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Chapter

Fast-Charging Infrastructure
Planning Model for Urban Electric
Vehicles
Tran Van Hung

Abstract

Electric vehicles have become a trend as a replacement to gasoline-powered
vehicles and will be a sustainable substitution to conventional vehicles. As the
number of electric vehicles in cities increases, the charging demand has surged. The
optimal location of the charging station plays an important role in the electric
vehicle transit system. This chapter discusses the planning of electric vehicle charg-
ing infrastructure for urban. The purpose of this work develops an electric vehicle
fast-charging facility planning model by considering battery degradation and vehi-
cle heterogeneity in driving range, and considering various influencing factors such
as traffic conditions, user charging costs, daily travel, charging behavior, and dis-
tribution network constraints. This work identifies optimal fast-charging stations to
minimize the total cost of the transit system for deploying fast-charging networks.
Besides, this chapter also analyzes some optimization modeling approach for the
fast charging location planning, and point out future research directions.

Keywords: Fast-charging station, charging network, charging station planning,
electric vehicles, EVs traffic flow

1. Introduction

Global environmental and energy problems are becoming more and more seri-
ous, and one of the main causes is fossil fuel-consuming transportation. Electric
vehicles have obvious advantages in energy saving and emission reduction (such as
reducing gas emissions, air pollution especially PM2.5 fine dust and noise, reducing
dependence on fossil fuels, promoting industrial development and using renewable
energy), so they are growing rapidly. Electric vehicles are the most promising
solution for a green and clean environment when the world is more dependent on
renewable energy sources. At the same time, they have also become an alternative
to gasoline-powered vehicles and are promoted by policymakers worldwide as a
solution to combat environmental problems and stimulate the economy. Electric
vehicles are considered an extremely effective and urgent solution in the electrifi-
cation of the transportation sector, and it will be an indispensable means of trans-
portation in the future. Electric vehicles have been proven as a tool to reduce the
negative effects of petroleum extraction, importation, refining and combustion.
However, electric vehicles face many disadvantages compared to conventional gas-
oline and diesel-powered vehicles, including high initial investment costs, limited
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driving range and especially a scarcity of available stations for recharging them. The
popularity of electric vehicles in the future, more or less depends on the develop-
ment of the infrastructure to serve this type of vehicle. Demand for electric vehicles
is expected to increase over the next few years, it is still constrained by many factors
especially battery cost and availability of charging station infrastructure. Investors
are willing to invest in charging station infrastructure if and only if there is a
sufficiently large number of electric vehicles in the network.

To attract consumers to purchase and use electric vehicles, charging station
infrastructure must be deployed in convenient locations that are coordinated with
each other. A power battery is one of the most important components of electric
vehicles and the fundamental challenge for electric vehicles is to ensure a suitable
energy storage device capable of supporting high range, fast charging and efficient
driving. With an increasing number of electric vehicles on the road, the implemen-
tation of an efficient and well-planned charging infrastructure is highly desirable. In
order to gradually replace traditional means of transport and put electric vehicles
into use on a large scales, the construction of electric vehicle charging facilities has
received strong support from governments around the world and has been focused
on by scientists. As the number of electric vehicles in the city increases, the optimal
location of the charging station plays an important role in ensuring the efficient
operation of electric vehicles. To solve this problem, there are many design param-
eters related to charging stations available in the electric vehicle network that need
to be considered. These parameters need to be involved to determine the optimal
electric vehicle fast-charging station infrastructure. These parameters typically
include: location, level, size and capacity of charging stations.

There are typically two different types of charging station configurations for
electric vehicles: inter-city charging stations and intra-city charging stations. With
inter-city charging stations required for electric vehicles to travel long distances, the
electric vehicle will charge during the electric vehicle’s journey. In contrast, for
intra-city or urban charging stations with short distance travels, the electric vehi-
cle’s charging can be done when the electric vehicle finishes its journey. Different
charging station locating approaches should be applied to the different charging
demands.

