], Blatella germanica [137, 138], 
Ctenocephalides felis [139], Drosophila melanogaster [140] that render the loss of 
sensitivity to pyrethroids. The secondary mutation designated as super kdr has been 
identified mostly in the domain II region of the sodium channel and reported in 
B. tabaci [141], Haematobia irritans [142], Plutella xylostella [143] which confers 
enhanced resistance to pyrethroids. The occurrence of the kdr mutations in voltage-
gated sodium channels limits the efficacy of pyrethroids and it remains a threat to 
the control of T. castaneum [144]. This has been earlier reinforced by the functional 
expression studies of voltage-gated sodium channel paralytic A gene (TcNav) of 
T. castaneum. RNAi-induced knockdown results reveal that the TcNav gene of T. 
castaneum is a potential candidate to target for the future control of T. castaneum 
and lends support for the use of RNAi as a viable method for controlling this insect 
[139]. The results of this study provide convincing evidence which shows that pyre-
throid resistance in T. castaneum correlated with the presence of point mutations in 
the sodium channel para gene of insect nervous membrane. Thus, the identification 
of kdr mutations provides insights into the resistance mechanism in T. castaneum 
and has also proven critical for designing new insecticides for insect control.

3.1.3 Reduced GABA receptor sensitivity mechanism

The GABA ionotrophic receptor of the neuron membrane is formed by the 
oligomerization of five subunits around a central pore and each subunit possesses a 
large N terminal domain and four membrane-spanning domains (M1–M4). Several 
potential insecticides such as cyclodienes and fipronil stick to the M2 membrane-
spanning a region of GABA receptor as competitive inhibitors, which prevent the 
chloride uptake of the GABA ion channel. The inhibition of GABA stimulated chlo-
ride uptake enhances the firing of nerve impulses in insects, which initiates lethal 
effects on insects [145]. However, the mutations or modifications in the molecular 
structure of the GABA ion channel influence the activity of insecticides. The 
mutated GABA receptor becomes insensitive to the insecticides at varying levels 
and this insensitivity has the potential to increase resistance in an insect species.

Such a resistant modification was first characterized in the GABA receptor 
subunit gene Rdl (‘Resistance to Dieldrin gene’) of Drosophila by using positional 
cloning approach [146, 147] and polymerase chain reaction [148]. The resistance-
associated mutation studies in resistant D. melanogaster strains showed that the 
amino acid alanine302 in GABA gated chloride channel encoded by Rdl was replaced 
by serine. This single amino acid replacement was found to be associated with 
resistance in D. melanogaster and exhibited 4000 fold resistance against cyclodiene 
[149]. The cyclodiene resistance was conferred by replacing a single alanine at 
the second membrane-spanning region M2 with serine or glycine, which readily 
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prevents direct binding of drugs and allosterically modifies the conformation of the 
Rdl receptor. Further studies on point mutation (Ala302 to Ser) in the GABA gated 
chloride channel gene Rdl in different insect orders, namely Diptera, Coleoptera, 
and Dictyoptera, conclude the fact that mutations associated with single base-pair 
replacement are highly conserved [150]. The remarkable conserved nature of 
single Ala > Ser mutation in the GABA receptor was confirmed in D. simulans, T. 
castaneum, and B. germanica by amplifying the resistance-associated Rdl sequences 
and the same replacement of Ala > Ser as found in D. melanogaster was observed. 
This finding raises the question as to whether this resistance-associated substitu-
tion arises once and then disseminates globally or if resistance arises independently 
in different populations. To address this, Andreev et al. [151] collected 141 strains 
of Tribolium globally and screened for dieldrin resistance. Of the 141 strains, 23 
homozygous resistant strains and 6 susceptible strains were chosen for Rdl sequenc-
ing and mutational differences were compared among them. Phylogenetic analysis 
provided strong evidence of multiple independent origins of dieldrin-associated 
mutation, which suggests that resistance surfaced independently in 23 resistant 
Tribolium strains. T. castaneum genome sequencing effort facilitated the charac-
terization of GABA gated ion channels and the post-translational modification of 
the Rdl gene. The post-translational modification such as alternative splicing have 
been identified in exons 3 and 6 of the T.cas Rdl gene and observed the three splice 
variants for exons 3. This information on Rdl isoforms of T.cas helped to investigate 
their contribution in modifying the tolerance to insecticides [152]. These results 
suggest that variant isoforms of the Rdl gene define insensitivity to cyclodiene and 
have gone on to develop resistance to cyclodiene in T. castaneum through alterna-
tive splicing of exon3 and exon6. This is a significant factor enhancing cyclodiene 
insensitive transcripts in T. castaneum.

