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Chapter

Markov Chain Monte Carlo in a
Dynamical System of Information
Theoretic Particles
Tokunbo Ogunfunmi and Manas Deb

Abstract

In Bayesian learning, the posterior probability density of a model parameter is
estimated from the likelihood function and the prior probability of the parameter.
The posterior probability density estimate is refined as more evidence becomes
available. However, any non-trivial Bayesian model requires the computation of an
intractable integral to obtain the probability density function (PDF) of the evi-
dence. Markov Chain Monte Carlo (MCMC) is a well-known algorithm that solves
this problem by directly generating the samples of the posterior distribution with-
out computing this intractable integral. We present a novel perspective of the
MCMC algorithm which views the samples of a probability distribution as a
dynamical system of Information Theoretic particles in an Information Theoretic
field. As our algorithm probes this field with a test particle, it is subjected to
Information Forces from other Information Theoretic particles in this field. We use
Information Theoretic Learning (ITL) techniques based on Rényi’s α-Entropy func-
tion to derive an equation for the gradient of the Information Potential energy of
the dynamical system of Information Theoretic particles. Using this equation, we
compute the Hamiltonian of the dynamical system from the Information Potential
energy and the kinetic energy. The Hamiltonian is used to generate the Markovian
state trajectories of the system.

Keywords: Hamiltonian Monte Carlo (HMC), information theoretic learning,
Kernel density estimator (KDE), Markov chain Monte Carlo, Parzen window,
Rényi’s entropy, information potential

1. Introduction

Bayesian learning involves estimating the PDF of a model parameter from the
likelihood function and the prior probability of the parameter. Bayesian inference
incorporates the concept of belief where the parameter estimate is refined as more
data or evidence becomes available. The posterior PDF of the model parameter
θ with the PDF of the evidence X denoted as P Xð Þ, is expressed by the following
well-known Bayes’ equation:

P θ Xjð Þ ¼ P X θjð ÞP θð Þ
P Xð Þ (1)
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P Xð Þ is the integral of the probability of all possible values of θ weighted by the
likelihood function:

P Xð Þ ¼
ð

θ

P X θjð ÞP θð Þdθ (2)

This is an intractable integration for most non-trivial Bayesian inference prob-
lems and makes it impossible to compute the posterior probability. The MCMC
algorithm described in [1] provides a solution to this problem by directly generating
samples of the posterior PDF without computing this intractable integral. The shape
of the posterior PDF and other statistics can be inferred from these samples.

The MCMC algorithm requires knowledge of a function that is proportional to
the unknown posterior PDF. It uses this function to generate sample proposals of
the unknown PDF. Usually, this function is the product of the likelihood function
and the prior probability. In practical applications, one often encounters a system
whose outputs are observable, but the process within the system that generated
these outputs are unknown. We present a novel perspective on the MCMC method
to solve these types of practical problems, where instead of generating the samples
of the unknown PDF, it uses the samples of the unknown distribution to estimate
the PDF. In this chapter we use the Hamiltonian MCMC (HMC) method described
in [2–4] and ITL concepts to show how the samples of the unknown distribution
can be viewed as Information Theoretic particles of a dynamical system. The sample
space of the given probability distribution is explored by computing trajectories
corresponding to the state transition of this dynamical system. The evolution or
state transition of the dynamical system is governed by equations which use the
total energy or the Hamiltonian of the system of Information Theoretic particles.
Each such particle has an inherent Information Potential by virtue of its position
with respect to the other particles of the system. The system of Information Theo-
retic particles creates an Information Field which enables each particle to exert an
Information Force on the other particles. We use ITL techniques [5] based on
Rényi’s α-Entropy function to derive an equation for the gradient of the Information
Potential energy of this dynamical system. This equation is one of the main contri-
butions of our work and it is used to compute the Hamiltonian of the system to
explore the probability space of the Information Theoretic particles.