2. Literature review

Battery electric vehicles have enjoyed fast-growing adoption in recent year,
however a number of factors are restricting the development of electric vehicles [1].
One of the typical limitations is that electric vehicles take a long time to charge. DC
fast charging requires around half an hour to fill up to 80% of the battery capacity,
whereas AC slow charging may take 6–8 h to fully recharge the battery [2]. In
addition, electric vehicle charging piles are considered to be inconvenient and
insuffïcient in number at present [3]. Fang He et al. [4] have proposed how to
optimally locate public charging stations for electric vehicles on the road network,
considering drivers’ spontaneous adjustments and interactions of travel and
recharging decisions. This paper adopts a tour-based approach to analyze the com-
plete tour of the driver that may consist of several trips in a pre-determined order,
and assume that their drivers simultaneously decide tour paths and recharging plans
to minimize the travel and recharging times while ensuring not running out of
charge before completing their tours.

The location model based on flow demand was first proposed by Hodgson, who
developed a Flow-Capture Location Model (FCLM) based on the maximum cover-
age. On this basis, Kuby considered the driving range of the vehicle and proposed
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the Flow-Refueling Location Model (FRLM) [5, 6], Capacitated Fow Refueling
Location Model (CFRLM) that considers capacity constraints [7] and Deviation-
Fow Refueling Location Model (DFRLM) [8]. Patrick Jochem et al. [9] were
extended the flow-refueling location model (FRLM) to the German autobahn, this
model extension comprehends mainly the inclusion of the access distance for traffic
participants to their closest network node. Traditionally, the FRLM has been for-
mulated using a two-stage approach: the first stage generates combinations of
locations capable of serving the round trip on each route, and then a mixed-integer
programming is used to locate p facilities to maximize the flow refueled given the
feasible combinations created in the first stage. Ismail Capar et al. [10] presented a
Mixed-Binary-Integer Programming (MBIP) formula, which is an improvement of
FRLM. The FRLM and flexible reformulation FRLM (FRFRLM) is used by Cheng
Wang et al. [11] to solve the large-scale transportation network problem within a
reasonable time.

Travel demand is the indispensable component to generate the travel routes of
EVs, which provide the basic geographic information to locate charging stations.
Several studies conducted the planning of EV charging stations with assumed traffic
flow and network [12–14]. Jianmin Jia et al. [15] presents the approach to locate
charging stations utilizing the reconstructed EVs trajectory derived from the Cellu-
lar Signaling Data, investigated the large-scale CSD and illustrated the method to
generate the 24-hour travel demand for each EV. With the development of infor-
mation technology, researchers started to explore the trajectory data in the locating
problems of charging station on the basis of the floating vehicles, such as taxis, with
Global Positioning System (GPS) devices [16]. The travel demand model can pro-
vide quick estimation of EV trips, while the trajectory data, such as the taxi GPS
data, would better represent the real-world travel patterns of EVs. For locating fast-
charging stations, in [17] Csaba Csiszár was presented an arc-based location opti-
misation method realized by using a geographic information system and greedy
algorithm.

3. Charging station model description and method

From the point of view of modern city planning, the location of EVs charging
stations must meet the requirements of the city transportation network layout.
While from the perspective of power system planning, the location of EVs charging
stations should be in accordance with the current situation in short-term as well as
long-term planning of the distribution system involved. EVs charging stations must
be close to load centers and respect constraints on load balance, power quality, and
power supply reliability of urban. From the perspective of EVs’ owners, the sites of
EV charging stations should be in locations which are convenient for EV’s owners
and near the charging demands. Furthermore, other factors, such as the location
adaptability and land price, should also be considered. Thus, the initial candidate
sites of EV charging stations can be determined with the aforementioned factors
properly considered.