In addition, genome sequencing advancements have facilitated the detection of 
multiple Rdl genes in Lepidopteran genomes [153, 154] and Acyrthosiphon pisum 
genome [155]. The multiple origins of the resistance-associated mutation have 
implications for understanding the evolution of resistance, the spread of resistance, 
and its management. Interestingly, the polymerase reaction amplified the same 
region in different resistant strains of insects T. castaneum [138], D. simulans [156], 
B. germanica [157] and confirmed that this single base pair substitution conferred 
the cyclodiene resistance. Another replacement at residue A296S (equivalent to 
position 301 in D. melanogaster) was reported in Anopheles arabiensis and A. gambiae 
[158] was found to be associated with higher levels of dieldrin resistance. Similarly, 
Rdl mutation with the replacement of Ala302 with Serine conferred 237-fold fipronil 
resistance in Nilaparvata lugens [159]. The single base pair substitution (Ala to 
Ser/Gly/Asn) in the Rdl receptor at the site analogues to 301 in Drosophila has also 
been identified in Laodelphax striatellus [160, 161], Anopheles funestus [162]. These 
findings suggest that point mutation and post translational modification of the Rdl 
gene are significant evolutionary phenomena in insects and modulate insecticides’ 
binding/sensitivity, which makes insects resistant to most natural and synthetic 
insecticides.

3.2 Metabolic resistance

The most common resistance mechanism in insects is the metabolic detoxifica-
tion mechanism, enabling the insect to degrade or sequester the insecticides faster 
before releasing their toxic effect. This resistance mechanism allows insects to 
overproduce the enzymes mainly cytochrome P450 monooxygenases (CYP450s), 
carboxylesterases (CarEs), and glutathione S transferases (GSTs), to thwart the 
toxic effects of insecticides. This advantage helps to evolve resistance in T. castaneum 
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populations for all main classes of insecticides currently used for stored product 
pest control such as organophosphates, carbamates, and pyrethroids [163–165]. The 
comprehensive genomic and transcriptomic analysis has led to the identification 
of the key genes encoding detoxifying enzymes such as CYP450s, GSTs, and CarEs. 
These genes are being frequently associated, over the past few decades, with the 
rise of insecticide resistance in T. castaneum through overexpression, copy number 
variation or gene duplication, coding sequence mutations, or as a combined effect 
of these mechanisms.

Several studies showed that resistant insects possess generally higher levels of 
P450 dependent monooxygenases, and have high catalytic activity towards the 
toxicant [166, 167]. Some studies showed that amplification of transferase gene 
exerts insecticide sequestration/detoxification of many different endogenous and 
xenobiotic substances including insecticides [168–170]. The studies of the mecha-
nisms of metabolic resistance to carbamates, organophosphates, and pyrethroids 
have revealed the role of esterases (especially carboxylesterases) in resistant insect 
species [171–176]. These enzymes are capable of sequestering insecticide substrates 
through two principal mechanisms 1) Overexpression of one or more esterases and 
2) Mutations in gene encoding esterase [171].

3.2.1 Cytochrome P450s (CYP450s)

Recent years have witnessed the rapid evolution of insecticide resistance due 
to their continuous exposure. However, the resistance mechanism in insects is 
not fully understood, and the evolution of resistance to insecticides in T. casta-
neum populations threatens the long-term future of the food storage system. The 
exposure of T. castaneum to insecticides triggers a complex defense response that 
includes genes that encode key Cytochrome P450 monooxygenase detoxification 
enzymes. These metabolic systems are involved in the inactivation of xenobiotic 
compounds such as pesticides and drugs [177]. The availability of whole-genome 
sequence and well-functioning RNAi proves T. castaneum as a powerful model 
system for studying insecticide resistance and functional genetics [178]. Whole-
genome sequencing of T. castaneum identified 133 functional CYP genes and 10 
CYP pseudogenes [179]. These 143 genes belong to four clans (clan1, clan2, clan3 
and mitochondrial clan), 26 families, and 59 subfamilies. Nine new families were 
identified including CYP3 clan families CYP345, 346, 347, and 348 and mitochon-
drial family CYP353; CYP4 clan families CYP349, 350, 351, and 352 and mitochon-
drial family CYP353. To identify the phylogenetic and evolutionary relationships 
of T. castaneum CYPs with CYPomes of other insects, four phylogenetic trees were 
constructed and a remarkable 1:1 orthology of CYP2 and mitochondrial clans of 
T. castaneum with D. melanogaster, A. gambiae, and A. mellifera insect genomes was 
observed, suggesting functional conservation of these CYPs [180]. The number of 
P450 genes in T. castaneum is much larger than D. melanogaster and A. gambiae but 
considerably lower than C. quinquefasciatus and A. aegypti. The large number of 
CYP genes in T. castaneum provides excellent protection against xenobiotics and 
other insecticides via an enzymatic detoxification mechanism [178]. Among 143 
CYP genes, 99 T. castaneum CYPs were mapped on 9 chromosomes, 87 of which 
were located on six chromosomes LG3, LG4, LG5, LG6, LG8, and LG9. No CYP gene 
was mapped on the LG1 = X chromosome. The distribution and location of another 
44 CYPs on the chromosome remain unknown. This confirms that several genes are 
under gene duplication events and that they descended from a common ancestral 
P450 gene [180, 181].

