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Chapter

Evaluation of the Long-Term
Stability of Metrology Instruments

Romain Coulon

Abstract

This chapter aims to emphasize the issue of the long-term stability of
instruments used in metrology. This issue is a concern mentioned in the
IEC/ISO17025:2017 standard and the JCGM100:2008 guide. Control charts are
mentioned in these key documents as tools to assess whether a measurement pro-
cess is under statistical control or not. Control charts (Shewhart charts, CUSUM
chart, EWMA chart) are introduced and tested with simulated and real datasets
from metrology instruments that operate at the ionizing department of the BIPM.
The interest and the limits of such statistical analysis are discussed. They take their
basis in a measurement model composed of Gaussian white noise. Although a
measurement monitored over a relatively short period may be consistent with this
model, it has been observed that the autocorrelation of the measurement data
acquired over a long period limits the relevance of control charts. In this case, time
series analysis seems more appropriate than conventional control charts. As an
illustration, an optimal Bayesian smoother is introduced to demonstrate how to
deconvolve the low-frequency random noise and refine the evaluation of
uncertainty according to the measurement model for long-term measurement.

Keywords: metrology, control charts, time series, statistical control, long-term
stability

1. Introduction

Long-term reproducibility in experimental sciences is a critical metrological
topic recently discussed in [1]. In laboratories, the quality system is the frame in
which such an issue is controlled. It is notably required in the ISO/IEC 17025 [2] that
laboratories must ensure the validity of their results. For this, monitoring of the
state of operating of a measurement system must be set up by periodic checks and
statistical analysis of the obtained process control value.

Techniques to assess the reproducibility of a process is a matter of concern since
the industrial era. An important step has been taken in 1924 with the invention of
control charts by Walter Andrew Shewhart (Bell Telephone). Control charts are
efficient tools to control if a process is under statistical control and is now wildly
used in many domains and recognized by the Project Management Institute as one
of the seven basic tools of quality [3]. Moreover, control charts are explicitly pro-
posed in ISO/IEC 17025 [2] and the JCGM100:2008 Guide [4] as tools to implement
to analyze periodic checks using control standards.
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The main advantages of control charts are their simplicity of implementation
and their generic use, independent of the domains. A control chart displays a set of
points and control limits. This representation makes it easy to check the number of
points exceeding the control limits. Therefore, control charts can be analyzed by
anybody without any specific skills in statistics.

Four typical control charts are introduced in this document: the original
Shewhart charts (x-chart and R-chart), the CUSUM chart, and the EWMA chart.
The manners that they are introduced below should be considered as examples that
can slightly vary from one reference to another [5, 6]. These techniques are applied
below to simulated data and real data from metrology instruments used in ionizing
radiation metrology. Then, the interest of time series analysis is highlighted for the
monitoring of measures over a long period using the same datasets.

2. Introduction to control charts
2.1 The x-chart

Periodical control using a check standard consists of periodically reproduce the
measurement x; at the time ¢; and forms the measurement set (x1,x2, ..., Xi5 ... , XN)
where x is the last recorded point. In the x-chart, a central line is drawn by the
moving empirical average X,y over a period of 31 samples such as

N
XN :%, for N <31

. ®
XN = %, for N > 31.

The control limits (LCL and UCL) are given by the multiple of the standard
deviations:

( N _ 2
s(xy) = \/2’21]5;6’__1“’) , for N <31,

(2)

N =2
s(aow) = \/ Z"‘N-“;g’ W for N> 31,

such as

LCL = %y — ks(xn)
(3)
UCL = Xy + ks(xn),

where the multiplication factor k is set equal to 2 for the first control level and
3 for the second control level.

Failure criteria are defined according to a white Gaussian model that will be
introduced later. It is important to note that the relevance of the analysis is low
when the number of measures N < 10, relevant for 10 <N <31, and good for N > 31.
Some criteria can be founded in the ISO 7870 standard [5]. As an example, the
following rules are proposed where a measurement process is not considered under
statistical control when:
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* more than 0.35% of the points are above or below the control limits with the
multiplication factor k = 3,

* more than 20% of the points are above or below the control limits with the
multiplication factor k = 2,

* more than 9 points are in a row one side of Xy,
* more than 6 points are in a row increasing or decreasing,
* more than 14 points are in a row alternating between increase and decrease.
2.2 The R-chart
In the R-chart, the plotted points R; are the derivatives of the measurements:
R; =x; —x;_1 forallie [2,N]. (4)
The central line and two levels of control limits are obtained in the same manner

as for the x-chart by calculating the moving empirical average and standards
deviations of the values R;. Also, the same failure criteria can be applied.