3.1 Illustrative example and electric vehicle data collection

We first use a simple illustrative example to highlight the importance of consid-
ering the trip sequence in describing the travel and charging behaviors in a common
use case of electric vehicles. In Figure 1, assuming network nodes (1), (2), (3), (4)
and (5) are candidate locations for charging station placement. Node 1 was set as
origin and node (5) was set as destination. The distance of each link are also shown
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in the Figure. A full journey would be (1,2), (2,3), (3,4), (4,5) to reach the destina-
tion, and then back (5.4), (4, 3), (3,2), (2,1) to return to the original position. We
first assume that the vehicle battery range R ¡40 km when the tour starts, there is no
chance for vehicles to complete the trip between the O-D pair because vehicles
cannot complete the trip (2,3). When R = 40, the charging station can choose one of
two alternatives with (1,2,3,4) or (1,2,3,5). Under both solutions, electric vehicles
will be charged at nodes (1), (2) and (3). If at (4) is placed a charging station,
vehicles charged at (4) can reach the destination and return to (4). Next, after being
fully charged at (4), the vehicle can return to the origin by charging again at (3) and
(2). Similarly, we can see that when R = 50, it does not need to place the charging
station at (1) anymore because a fully charged vehicale at (2) (while returning from
the destination) can reach the origin and have enough electric capacity to travel to
(2) when a new trip is next start. When R = 200 km, a single charging station at any
node is sufficient to charge the entire journey because even after a full charge at (1),
the vehicles will have enough battery capacity to reach (5) and go back to (1).

Through the above simple example, we see that the range of battery electric
vehicle plays a decisive role in the distribution of charging stations on the traffic
network in the city. First, if there is no charging station built at the origin then there
should be at least one charging station was built within the R/2 distance to the origin
node. Second, if there is a charging station was built at a location, the next charging
station should be within the range R. Finally, if the vehicle range is greater than or
equal to two times the path length, a single charging station at any node can provide
electrical power whole journey. Thus, if there is a charging station at the origin
node, the model will start the round trip with a fully charged state (State of Charge -
SoC = 100%). If there is no charging station at the origin node, vehicles will start
with the remaining battery SoC observed at the end of the previous trip. With the
assumption of constant energy consumption and roundtrips it is secured that each
trip will at least start with SoC of 50%.

The problem of placing charging stations for electric vehicles involves finding
the optimal location of charging stations in the transport network so that the
operating parameters of the vehicle network are least affected. Real-world vehicle
travel patterns, especially for electric vehicles, provide abundant information to
investigate charging demand. Nevertheless, it is impractical to adopt the travel
information from all private vehicles. Therefore, GPS location data and vehicle’s
trace collection was considered to provide the travel information.

Besides the commute trips, the other purpose trips were also considered in this
model. The purpose of activity locations was determined by the time of day. For
instance, the “home” location is defined as the place with the most visits between
8 pm and 8 am for each day during the observation period, while the “work”
location is defined as the place with the most visits on weekdays between 8 am and
8 pm during the observation period. The rest of the locations are regarded as the
“other”, such as shopping and recreation. With the activity location and purpose
inferred from the vehicle’s traces, the 24-hour travel demand for the electric vehicle
is able to generate based on the time sequence of each activity.

Figure 1.
An example network with a single O-D.
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3.2 Charging station model descriptions

We focus on the urban electric vehicle fast charging infrastructure planning
model and investigate the positioning aspects of fast charging stations in the dense
residential areas road network. It supports city trips, where charging infrastructure
and BEVs both play an important role in optimizing electric vehicle charging station
locations. Consider a metropolitan road network where all vehicles in the network are
assumed to be battery electric vehicles. This assumption is not necessarily restrictive
as the model proposed below can be easily extended to accommodate both electric
and regular vehicles. Let G(N,A) be a transportation network of the electric vehicles
system, where N is the set of nodes (i.e., origins, destination, junctions) and A is the
set of directed links (arcs). While all nodes in N are eligible candidate sites for
stations, the set of O-D nodes can be a subset of N. Thus, an unpopulated road
junction can be included as a candidate site but need not be included as an O-D node.
Next, given a set of O-D pairs (Q) with a nonnegative traffic flow (fq), the set of
nodes visited while traveling on path q (Nq), and vehicle range (R), the FRLM is
defined as the problem of locating p facilities on the network G(N,A) to maximize the
total traffic flow refueled. Traffic flow between an O-D pair q is considered as
refueled only when vehicles leaving the origin can reach the destination and return
back to the origin without running out of fuel. Before presenting the problem defini-
tion, we discuss related assumptions and present additional notation, subsequently. It
is assumed that the traffic and path between the O-D pairs are known in advance.
Traffic assigned a unique path is usually the shortest path determined by the Disktra
algorithm [18]. From a problem formulation perspective, the proposed model can
easily be extended to multiple avenues; therefore, this assumption is not restrictive.
Although in some cases flow information may not be available, it can be obtained
from the traffic demand matrix or through O-D estimation methods. Therefore, it is
also reasonable to assume that the traffic volume is known in advance.