Increased detoxification by cytochrome P450s has been considered to be the 
major mechanism involved in insecticide resistance of T. castaneum. CYP450 gene 
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CYP6BQ9 showed 200-fold overexpression in the deltamethrin-resistant QTC279 
strain of T. castaneum and this upregulation suggests that CYP6BQ9 has a significant 
impact on T. castaneum to metabolize deltamethrin [144]. Functional genomic and 
qRT-PCR based methods revealed that the high expression of CYP6BQ9 in the brain 
might enhance the ability of the brain cells to catalyze deltamethrin and provide the 
defenses to protect the target site [144]. Additionally, RNAi-mediated knockdown 
of possible transcription factors was performed to understand the mechanism of 
the overexpression of the CYP6BQ9 gene. Out of the 7 transcription factors tested, 
CncC and Maf transcription factors have been identified as key regulators for the 
activation of CYP6BQ genes and responsible for deltamethrin resistance in T. cas-
taneum [182]. In another study, RNA sequencing, RNAi knockdown, and qRT-PCR 
data showed the involvement of CncC in the regulation of expression of multiple 
detoxification genes involved in phase I (P450s) and phase II (GSTs), and Phase III 
(ABC transporters) detoxification mechanisms in pyrethroid resistance strain of 
T. castaneum [183]. Both studies suggest that transcription factor CncC is required 
for the induction of genes coding for proteins involved in xenobiotic degradation. 
Many studies in flies and beetles have reported CncC regulation of expression of 
genes coding for proteins involved in phase I (P450s) and phase II (GSTs) detoxifi-
cation mechanisms [184, 185].

CYP4BN6 and CYP6BQ11 expression was induced in T. castaneum by dichlorvos 
and carbofuran and a higher level of expression of these two genes in late pupal 
and adult stages was detected. Furthermore, RNA interference (RNAi) mediated 
knockdown repressed the expression and increased the susceptibility of Tribolium 
to these two insecticides, suggesting that CYP4BN6 and CYP6BQ11 genes play 
an important role in developing resistance. More significantly, in addition to the 
findings mentioned above, expression of both TcCYP4BN6 and TcCYP6BQ11 was 
reduced by latrophilin (lph) gene knockout, indicating that these two CYP genes are 
controlled by the lph gene responsible for the susceptibility of the beetles to insec-
ticides [186]. Cytochrome P450s are a supergene family of metabolic enzymes and 
the upregulation of CYP genes mediated by different insecticides has been exten-
sively studied in T. castaneum [163]. Liang et al. [163] found that three (CYP4G7, 
CYP4BR3, and CYP345A1) out of the eight selected CYP genes (CYP4G7, CYP4Q4, 
CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5, and CYP345A1) showed high 
expression when the insects were exposed to four insecticides- cypermethrin, 
permethrin, cyhalothrin, lambda imidacloprid. Also, selected genes from CYP6 
and CYP9 families did not exhibit any insecticide mediated overexpression in this 
study, although the genes from these families are known to confer resistance to a 
wide range of insecticides and metabolic detoxification [144, 182]. Specifically, 
they found that the upregulation of a specific gene can be influenced by insecticide 
concentration, developmental stage of insects, and exposure duration. They also 
suggested that the overexpression of CYP genes was affected by relatively low con-
centrations of insecticides, and increasing insecticide concentration did not show 
any significant upregulation, possibly due to increased toxic stress to the insects. In 
addition, tissue-specific expression patterns of CYP genes revealed that 7 out of 8 
CYP genes were significantly upregulated in insect detoxification tissues including 
malpighian tubules, midgut, and fat bodies. The possible role of CYP450 genes in 
phosphine resistant strain of T. castaneum has been studied previously and two CYP 
genes (CYP4Q4 and CYP4Q7) are overexpressed in the midgut of permethrin resis-
tant T. castaneum strain [187]. Two CYP450 genes CYP4Q4 and CYP4Q7 identified 
in a pyrethroid-resistant strain of T. castaneum showed some level of upregulation 
which indicates that overexpression of CYP450 genes is an important factor gov-
erning insecticide resistance in Tribolium [188]. The previous studies have shown 
that T. castaneum has developed insecticide resistance to 33 active ingredients [189] 
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and genomic sequence analysis revealed an expansion of members of CYP families 
belonging to metabolic detoxification enzymes [179]. Zhu et al. [178] characterized 
the expression and induction of CYP6BQ gene cluster in deltamethrin resistant 
strain of T. castaneum, revealing that 10 out of these 12 genes were significantly 
upregulated in resistant strain than in the Lab-S susceptible strain. Moreover, 
the tissue-specific expression pattern of genes within the CYP6BQ cluster found 
that four genes (CYP6BQ9, CYP6BQ5, CYP6BQ2, CYP6BQ4) and three genes 
(CYP6BQ11, CYP6BQ2, CYP6BQ4) were significantly upregulated (>100 fold) in 
the tissues of the head and midgut respectively. All these studies have shown that 
overexpression of a specific CYP gene can be influenced by the type of insecticide, 
toxicity of insecticide, concentration of insecticide, exposure duration, and physi-
ological status of insects.