In this work, we implement an iterative PDF estimator of an unknown sample
distribution, using the HMC method. At every iteration of the estimator, the HMC
generates samples such that the mutual information between the generated samples
and the given unknown distribution is large. To do this, it uses the Information
Potential, the Information Force and the kinetic energy of an Information Theoretic
“probe” particle. To compute the Information Potential and the Information Force,
the algorithm uses a non-parametric Kernel Density Estimator (KDE). The band-
width of the KDE determines how close the generated samples are from the
unknown sample distribution. At the end of each iteration, the Kullback–Leibler
(K–L) divergence of the samples generated by the estimator from the given distri-
bution is computed. The iteration continues until the K-L divergence falls below a
specified threshold. We have derived an equation to adapt the kernel bandwidth for
each iteration, based on the invariant point theorem. Before starting the next itera-
tion, this equation is used to adapt the kernel bandwidth before generating the next
set of samples.

An important application of our algorithm is in machine learning where some-
times the dataset is either too large to fit in the memory of a computer or too small
to obtain an accurate inference model. The dataset can be resampled to the desired
size using the PDF estimator and the HMC equations derived in this chapter.
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The sections in this chapter are organized in the following manner: In Section 2
we review the MCMC algorithm. Section 3 provides an overview of the Hamiltonian
MCMC algorithm. Rényi’s Entropy and the concept of Information Theoretic parti-
cles are introduced in Section 4. In Section 5 we show how the Hamiltonian MCMC
algorithm can be used with Information Theoretic particles and derive a key equa-
tion for the system potential gradient. Section 6 describes a method to iteratively
estimate the PDF of the target distribution using HMC. In this section we derive an
equation to adapt the Information Potential energy estimator bandwidth for each
iteration. The simulation results of the HMC algorithm on a system of Information
Theoretic particles are listed in Section 7 and we summarize our conclusions in
Section 8 of this chapter.

2. Review of the MCMC algorithm

The core principle underlying MCMC techniques is that an ergodic, reversible
Markov chain reaches a stationary state. MCMC models the sampling from a distri-
bution as an ergodic and reversible Markov process. When this process reaches a
stationary state, the probability distribution of the states of the Markov chain
becomes invariant and matches the given probability distribution. The sampling
operation in the MCMC is a Markov process that satisfies the following detailed
balance equation:

πiP Xt�1 ¼ i,Xt ¼ jð Þ ¼ π jP Xt�1 ¼ j,Xt ¼ ið Þ ∀i, j (3)

In the detailed balance equation, πi and π j are the stationary probability distri-
bution of being in states i and j respectively and X0,X1,X2, …Xt … are a sequence of
random variables at discrete time indices 0, 1, 2, … t� 1, t, … . The Monte Carlo part
of the MCMC algorithm is used to generate random “proposal” samples from a
known probability distribution Q Xð Þ. The proposal sample for the next time step of
the MCMC algorithm is dependent on the current proposal sample and the transi-
tion probability for the new sample is enforced by an acceptance function. The
proposal distribution is usually symmetric to ensure the reversibility of the
Markov chain:

Q xt xt�1jð Þ ¼ Q xt�1 xtjð Þ (4)

Symmetric distributions like the Gaussian distribution or the Uniform distribution
centered around the current sample value can be used to generate the proposal
sample. There are cases where asymmetric distributions are used but we will focus on
symmetric distributions to illustrate our algorithm, without any loss of generality.

To lay the groundwork for the HMC, we review the simple Metropolis-Hastings
(MH) MCMC [6] in this section. The simplest MH algorithm is the Random-Walk
MH which uses a symmetrical proposal distribution. It comprises of the following 3
parts:

1.Generate a proposal sample for the posterior probability from a known
symmetric distribution. The new proposal sample is based on the current
proposal sample: xproposal � Q xi xi�1jð Þ. For example, if Q Xð Þ is a Gaussian
distribution, it is centered at sample xi�1 to generate sample xi

2.Calculate the acceptance probability by passing this sample through the
posterior density function using:
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P θ Xjð Þ ¼ 1
Z
P X θjð ÞP θð Þ

where Z ¼
ð

θ

P Z θjð ÞP θð Þdθ
(5)

3.Accept the candidate sample with probability α or reject it with probability
1� α where α is defined in (Eq. (8))

If the proposal density function is symmetric, we have:

Q xi�1 xproposal
�

�

� �

¼ Q xproposal xi�1j
� �

(6)