2.3 The CUSUM chart
The cumulative of deviations C; is obtained by the following recursive formula:
Ci=Ci1+xi —Xn (5)

In this chart, no central line is displayed but two control limits V; are defined by
the so-called V-mask:

Vi = CN + ks(xl)(d + N — l) (6)

where £ = 0.1and d = 147.22.
Any points out of the V-mask mean that a significant drift of the process control
value is detected.

2.4 The EWMA chart

The EWMA chart is obtained by plotting the exponentially smoothed data points
z; by using the following recursive formula:
Z; = Ax; + (1 — /1) Zi 1 7)

And where 4 is a smoothing parameter.
The control limits CL are defined by

CL: = X, i3s(x,-)\/2% (1 - (1—1)21‘) (8)

With the smoothing parameter 1 = 2/N.

Any point out of these control limits means that a significant drift of the process
control value is detected.

It must be noted that these two families of control charts, the Shewhart charts on the
one hand and the CUSUM and EWMA charts on the other hand, are complementary.
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Indeed, the Shewhart charts aim to detect only large shifts above 1.5 s(x;) (detection of
outliers), whereas the CUSUM and EWMA charts aim to detect only small shifts below
1.5 5(x;) and more generally drifts in the process. In other words, Shewhart charts
perform an analysis in the high-frequency domain, whereas the CUSUM and EWMA
charts are more suitable to analyze in the low-frequency domain.

3. Test of control charts with simulated data
3.1 The Gaussian white noise model

N =100 normally distributed data points x; are simulated using the random
generator from the numpy.py library.
The model of the simulated process is the following:

Xi = H; T &
9
&; NN(O,G?) ( )

with y;: the expectation parameter at the time ¢;, V: the normal distribution, and
01-2: the variance parameter of the measurement noise ¢; at the time ¢;. It is referred
below as a Gaussian white noise model.

The reference dataset is defined by setting, for all i € [1, N, the parameters y; = 0
and 67 = 1. The control charts are presented below, and the tests conclude—as
expected—that the simulated process is under statistical control (Figures 1-4).

3.2 The Gaussian white noise model with a deterministic drift

Now, a slight positive drift is considered in the following model referred to as
a deterministic drift model in a Gaussian white noise such as the expectation
parameter takes values such as:

N
i~ O, V. [Il, _]]
M (AS 2

(10)
) N
,u,':,u,'_1+0.3, VlE[[i—Fl, N]]

3_
2_
14 o . " . .. ®
. . - .
.. . . Xi
v . x P . o
E 0_ s ] z [] ] - . X
S e . . . . ¢ — X %=3s(x)
> 14 . * . . . )_(125()(]
. . ., . o .
—2 s ¢ *
-3 1
° & & & & 8
~
Date

Figure 1.
x-chart of the process simulated form the Gaussian white noise model.
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Figure 2.
R-chart of the process simulated form the Gaussian white noise model.
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Figure 3.
CUSUM chart of the process simulated form the Gaussian white noise model.

This leads to a detection of this trend in the x-chart because more than nine
points are in a row on one side of the central line. Also, the CUSUM chart and
the EWMA chart detect the trend with some points out of their control limits
(Figures 5-8).

3.3 The autocorrelated model

The third model studied here is the autocorrelated model (or the colored noise
model) where a low-frequency Brownian noise is introduced in the following

autocorrelated model:
X; =Xi_1+ X+ &
(11)
X; = Xi_1+ 6;

where the measurement noise is ¢ ~ N (0, 67) (idem as in Eq. (9)) and a process
noise 5 ~ N(0,7?) is added with a variance parameter 77. In the example below,
7; = 0.3 while o; is still equal to 1.
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Figure 4.
EWMA chart of the process simulated form the Gaussian white noise model.
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Figure 5.
x-chart of the process simulated form the Gaussian white noise model with a slight drift.
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Figure 6.
R-chart of the process simulated form the Gaussian white noise model with a slight drift.
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Figure 7.
CUSUM chart of the process simulated form the Gaussian white noise model with a slight drift.
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Figure 8.
EWMA chart of the process simulated form the Gaussian white noise model with a slight drift.