3.2.2 Glutathione S tranferase (GSTs)

The glutathione S tranferase (GSTs) is a superfamily of multifunctional enzymes 
involved in insecticide resistance [190]. These enzymes metabolize the insecticides 
by conjugation reaction with reduced glutathione to hydrophobic xenobiotics 
and produce water-soluble metabolites that are easily excreted. Insect’s GSTs 
were classified based on their location within the cell- cytosolic, microsomal, and 
mitochondrial [191, 192], and these GSTs are members of Delta, Epsilon, Sigma, 
Theta, Omega, and Zeta protein classes in arthropods [193]. Cytosolic GSTs possess 
a carboxyl (C)-terminal α-helical domain and an amino (N)-terminal α/β-domain 
joined by a variable linker region. The N terminal region is comprised of a highly 
conserved G site, which binds reduced GSH, and the C terminal domain consists of 
a highly variable H site that interacts with hydrophilic substrates. This hypervari-
ability characteristic of the H site allows GSTs to metabolize various hydrophobic 
residues [194]. Sequencing the insect’s genome provided an opportunity to identify 
and characterize the GSTs on a genome-wide scale [192, 195, 196]. This provides 
a platform for a better understanding of the evolution of insecticide resistance in 
arthropods. Using the genome sequence of T. castaneum, 36 putative cytosolic GSTs 
and 5 microsomal GSTs were discovered [192]. Among the 41 GSTs, thirty-eight 
GSTs were located on 4 chromosomes and the remaining three GSTs were mapped 
to other 3 of the 10 T. castaneum chromosomes. T. castaneum possesses the 3 Delta 
GST genes and 19 Epsilon GSTs gene, which were the fewer and higher GST genes 
than in Drosophila, Anopheles, Apis, Bombyx, and Acyrthosiphon [192, 197]. The 
expansion of the Epsilon class in T. castaneum indicates that they are frequently 
involved in high duplication events than the other four GST subclasses (Omega, 
Theta, Zeta, Sigma) and are fairly variable between different species and conserved 
within the species. And the four GST subclasses of Omega, Theta, Zeta, and Sigma 
of T. castaneum possess three, one, one, and seven genes respectively [192]. The 
previous studies reported that the Epsilon class of GSTs encoding enzymes are 
responsible for degrading certain insecticides such as DDT and pyrethroids in Aedes 
aegypti [198] and Anopheles gambiae [199]. The detoxification ability of the Epsilon 
class of GSTs in different insects suggested that T. castaneum maintains higher 
insecticide resistance and such tolerance may be due to the presence of expanded 
epsilon GSTs [192]. In addition to the epsilon class of GST mediated detoxification, 
the delta class of GSTs in T. castaneum was engaged in resisting poisonous chemicals 
and developing resistance to certain kinds of insecticides [200].

To gain insights on the regulatory, functional, and biological significance of 
GST delta 1 T. castaneum (TcGSTd1), Chen et al. [200] merged the RNA-sequencing 
technology and RNAi of control and RNAi treated larvae (ds-TcGSTd1) of T. casta-
neum. The results from this study established that TcGSTd1 took part not only in the 
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detoxification process but was also involved in insect fitness, survival, reproduc-
tion, and development. Further, Song et al. [201] conducted functional research 
on three deltas GSTs of T. castaneum (TcGSTd1, TcGSTd2, and TcGSTd3) to identify 
their role in insecticide degradation, metamorphosis, and physiology. The three 
delta GSTs of T. castaneum with their full-length sequences were identified and fur-
ther characterized by cloning and sequencing. In this study, the expression levels of 
three delta GSTs were consistent across all developmental stages, implying that they 
may act as housekeeping genes and play an important role in the metamorphosis of 
T. castaneum. The expression profiling experiments revealed greater expression of 
TcGSTd3 and TcGSTd2 and lower expression of TcGSTd1 after exposure to phoxim 
and lambda-cyhalothrin. Interestingly, the expression of TcGSTd2 and TcGSTd3 
significantly increased by phoxim treatment than with the lambda-cyhalothrin. The 
results from this study imply that under elevated TcGSTd2 and TcGSTd3 activ-
ity conditions, T. castaneum can detoxify phoxim activation products, leading to 
resistance development. Similarly, elevated levels of GSTs have been reported to be 
associated with insecticide metabolism and producing resistance in many insects 
[171, 198, 202, 203]. In addition, resistance was induced by gene duplication within 
the structural GST genes which changes their substrate specificity [204]. Thus, the 
knowledge of GST mediated detoxification mechanism helps to detect resistance 
at an early stage, to remove the particular insecticide before the resistance alleles 
become fixed in the populations, and to design an effective molecule of insecticide.