This work applied and extended the flow-refueling location model (FRLM)
developed by Capar et al. (2013) [19, 20] as a basis. The formulation of the problem
is as follows.

Max
X

q∈Q

f qyq

2

4

3

5 (1)

Subject to:

X

i∈K
q

j,k

zi ≥ yq∀q∈Q, a j,k ∈Aq (2)

X

i∈N

zi ¼ p (3)

zi, yq ∈ 0, 1f g∀q∈Q, i∈N (4)

Where,
f q: Traffic volumes on the shortest path between O-D pair q.

a j,k: A directional arc starting from node j and ending at the node k.

Aq: Set of directional arcs on path q, sorted from origin to destination and back
to origin.

K
q
j,k: Set of candidate nodes, which can refuel the directional arc a j,k in Aq.

M: Set of O-D nodes where M∈N.
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N: Set of nodes which constitute the network, N ¼ 1, 2, … , nf g.
p: The number of stations to be located.
q: Index of O-D pairs.
Q : Set of O-D pairs.
yq and zi are decision variables. =1 if the flow on path q is recharged (and

feasible), and equal 0 if not; zi =1 if a service station is built at node i,
and zi =0 if not.

i; j; k: Indexes for potential facilities at nodes.
The set of candidate sites accessible from the mth candidate site on a path q can

be calculated from [10]:

K
q
j,k ¼

Nq

�

�d
q
j,r ≤R, r> j

h i

∀q∈Q, j ¼ 1, 2, … ,Mq, k ¼ 1

Nq

�

�d
q
j,r <R, r> j

h i

∀q∈Q, j ¼ 2, … ,Mq, k ¼ 0

Nq

�

�d
q
j,r ≤R=2, r> j

h i

∀q∈Q, j ¼ 1, k ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

(5)

Where,

K
q
j,k: is the set of candidate sites accessible from the mth candidate site on

a path q.
Nq: is the set of candidate sites on a path q, now sorted in sequential order from

origin to destination.
Mq: the number of candidate sites on path q beyond the origin but not within

half the range R of the destination of path q, that is, in the distance interval
0,Dq � R=2
� �

on path q; if Dq � R=2≤0
� �

then Mq =0, with Dq is the length of the

shortest path of an O-D pair q.
R: the range of electric vehicle.
The battery range of an EV trip represents the maximum length an EV can travel

without charging, which is imposed by the battery technology. Here, “charging” is
used to broadly represent battery recharge, battery exchange, or any other option to
obtain a fully charged battery for the EV to continue its travel. To develop a widely
applicable fast-charging station location optimisation method that considers the
several relevant variables of the electromobility systems, which are as follows: trafic
flow volume, the usual range of battery electric vehicle, general user demand, and
especially taking into account the effect of traffic congestion; however, trafic flow
volume, range of electric vehicle, and the number of EVs are the most critical
parameters. The outlined method first computes static ranking variables based on
statistics and spatial relations (getting and summing close attribute values). Then
the selection of those candidate sites that fit the scenario goals was performed by
GIS scripting.

In fast-charging infrastructure location optimization method, the set of candi-

date sites K
q
j,k (Eq. (5)) was combined with the vehicle traffic data from the EV

trajectory was grouped into charging demand clusters through clustering analysis to
determine the optimal locations for charging stations.

3.3 Traffic congestion coefficient

The energy consumption of an electric vehicle depends not only on the distance
it travels, but also on the density of vehicle traffic on the road. Traffic congestion at
different times of the day plays an important part in the energy consumption of an
electric vehicle. We use a traffic congestion coefficient [21] to analyze the interlink
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between traffic and energy consumption. This coefficient is calculated as the ratio
of actual energy consumed by an electric vehicle to cover a certain distance during
particular hour of the day, to the energy consumed by it during the same period to
cover the same distance on an empty road under ideal conditions. The coefficient
varies between 0 to 1, with 1 reflecting an empty road condition and 0 being
standstill traffic. This traffic congestion coefficient might vary from place to place.
This coefficient takes into consideration the energy loss due to frequent breaking
and accelerating and extra energy consumed during vehicle ignition. All other
minor inefficiencies are included in this coefficient.