Again, this type of deviation from the Gaussian white noise model is detected by
the value chart with more than nine points in a row on one side of the central line
and by CUSUM and EWMA charts (Figures 9-12).

These three examples underline the fact that control charts are—by
definition—build to verify whether a dataset fits with a Gaussian white noise
model or not. Any deviation from this model is efficiently revealed by control
charts. An operator could therefore conclude by the fact that the process is not
under statistical control. This conclusion is good in the case of deterministic trends
that are that a metrology system seeks to avoid maintaining the references that it
produces. However, it has been demonstrated that the autocorrelated noise could
also lead to an alert by control charts. On the contrary to the deterministic drift, the
latter is a natural random process that appears in every system, which is observed
on enough long-term periods. This particular limit of control charts was already
pointed out by many authors [7-10]. This issue is an emphasis in the real cases
presented below.



Applied Aspects of Modern Metrology

4 4
2 . e s,
_'_"'-" o0 0 0. ¢ X
) * . . . —_— X
E 04 . . .e, * — N -, . X
© . . % . — X+ 3s(x)
> I ™ e . * o e ® . X * 25(x)
-2 o _'
—4 ..
o
5 & & & 8
’h-{
Date
Figure 9.
x-chart of the process simulated form the autocorrelated model.
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Figure 10.
Range chart of the process simulated form the autocorrelated model.
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Figure 11.

CUSUM chart of the process simulated form the autocorrelated model.
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Figure 12.
EWMA chavt of the process simulated form the autocorrelated model.

4, Test of control charts with real data

Two data are here considered. The first one comes from the periodic control of a
recent metrology system that operates at the BIPM for radionuclide metrology and
is called the ESIR (extended SIR) [11, 12]. The second example comes from the
periodic control of a metrology service, the SIR, which operates at the BIPM for
radionuclide metrology since 1976 [13].

4.1 Test with 1-year period data

The ESIR is under development, and the periodical control using check stan-
dards has been set up for 1 year. Figures 13-16 show the analysis of the measured
data by control charts. The monitored value is a comparison indicator obtained by
using a check source of **C. The analysis from the four-control charts leads to the
conclusion that the process is under statistical control. In other words, the mea-
surement model complies with a Gaussian white noise model. At least, it is true for
this short period of observation. The activity estimation is of the "*C check source is
stable and equal to 24.3373 & 0.0184 A.U. There is no unit associated with the

24.3475 4

24.3450 1
24.3425 1
24.3400 1 - X

24.3375 ~

Value
>

24.3350 - . . X 2s(x)
24,3325 1

24.3300 4

24.3275 4

.
~
g & & ¢ & s @
L . |
s § & § § & &
N Ny Ny Ny Ny Ny Ty

Dat

1]

Figure 13.
x-chart of the periodic control of the ESIR metrology system.
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Figure 14.

R-chart of the periodic control of the ESIR metrology system.
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Figure 15.
CUSUM chart of the periodic control of the ESIR metrology system.

measurand because the aim of the ESIR is only to deliver a measure proportional to
the activity but is very reproducible during the time. The relative standard
uncertainty associated with this measurement is about 0.08%.

4.2 Test with 20-year period data

The SIR produces international references for decades. The ***Ra source is used
as a control standard to monitor the reproducibility of the measured current. In this
case, the control charts are applied to a 20-year period of data acquisition.

They have detected that the process is not under statistical control. However, these
low-frequency fluctuations could certainly be a random colored noise and not a
deterministic drift. This phenomenon appears when measurement values are
observed over a very long period such as here. The only conclusion that can be
drawn from control charts is that the data do not fit with the Gaussian white noise
model and that a type A evaluation of the uncertainty associated with the measure-
ment values (from ¢, to ) cannot be applied. Nevertheless, it is no need to refine

10
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Figure 16.