3.2.3 Carboxyl Esterases (CarEs)

Carboxylesterases are ubiquitous enzymes involved in the detoxification of 
ester-containing xenobiotics. They are members of the esterase family of enzymes 
and have been isolated from all living organisms. As their name suggests, they are 
involved in hydrolysis reactions and convert the carboxyl esters into carboxylic acid 
and alcohol. Hydrolysis of the ester bond includes hydrolysis of a diverse range of 
phospho, thio, carboxylic, and other ester substrates. For carboxylesterases, the 
hydrolysis reaction is accomplished by 2 steps- first, the nucleophilic attack of oxy-
gen of a serine residue on the carbonyl group of the substrate, removing the alcohol 
product, and generating relatively stable acyl enzymes. Second, a water molecule 
acts as an intermediary and makes a nucleophilic attack to remove the acid product 
of the reaction and produce the free enzyme. This reaction mechanism causes insec-
ticide resistance in many insect species. As a key component of the detoxification 
mechanism, esterases have focused on the research of xenobiotic metabolism and 
resistance. The expression of carboxylesterases was significantly upregulated in the 
organophosphorous resistant Aphis gossypii strain than the susceptible strain [205]. 
Elevated carboxylesterase activity and carboxylesterase expression were identi-
fied in the pyrethroid-resistant strain of Musca domestica [206] and the tolerance 
to cypermethrin in Musca domestica was induced by high CarE enzyme activity. 
Similarly, the elevation of CarE activity in OP resistant and susceptible Nilaparvata 
lugens strain and the increased expression suggests that CarE mRNA was related to 
OP resistance in Nilaparvata lugens [207].

The occurrence of multiple mechanisms in an insect develops a very high 
level of resistance and in the case of T. castaneum, resistance was highest against 
pirimiphos-methyl and bifenthrin. It is interesting to observe that T. castaneum 
used two genetic strategies to adapt to these insecticides attack 1) a pool of Laccase2 
enzyme ensured the protection by synthesizing the thicker cuticle which prevented 
the entry of insecticide into the insect body 2) a pool of esterases and lipases 
contributed the protection by hydrolysing or sequestering which rendered the 
insecticides ineffective [208]. Similarly, the functional role of two carboxylesterase 
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genes of T. castaneum (Tcest4 or Tcest6) were investigated by RNAi and identified 
their interaction with Latrophilin [165]. Latrophilin (lph) is an adhesion G-protein-
coupled receptor that is essentially involved in the physiological process and 
cellular detoxification process although one member of lph existed in T. castaneum 
[209, 210]. The induction of Tcest4 and Tcest6 gene expression after treatment with 
carbofuran or dichlorvos insecticides revealed their detoxification ability and the 
RNAi of Tcest4 and Tcest6 further confirmed that it had a vital role in insecticide 
resistance. In addition, the study suggested that lph has a vital role in regulating 
the activity of Tcest4 and Tcest6 [165]. All these studies revealed the detoxification 
ability of carboxylesterases towards toxicants and the induction characteristics of 
some carboxylesterases could be used as biomarkers to assess the resistance against 
certain xenobiotics.

3.3 Reduced cuticular penetration resistance mechanism

Reduced penetration resistance is uncommon and little is known about its work-
ings in insects. Reduced penetration is also called cuticle resistance that reduces the 
dose of the insecticide reaching into the insect’s body and in all probability strongly 
associated with insecticide resistance. Normally contact insecticide penetrates 
through the insect cuticle and reaches the target site for action [172]. The cuticle is 
composed mainly of two different components, chitin, and cuticular protein, and 
the three functional layers of the cuticle consist of the outermost envelope, protein-
rich epicuticle, and chitin-rich procuticle [211, 212]. Cuticular barriers develop 
resistance in insects by altering the cuticular thickness or by changing the cuticular 
composition [213, 214] or remodeling the cuticle by the high occurrence of cuticular 
proteins. The overexpression of laccases and ABC transporters has been reported to 
be involved in the compositional change of cuticle, which increases insects’ toler-
ance to insecticides in the environment. Arkane et al. [215] revealed the association 
between the cuticle tanning and the expression profile of T. castaneum Laccase2 
(TcLac2) from pupation to adult eclosion. This study unambiguously demonstrated 
that RNAi of TcLac2 affected the cuticle tanning and produced the cuticle to be 
unpigmented. The dysfunctional TcLac2 affected not only the adult and pupal 
cuticle but also the larval cuticle of T. castaneum. The suppressed TcLac2 produces 
white and more flexible cuticles in pupal or newly molted adults of T. castaneum, 
facilitating the entry of insecticides into its body, and the high occurrence of 
expressed TcLac2 mediates the compositional change of cuticle, which reduces the 
penetration of insecticides. Consistent with this interpretation, a pool of laccases 
was expressed highly in T. castaneum that served as protection against pirimiphos-
methyl and bifenthrin [208]. Besides the overexpression of laccase, cuticular pen-
etration resistance has been reported in combination with the upregulated activity 
of ABC transporters and CYP450 genes [178, 208]. Typically, a combination of two 
or more mechanisms contributes significantly strong resistance than a single resis-
tance mechanism [177]. In addition, several cuticular proteins (TcCPR18, TcCPR4, 
and TcCPR27) were identified from T. castaneum and found to be associated with 
the formation of the rigid cuticle [216]. However, their exact role in the cuticular 
penetration mechanism remains elusive. Thus, future functional characterization 
of cuticular proteins could provide a strong foundation for identifying the major 
players involved in the cuticular resistance mechanism, enabling the development 
of new resistance management strategies.