τ ¼
dact
didc

(6)

Where,
τ: Traffic congestion coefficient.
dact: Actual distance travellled by an electric vehicle.
didc: Distance travellled by an electric vehicle under ideal condition.
Before scheduling the next trip for EV, its state of charge has to be assessed to

evaluate whether the remaining battery level is sufficient enough to take the next
trip or to travel to the nearest charging station. A general equation for the distance
that an EV can travel during a certain hour of the day can be derived as [22]:

D ¼
X

iþ1

i

ISoCi � SoCminð Þ � R� τi (7)

Where,
D: Distance traveled over the operating period per day, (km).
ISoCi

: Initial State of Charge of the Battery at the start of an hour, (%).
SoCmin: Minimum State of Charge of the battery, (%).
R: Range of an electric vehicle under ideal conditions, with low traffic and no

obstacles, in a single charge, (km).
τ: Traffic Congestion Coefficient.

4. Application: a case study

The geographical information of the transport system was extracted from
OpenStreetMap [23]. The survey area is in Cau Giay district, Hanoi city (Vietnam).
It is comprised of 166 nodes (geographical points) and approximately 500 sections
of roads (straight lines connecting two nodes) with lengths ranging from a few
meters up to 10 km. Office/work hours are based on the Vietnam legislation are
from 8 am to 17 pm. This information is used to create the vehicles’ plans.

This network has 363 arcs and 166 junctions (vertices), each of which serves as a
candidate site. The OD flow of electric vehicles and the distance between the OD
points in Cau Giay district during a working day are provided. There are 166
candidate sites and 5000 O-D pairs were tested in a working day. Note that because
the model ensures that the return trip is rechargable, by extension so are the round
trips starting at either end. For illustration purposes, Figure 2 shows, the transpor-
tation system indicating roads, as bold lines. In the transportation network shown in
Figure 2, there are 166 candidate sites for the fast-charging station. These were
locations where fast-charging stations can be deployed, highlighted in green, and
numbered from 1 to 166. However, not all of them have been selected for
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fast-charging station deployment. The selection depends on the vehicles traffic flow
through the candidate sites’ locations. Therefore, the vehicle traffic flows through
nodes were evaluated, the node with high traffic will be prioritized for selection
to deploy the fast-charging station. The three candidate nodes circled in red in
Figure 2 (nodes 76, 90, and 135) are nodes with high media flow as assessed
through simulation. These nodes are located on arterial traffic routes which vehicles
from outside enter the center and vice versa. The traffic flow profiles for nodes 76,
90, and 135 of intense vehicle movement, surveyed during the average 1-day
period, was shown in Figure 5.

Before the traffic flow simulation, the routes of each vehicle must be defined, i.e.
the shortest path between the points in their plans (Dijkstra’s algorithm [18]). After
each traffic flow simulation, vehicles facing traffic jams have their routes
recalculated. The travel time of each vehicle depends on the length of the section of
road belonging to its route and the actual velocity. All vehicles perform their routes
concurrently. This process is repeated for a pre-defined number of iterations to
reduce the travel times individually [24].

It can be noted from Figure 3 that most of the trips are shorter than 35 km.
Generally, the travel modes of trips consist of walking, riding a bicycle, using public
transit, and using a private car. The walk and bicycle travel modes have short trip
lengths mainly under 10 km. Therefore, the daily trips whose length is over 20 km
are assumed to be EV trips in this survey, and these trips were used to generate
basic travel demand.

The hourly travel demand was imported into SUMO (Simulation of Urban
Mobility) [25] for vehicle traffic flow analysis to generate the trajectory of the EVs.
Since the EVs may have multiple trips in a day, the time sequenced trajectories
between different activity locations for one EV were merged to reconstruct the
complete daily trip. Figure 4 illustrates an EV trajectory example, trajectory 1
illustrates the route from home to work, while trajectory 2 illustrates a different
route since the EV traveled to other purpose activity place during the trip from
work to home. Both trajectory 1 and trajectory 2 make up the complete daily trip
for one EV.