EWMA chart of the periodic control of the ESIR metrology system.
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x-chart of the periodic control of the SIR metrology system.
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R-chart of the periodic control of the SIR metrology system.
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Figure 19.
CUSUM chart of the periodic control of the SIR metrology system.
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Figure 20.
EWMA chart of the periodic control of the SIR metrology system.

the measurement model for the SIR measurement because the quantity delivered by
the system is a ratio of a punctual current measurement (at a time ¢;) from which
this low-frequency component revealed here is suppressed by the method
(Figure 17-20).

We have underlined, through these simulated and real datasets, the limitation of
control charts to deal with the evaluation of the long-term stability of metrology

instruments. In this case, time series analysis could be used as more appropriate tool
to address this objective.

An example of time series analysis is introduced below.

5. Introduction to time series analysis applied to a long-term
measurement model

It has been seen that the autocorrelated model introduced in Eq. (10) is appro-
priate to represent measurement data when observed over a long-term period.

12
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Eq. (10) is here rewritten in a state-space model where the measurement is
decomposed by the following:

* the fluctuation of the expectation value (x1, ..., %;, ...,xn) with the low-
frequency random noise at measurement times (¢4, ..., %, ..., tN)»

* and the measurements gathered in the vector (yl, O TP ,yN) where the
Gaussian white noise is finally added to (x1, ..., Xi, ..., XN).

The model becomes,
Xi =Xi1+Xi1

Xi =Xi_1+ 6 (12)
Y =X + &

The drift velocity %; = x; — x;_1 is introduced such that the dynamic Gaussian
noise §; ~ N(0, 7%) describes a random walk parametrized by a variance 72. And the
measurement noise & ~ N (0, 02) is Gaussian white noise with a variance ¢°.

The idea behind time series analysis is to deconvolve the low-frequency
fluctuation of the expectation values (x1, ..., X;, ...,xn) from the observations
0’1’ Vi ""yN)'

At first, the measurement variance o>

is evaluated by using the median of all the
punctual type A evaluation of the standard deviation s(y,) which are (by definition)
isolated from the dynamic component.

o’ = median(s2 (yl)) (13)
with,
M () apaeM (D)
2 (,‘V ) _ > j=1 (J'i —M )i ) (14)
i M-1 '
(1) (j) M) h f btained he ti )
INT1> s YNi1> s YN21 ) 1S the set of measurements obtained at the time ¢;

during a period that allowing type A evaluation according to the Gaussian white
noise model. Here, control charts can be used to verify this hypothesis.
Eq. (12) is transformed in the following matrix form:

Xi=FX; 1+ W;
(15)

y;, = HX; + ¢

1 1
with the “state vector” X; = (zl) , the “transition matrix” F = (O 1) , the”

dynamic noise matrix” W), = (g) , and the “observation matrix” H = (1 0).

5.1 The Kalman filter

Given the Gaussianity of the noises (both dynamic noise §; and measurement
noise ¢;) of this linear model (in the sense of time series), the Kalman filter (KF)
provides an optimal estimation of the states X; given the current and past measure-
ments y, .. The optimality of KF to solve Eq. (15) is established through both least-
square interpretation and the probabilistic Bayesian analysis [14, 15]. Hence, KF is a

13
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recursive Bayesian filter where the states X; and the measurements y, are Markov
processes implying

Xi|X1i1) = (XX
{P( (X1i-1) = p(XilXi1) (16)

pilXi) =p1Xi)-

KF evaluates, at each time step i, the parameters of the Gaussian posterior
distribution p (X;[y,;) in two steps:

* The first step consists of predicting the state X; given past measurement data
91,_1- The posterior distribution p (X;_1|y,; ;) at_1 is used to build a prior
distribution at the time ¢; according to the linear model (see Eq. (15)) from ¢;_4
to t; such as

r(Xily, 4) = JP(Xi\Xi—l)P(Xi—lb’,-_l)dXi—1- (17)

* The second step aims to update the posterior distribution at ¢; given the
predicted prior p(X;|y,; ;), and the likelihood p(y,|X;) of the measurement y,
given the estimate X.

p(Xily;) <p (Xily; 1) p(:1X:)- (18)

The posterior state estimate Xili and the posterior of the covariance P;; of the
posterior distribution p (X;|y, ;) are evaluated through the Kalman filtering process
described below.