Researchers have been previously using bioassays, genetic and biochemical 
techniques to study the resistance mechanisms in T. castaneum. The application of 
whole-genome and transcriptome sequencing platforms provided a larger reposi-
tory of gene resources for further investigations of resistance mechanisms in 
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T. castaneum. Known mechanisms that confer insecticide resistance in T. castaneum 
include 1) target site insensitivity 2) metabolic resistance 3) reduced cuticular 
penetration. These different forms of resistance mechanisms have been identified 
to act in compounding layers to degrade or sequester the insecticides faster before 
releasing their toxic effect. (Figure 2). In pest model beetle T. castaneum, different 
biochemical and molecular mechanisms were investigated against different insecti-
cide classes (Table 1).

3.4 Symbiont mediated insecticide resistance mechanism

Recent years have seen a sharp increase in the study of insect microbiome, its 
crucial role in metabolic detoxification, and modulation of host immune responses. 
In some insect hosts, the symbiotic association appears to be causal for insecticide 
degradation, whereas, in others, studies suggest that it is mediated by physiological 
trade-offs [225]. In addition, the relationship between microbial community and 
insecticide resistance differs greatly and is context-dependent [225]. Several studies 
have established a causal connection between the fitness-enhancing symbionts and 
insecticide resistance in the bean bug, Riptortus pedestris [226], Bactrocera dorsalis [81], 

Figure 2. 
Overview of types of resistance mechanisms in T. castaneum. Source: Adapted and modified from  
[108, 144, 151, 177, 215].



Insecticides - Impact and Benefits of Its Use for Humanity

16

Anopheles stephensi [227], Lasioderma serricorne [228], Spodoptera frugiperda [229], 
Plutella xylostella [230]. Among these studies, symbionts like Burkholderia, Citrobacter 
freundii, Bacillus thuringiensis, Enterococcus mundtii, and several gut bacteria provide 
physiological and evolutionary modifications to their insect host, thereby enhancing 
protection in a significant portion of insect pest taxa.

Increased access to a rapidly advancing metagenomic approach facilitated the 
understanding of the role of microbial communities in insecticide resistance, and sev-
eral studies hint at this association. The initial research that isolated the bacteria and 
fungi from different life stages of Tribolium confusum (closely related to T. castaneum) 
dates back 60 years. It provided important clues on insect fecundity and pupation rate 

Sl. No. Insecticide Type of Resistance Mechanism References

1 Cyclodiene Point mutations in the gene 
Resistance to dieldrin (Rdl)

Target site 
insensitivity

[138, 151]

2 Pirimiphos-methyl 
and bifenthrin

Elevated activity of lipases, 
esterases, and laccase2

Combination of 
reduced cuticular 
penetrance 
and metabolic 
detoxification

[208]

3 Dichlorvos, 
malathion, carbaryl, 
and carbofuran

Mutations in AchE gene Reduced 
insensitivity of 
AChE

[108]

4 Malathion Elevated activity of 
carboxylesterase

Metabolic 
detoxification

[217–220]

5 Malathion Elevated activity of 
glutathione transferase

Metabolic 
detoxification

[221]

6 Deltamethrin Elevated activity of 
CYP6BQ9

Metabolic 
detoxification

[144]

7 Phosphine Elevated activity of 
CYP346B1, CYP346B2, and 
CYP346B3

Metabolic 
detoxification

[222, 223]

8 Phosphine Elevated activity of 
CYP4Q7, CYP4Q4

Metabolic 
detoxification

[187]

9 Permethrin Elevated activity of 
CYP4Q4 and CYP4Q7

Metabolic 
detoxification

[187]

10 Cypermethrin, 
Permethrin and 
Cyhalothrin

Elevated activity of 
CYP4G7 and CYP345A1

Metabolic 
detoxification

[163]

11 Phosphine Elevated activity of 
CYP345A1 and CYP345A2

Metabolic 
detoxification

[164]

12 Dichlorvos and 
carbofuran

Elevated activity of 
CYP4BN6 and CYP6BQ11

Metabolic 
detoxification

[186]

13 Carbofuran or 
dichlorvos

Induction of 
carboxylesterase

Metabolic 
detoxification

[165]

14 Pirimiphos-methyl Reduced cuticular 
penetration

Cuticular 
penetration 
resistance 
mechanism

[224]

15 Phoxim Elevated activity of GSTd2 
and GSTd3

Metabolic 
detoxification

[201]