Figure 2.
Transportation network in Cau Giay District, Hanoi, Vietnam.
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In traffic flow analysis, we applied to the 166 nodes in the traffic network, one
O-D flow contains the information about how many vehicles are driving from O to
D and back in a day, a week or a certain period of time. The set of locations of nodes
with high traffic is determined through simulation data analysis which are preferred
locations in the fast-charging station selection.

Table 1 shows an exemplary O-D pair from node (76) to node (90). The dis-
tance from node (76) to node (90) is 32 km. The path of this O-D flow shown in the
table starts at node (76) and continues all the way crossing nodes (77), (80), and
(91) until it reaches node (90) and come back. Traffic flow through all nodes are
evaluated. The high traffic flow sections of roads are considered to be potential fast
charging stations locations. The traffic flow profiles of nodes locations (76), (90)
and (135) are plotted on Figure 5. Each profile is unique, consequence of vehicles

Figure 3.
Distribution of trip frequencies by cumulative trip length.

Figure 4.
An example of EV trajectory with other purpose trip.
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flowing towards city centre in the morning and the other way around after work.
High and thin peaks indicate possible traffic jams.

Characteristics of electric vehicles used in this survey are shown in Table 2.
Fast-charging stations are assumed to be immediately available to EVs that arrive
for charging, i.e. EVs do not wait to charge.

The travel times of EVs can be translated into cost. Thus, initially, fast-charging
stations locations are selected using the most used routes of regular vehicles based
on traffic flows. So, the selected fast-charging stations locations might be suitable
for some EVs, it will not necessarily be aligned with the routes of all EVs. Several
EVs go to charge in this fast charging stations causing traffic jams, leads to larger
travel times within the region. This highlights the importance of evaluating the
selected locations. Besides, traffic congestion is quite a serious problem in develop-
ing cities, especially with mixed traffic characteristics like in Hanoi. Traffic conges-
tion affects the distance traveled by EVs, and this must be taken into account when
planning electric vehicle charging stations. Figure 6 shows the variations in the
traffic congestion coefficient over the day, calculated using the Eq. (6). Survey time
is from 7 am to 10 pm.

From all candidate sites, the top 18 busiest sections of roads are considered to be
potential fast-charging station locations (red circle in Figure 7). Most of these fast-
charging station locations are outside the city centre, on the northern and western
areas due to the population distribution. With the fast-charging station locations
identified, the traffic flow analysis is performed for each of the fast-charging station
cases: from one to 18 fast-charging station locations.

From

node

(O)

To

node

(D)

Flow volumne

(trips/day)

Distance

(km)

Shortest path

(via nodes)

Distances between nodes

(76–77/77–80/80–91/91–90)

76 90 124 32 76–77–80–91–

90–91–80–77-76

7/8/8/9

Table 1.
Table entries for the O-D pair 76–90.

Figure 5.
Traffic flow profiles for three roads of intense vehicle movement.
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Variable Value

Battery Capacity 280 Ah

Technology Lithium-ion

Battery on-board power 15.4 kWh

Driving Range 140 Km

Charging point power demand 50 kW

SoCcrit 40%

Table 2.
Characteristics (average) of EVs [26].

Figure 6.
Traffic congestion coefficient variation.

Figure 7.
Potential fast-charging station locations with high traffic flow of EVs.
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5. Conclusions

The daily increase in the number of EVs brings in a big challenge for the
planning of charging stations. In order to deal with the placement issues of EV
charging stations, this chapter presents an optimized model for locating fast-
charging stations using the EV trajectories reconstructed from simulation. In this
model, battery degradation, the range of electric vehicle, traffic congestion condi-
tions and especially vehicles traffic flow have considered to determine the optimal
locations for the fast-charging station network. This is a quick and efficient way to
solve the location problem of fast-charging stations. However, this approach is
based on the assumption that the EVs will take the route derived from the simula-
tion, which can be veriï¬ed. under the connected vehicle environment in the future.
It can also be further improved if more research can be carried out to investigate the
deployment of the local institutional and spatial settings.
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