From i = 1toi = N, KF predicts the state X; and the measurement y; at the time
step 7 given the previous state ati — 1:

Xiji-1 = FXi_qji-1

R 5 (19)
Yiji-1 = HXijji—1.
With the state and measurement covariances, P; and S; such that:
Pyi—1 = FP;_1; 1F" + 7* (20)
S; = HP,‘|,',1HT + o2

Then, the pre-fit residual (innovation) ¢; of the estimation and the Kalman gain
K; are calculated by

€ =) _JA}ilifl (21)
K; =Py {H'S; .

Finally, the updated state estimation is

{Xili = X1+ Kie; 22)

Py = (I — K;H)Pyj;_1,

with I: the identity matrix.

14
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5.2 The Rauch-Tung-Striebel smoother

The KF estimates the states }A(m;i given present and past observations from #; to ¢;.
To refine the estimation, a KF backward pass (smoothing pass) processes the
filtered estimates data from ¢y to ;. This procedure is called the Rauch-Tung-
Striebel smoother (RST) [16, 17]. Symmetrically to the forward KF optimal filter,
the optimal smoothing also consists in:

* a prediction step where the state X;, is estimated given measurement data y, .
and the forecasted state backward transition according to the linear model
from tii1 tot;.

p(XiH b’1:z‘) = JP(XiH [ Xi)p (Xi b’1;i>dXi (23)

* The second step aims to update the posterior distribution at ¢; given all the data
p (X’ Iyl:N) :

p(Xia|Xi)p (Xialy,y) dX.
i+1-
p<Xi+1 bll:i)

The RTS smoother calculates the Maximum A Posteriori (MAP) estimate }A(,'|1:N
of the posterior probability p (Xi b’1:N) given all the observations (past, present, and
future) from ¢1 to ty.

Fromi = N to i = 1, the residual ¢; between the filtered state X;.1; and the
prediction X;1j1.v is used to calculate a new Kalman gain G; such as

(24)

P (i) =P (i) |

e,’. = X'+1|1:N - X'+1|'
{ i . i+1 (25)
Gi = PiyiaF Py
The optimal state estimation is finally given by
Xipn = Xii — Gie]
{ e . (26)
Pi|1:N = Pi|i + G; (Pi+1|1:N — Pi+1|i)Gi :

5.3 The auto-tuning of the RTS smoother

As the measurement noise variance o is evaluated, by definition, through
measurement repeated during a period free from long-term fluctuation (Eq. (17)),
the variance of the dynamic noise 7? is the remaining unknown parameter of the
model. The auto-tuning procedure proposed here to evaluate 7 starts with a loss
function L defined by

e + (X — 9A€i—1|1;N)2-

WE

L(z) = (27)

=2

The value 7 minimizing L(z) aims to minimize the residual between the mea-
surements y; and the estimations of the measurements j;, ; as well as the distance
between two consecutive filtered estimations X;1.; and x;_11.5. On the one hand, if
this last smoothing constraint is not considered, = will diverge toward high values
describing a totally unstable system. On the other hand, if the prediction error of
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the model is not considered, 7 will be canceled by describing a stable system with
constant x;; values. So, the loss function of Eq. (27) permits to produce a model of
measurement of a controlled process containing a low-frequency dynamic noise.
The variance of the low-frequency dynamic noise is determined through an
iterative procedure minimizing L(7) such that,

7= arg:nin(L(r) ). (28)

The auto-tune RTS smoother provides filtered values x;;1.v where the measure-
ment noise, ¢, is removed given the knowledge of the variances of the measurement
noise 6 (see Egs. (13) and (14)) and the dynamic noise #2. So, the global hidden
uncertainty component from the long-term process random noise can be evaluated
from the deconvolved data x;.y such that,

N N 2
s(Xipw) = (N — 1)~ Z (56111;1\7 ~N1 Z&iu:z\/) : (29)
i—1 =1

Thanks to the intrinsic unfolding of the measurement noise (Gaussian white)
and the process noise (Gaussian red) defined in the dynamic model (Eq. 12),
the standard uncertainty #(xy.1) of a new measurement at £y 1 can be obtained by
the quadratic summation of the type A uncertainty evaluation s (x;(y.1)) obtained

under repeated conditions <y1(\}lq, s yl(\,];)rl, s yl(\l,\?1> and the type B uncertainty

evaluation evaluated using all historical data (yl, s Vi e yN) through the
above-described auto-tunned RTS smoother.