Table 1. 
Studies performed in T. castaneum showing different resistance mechanisms.
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when grown in microbe-free flour. Momir Futo [231] studied the immune priming 
phenomenon (a form of immune memory) in T. castaneum and investigated its high 
survival response when orally exposed to bacterial components of B. thuringiensis 
bv. Tenebrionis. The evidence suggests that microbiota plays a significant role in the 
activation of immune priming and produces various immunological responses to 
enhance the protection of this species. A recent study systematically characterized the 
microbiome of T. castaneum across life stages and sexes and observed microbiome-
mediated fitness benefits such as increased fecundity, increased offspring survival, 
and long lifespan. They also observed a correlation between wheat flour microbiome 
and host beetle microbiome [232]. All these studies have established different aspects 
of microbiome-derived fitness in T. castaneum. However, the microbial communi-
ties inhabiting T. castaneum and the unique intricate connection between symbionts 
and insecticide resistance have not been investigated thus far. A high-throughput 
metagenome sequencing approach is required to reveal the link between microbiota 
and insecticide resistance. Discovering this link and exploring the bacteria known to 
degrade insecticides within T. castaneum may offer novel insights into the unknown 
insecticide resistance mechanisms. Understanding the symbiont-associated resis-
tance mechanism in T. castaneum has broader implications for developing integrative 
resistance management strategies.

4. Methods to monitor insecticide resistance in T. castaneum

Multiple reports indicate that T. castaneum has developed resistance to almost 
all insecticides [47, 51, 67, 72, 73]. The deleterious consequences of insecticide 
resistance in Tribolium have created a crisis in pest management programs. In the 
last decade, various research groups have identified several mechanisms involved in 
insecticide resistance in T. castaneum [39, 163, 164, 178, 208, 210]. They approached 
this problem at different levels and incorporated a diverse range of approaches like 
conventional toxicity bioassays, biochemical assays, gene expression, and func-
tional genomic studies.

Different toxicity bioassays were used to measure resistance in the early stage 
in a cost-efficient manner. The conventional bioassay that is used to diagnose 
resistance involves collecting T. castaneum from the grain storage facilities and 
warehouses and rearing them until sufficient populations for testing. Mortality of 
larva, pupa, or adults is then estimated after exposure to series of concentrations 
of insecticide compounds. Subsequently, a Log dose probit assay is used to deter-
mine the LC50 or LC99 values of field-collected and susceptible populations. Then 
the resistance ratio was calculated using LC50 and LC95 values from T. castaneum 
field-collected populations compared with LC50 and LC95 values of the susceptible 
laboratory strain of T. castaneum. Different techniques such as topical application 
[233], residue exposure test [163], filter paper [39], diet incorporation method 
[234] are used to diagnose and determine the causes of pest control failure by 
insecticide selection pressures under field conditions.

The fully sequenced and annotated genome of T. castaneum has facilitated the 
identification of many genes involved in resistance [179]. Thus, further resistance 
research is centered on identifying genes involved in mediating insecticide resis-
tance, particularly CYP450s, GSTs, and CarEs. Transcriptome profiling study identi-
fied differentially expressed miRNAs in four major life stages of T. castaneum and 
validated them by using real-time PCR experiments [235]. Several studies relied on 
different techniques such as Next-generation sequencing, RNA isolation, First-
strand cDNA Synthesis, Real-Time PCR to evaluate the responses (upregulation 
or downregulation) of detoxifying genes against various insecticides in different 
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tissues, developmental stages [163]. However, the resistance mechanism in insects 
was not fully understood. In this scenario, extensive genetic analysis is critical for 
understanding the function of genes involved in developing insecticide resistance 
which can then be targeted to suppress the further evolution of resistance. Thus, 
the RNAi technology complemented with expression studies to investigate the 
correlation between mRNA and the function of genes to rule out the role of these 
genes in resistance [144]. This gene silencing mechanism suppressed the target 
gene expression in T. castaneum, caused rapid and widespread mortality within 
the pest population. Here, different steps include target genes selection, isolation 
of T. castaneum at the proper stage for injection, establishing dsRNA production 
methodology, knockdown of target genes by injecting dsRNA directly into egg 
and larva and relative expression of knocked down gene-specific transcripts were 
employed to accomplish gene silencing [236]. To evaluate the specificity of dsRNA 
effects, quantitative PCR experiments were also carried out to check the expression 
of housekeeping genes such as actin or tubulin as a control [236]. RNAi-based gene 
silencing has the potential to down-regulate the expression of resistance-relevant 
genes and accelerate the discovery of gene function in T. castaneum. Thus, knock-
down of upregulated resistance-relevant genes in T. castaneum is incredibly valuable 
in elucidating gene functions and provides information on the process that makes 
T. castaneum resistant or susceptible.

Resistance research on this beetle further improved by the most advanced 
approach Clustered regularly interspaced short palindromic repeats (CRISPR) 
system [237]. Recently, CRISPR is the best available method on vogue in order 
to explore the functional genes relevant to resistance in T. castaneum [238]. 
Considering the relevance of resistance inducing genes in T. castaneum, genome 
editing technology plays an important role in determining the functional genes 
involved in insecticide resistance. An enhanced conceptual understanding of 
Genome editing in T. castaneum will facilitate the application of CRISPR for dis-
section of gene function and fast-track the application of CRISPR to control these 
destructive pests [238].