Therefore, the standard uncertainty #*(xy1) of the next measurement at ty 1
should be inflated considering the impact of the dynamic noise such that,

u?(x741) = $*(Xi(r11)) + Pnsan (1) (30)
With,
Pyiipn = FPyunFT +7° (31)

This auto-tuning of a RTS smoother applied to measurement data recorded over a
long-term period fully address the recommendation of the JCGM100:2008 guide [4]:

“Because the mathematical model may be incomplete, all velevant quantities should
be varied to the fullest practicable extent so that the evaluation of uncertainty can be
based as much as possible on observed data. Whenever feasible, the use of empirical
models of the measurement founded on long-term quantitative data, and the use of check
standards and control charts that can indicate if a measurement is under statistical
control, should be part of the effort to obtain reliable evaluations of uncertainty. The
mathematical model should always be revised when the observed data, including the
result of independent determinations of the same measurand, demonstrate that the model
is incomplete. A well-designed experiment can greatly facilitate reliable evaluations of
uncertainty and is an important part of the art of measurement.”

6. Application of time series analysis on simulated and
real measurement data

The time series analysis through the auto-tuned RST smother is presented in
Figure 21 for the simulated dataset from Section 3.3 obtained with the
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Figure 21.
Time series analysis of the measurement data simulated form the autocorrelated model.

autocorrelated model. Black points are the measurement points y; with error bars
representing the standard deviation s(y,). Green points are the estimations of the
low-frequency fluctuations (red noise) of the measurement x; with error bars
representing the standard deviation s(X;). The red line is the global expectation
value where the thickness of the line represents +/— 1 standard deviation.

It can be seen the good deconvolution of the low-frequency random noise
shown in green points. This leads to a standard uncertainty from this autocorrelated
noise, s(fc,-u:N) = 1.31. This value is significant when compared to type A evaluation
of individual measurement points ¢ = 1.74.

Also, the time series analysis through the auto-tuned RST smother is presented
in Figure 22 when applied to the periodic control of the SIR metrology system.
Again, black points are the measurement points y. with error bars representing the
standard deviation s(y;). Green points are the estimations of the low-frequency
fluctuations (red noise) of the measurement x; with error bars representing the
standard deviation s(%;). The red line is the global expectation value where the
thickness of the line represents +/— 1 standard deviation.

The analysis using control charts (see Section 4.2) has led to conclude that the
system is not under statistical control although autocorrelated noise is expected for
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Figure 22.
Time series analysis of the periodic control of the SIR metrology system.
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such a long-term period of monitoring. The optimal Bayesian smoother permits to
properly deconvolve this component (see green points) and to evaluate the stan-

dard uncertainty associated with it: s (J%i|1;N) = 0.0183. This value is significant when
compared to type A evaluation of individual measurement points % = 0.025.

7. Conclusion

It has been emphasized through simulated and experimental data that control
charts (Shewhart, CUSUM, EWMA charts) are convenient tools to assess whether a
measurement system is under statistical control or not. They test the compliance of
the measured dataset with a Gaussian white noise model. It can notably be used to
determine the possibility to apply a type A evaluation of uncertainty on the
measurement data.

However, care should be taken when monitoring over long periods of time.

A low-frequency random noise will inevitably appear. Despite its stochastic nature,
the latter will induce detection by control charts. In this case, it is not appropriate to
conclude by a loss of control of the system but rather to re-evaluate the measure-

ment model to include this long-term component. To that end, time series analysis
could be implemented to better deal with this particular case of measurement data.

An auto-tuned Rauch-Tung-Striebel smoother, based on the optimal Bayesian
filter called Kalman filter, is introduced to illustrate how time series analysis can
help to deconvolve the components of the long-term measurement model. The low-
frequency random fluctuation (aka red noise) can be estimated and used to evaluate
the standard uncertainty component it induces on the measurement.
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