Further, on the basis of gene expression, knockdown and genome editing 
studies, we could generate information on insecticide resistance levels of pest 
populations in our country. This information would offer a unique opportunity for 
overcoming or delaying resistance in T. castaneum. With the introduction of these 
advanced genetic technologies, the food security of our country could outstrip the 
population growth and ensure the supply of high-quality, safe, and economically 
stored grain products.

5. Conclusion

Insecticide resistance poses a major threat to global pest control efforts and elu-
cidating the underlying mechanisms is critical for effective pest management. Most 
of the important pests of stored products have evolved resistance to commonly used 
insecticides the world over. T. castaneum is a pest of stored products that causes 
significant damage to cereal products, flour, grain, and rice bran. This omnivorous 
beetle has become so resistant to a range of insecticides that it can tolerate exposure 
to any insecticide. Many key factors such as intensive application of insecticides, 
control operations, mode of inheritance of resistance genes, change in fitness of 
individuals, and genetic background of T. castaneum influence the resistance.

This review attempts to address critical questions around how insecticide 
resistance emerges in T. castaneum, such as how many resistance mechanisms exist 
in a species genome? How do the different point mutations in ion channel receptors 
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cause resistance? How does this mutation transfer globally? How many single 
or multiple mutations give rise to resistance? How many detoxifying genes are 
involved in resistance development? How do these genes provide resistance to all 
insecticides? How does their expression control resistance? What new mechanisms 
are still unexplored and what might be their role?

The availability of whole-genome sequence and applications of RNAi have made 
significant progress in understanding resistance mechanisms in T. castaneum. If 
T. castaneum comes into contact with an insecticide, the cuticle may be modified 
or thickened, eventually slowing down the penetration of insecticide molecules 
beyond the cuticular layer. If the insecticides enter the insect’s body, T. castaneum 
can increase the expression of several genes from metabolic enzyme families (e.g., 
esterases, mixed-function oxidases, glutathione S-transferases) to detoxify the 
insecticidal effect. Eventually, if the insecticides enter the nervous system to act 
on the target sites, mutations are introduced into the active site of genes (e.g., kdr 
mutations, super kdr mutations), which can decrease the sensitivity of the target 
site to the insecticide. These are the three genetic modifications that reduce the 
lethal effects of an insecticide, thus developing pest resistance to organophosphates, 
pyrethroids, and neonicotinoids. Although metabolic detoxification and reduced 
target site insensitivity have been extensively studied, reduced cuticular penetrance 
mechanisms exist outside these paradigms. However, there are reasons beyond 
these factors that could shape resistance in insects, including microorganisms that 
enhance the degradation of insecticides. Many fundamental questions about the 
microbial shifts in response to insecticides and the functions of particular microor-
ganisms in mediating resistance in T. castaneum remain unresolved.

The comprehensive genomic and transcriptomic analysis have improved the 
identification of the key genes encoding detoxifying enzymes such as CYP450s, 
GSTs and CarEs. The understanding of the detoxification mechanism responsible 
for insecticide resistance allows us to detect resistance at an early stage, remove 
the particular insecticide before the resistance alleles become fixed in the popula-
tions, and design an effective molecule of insecticide. Thus, understanding which 
insecticide is degraded by what genes is crucial to tackling the resistance problem. 
However, the contribution of most of the genes still needs to be confirmed by 
extensive genetic analysis such as RNAi and gene functional characterization. 
Knockdown of upregulated detoxifying genes in T. castaneum is immensely valu-
able in elucidating gene function and provides information on the factors that 
make T. castaneum resistant or susceptible. This double-stranded RNAi-mediated 
experiment paves the way for understanding the mechanisms causing resistance in 
T. castaneum.

T. castaneum resistance research has progressed effectively, from initial 
single-mutation study to multiple mutations in Rdl gene of GABA receptor, from 
examining the mutation in Ace gene to functional characterization of Ace gene of 
Acetylcholineesterase receptor, from sequencing the amino acid substitution of 
the para sodium channel to gene knockdown characterization, from single-gene 
sequencing to whole-genome analysis, from exploring transcriptional gene expres-
sion to functional expression analysis and from synergistic measures of metabolic 
detoxification to specific gene expression quantitation. The outcomes of these 
efforts have provided a clearer picture of molecular targets of different insecticides, 
complex resistance mechanisms, detoxifying genes, gene expressions, modifica-
tion of target receptors, and have generated fresh insights for the development 
of targeted novel insecticides. Thus, this detailed review on complex resistance 
mechanisms and the genes involved in resistance will enhance the knowledge pool 
of all possible insecticide targets in T. castaneum and render greater selectivity in 
insecticide design, thereby improving the efficacy of insecticides. The consolidated 
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insights from the literature review will provide much-needed insights as to what 
makes T. castaneum resistant to insecticides. The comprehensive overview will help 
successive research to initiate focussed monitoring of resistance. It contributes 
towards a deeper understanding of insecticide resistance and improved manage-
ment of this destructive pest that threatens food storage, food safety, health, and 
economic security. Scientific efforts that make use of this pool of knowledge can 
lead to more sustainable agricultural practices.
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by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
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