The acceptance function is derived as follows:

ð7Þ

It is evident from (Eq. (7)) that since the acceptance function is a ratio of the
posterior probability, the intractable integral to compute the value of Z is completely
bypassed. The acceptance probability of a sample proposal of the MH-MCMC is:

α ¼ min 1,
P X ¼ xproposal, θ
� �

P X ¼ xi�1, θð Þ

� �

(8)

The transition probability of each state of the Markov chain is defined by the
acceptance probability. In the stationary state, the product of the Markov chain
state probability and the transition probability matrix remains stationary and
matches the posterior PDF of the model parameter. The sample points xi generated
by this MCMC in the stationary state of the Markov chain are therefore the sample
points of the posterior PDF.

3. The Hamiltonian MCMC algorithm

Instead of the random-walk method of the Metropolis-Hastings algorithm, this
MCMC technique uses Hamiltonian dynamics to sample from the posterior PDF.
The random-walk method of the Metropolis-Hastings algorithm is inefficient and
converges slowly to the target posterior distribution. Instead of randomly generat-
ing “proposal” samples from a known probability distribution, the Hamiltonian
method uses the dynamics of a physical system to generate these samples. This
enables the system to explore the target posterior probability space more efficiently,
which in turn results in faster convergence compared to random-walk methods.
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Hamiltonian dynamics is a concept borrowed from statistical mechanics where the
energy of a dynamic system changes from potential energy to kinetic energy and
back. The Hamiltonian represents the total energy of the system, which for a closed
system, is the sum of its potential and kinetic energy.

As described in [2, 3], Hamiltonian dynamics operates on an N dimensional
position vector q and an N dimensional momentum vector p and the dynamic
system is described by the Hamiltonian H q,pð Þ. The partial derivatives of the
Hamiltonian define how the system evolves with time:

dqi
dt
¼ ∂H

∂pi
i ¼ 1, 2, … ,N

dpi
dt
¼ � ∂H

∂qi

(9)

Given the state of the system at time t, these equations can be used to determine
the state of the system at time tþ T where T ¼ 1, 2, 3, … . For the time evolution of
the dynamical system, we use the following Hamiltonian:

H q,pð Þ ¼ U qð Þ þ K pð Þ (10)

In (10), U qð Þ is the potential energy and K pð Þ is the kinetic energy of the system.
The position vector q corresponds to the model parameter and the PDF of q is the
target posterior PDF that we want to estimate. The potential energy of the
Hamiltonian system is expressed as the negative log of the probability of q:

U qð Þ ¼ � log P qð Þð Þ (11)

To relate the Hamiltonian H q,pð Þ to the target posterior probability, we use a
basic concept from statistical mechanics known as the canonical ensemble. If there
are several microstates of a physical system contained in the vector θ and there is an
energy function E θð Þ defined for these microstates, then the canonical probability
distribution of the microstates is expressed as:

p θð Þ ¼ 1
Z
e�

E θð Þ
T (12)

where T is the temperature of the system and the variable Z is a normalizing
constant called the partition function. Z scales the canonical probability distribution
such that it sums to one. For a system described by Hamiltonian dynamics, the
energy function is:

E θð Þ ¼ H q,pð Þ ¼ U qð Þ þ K pð Þ (13)

In MCMC, the Hamiltonian is an energy function of the states of both the
position q and the momentum p. Therefore, the canonical probability distribution
of a Hamiltonian system can be expressed as:

P q,pð Þ ¼ 1
Z
e�

H q,pð Þ
T

¼ 1
Z
e�

U qð ÞþK pð Þ
T

¼ 1
Z
exp �U qð Þ

T

� �

exp �K pð Þ
T

� �

(14)
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This equation shows that q and p are independent and each have canonical
distributions with energy functions U qð Þ and K pð Þ. The probability density of q is
the posterior probability density of the model parameter θ and is the product of the
likelihood function of θ given the data D and the prior probability of θ. An
important point to note here is that the momentum variable p has been introduced
in the probability distribution in (Eq. (14)) so that we can use Hamiltonian dynam-
ics. Since p is independent of q, we can choose any distribution for this variable. In
our HMC algorithms use a zero-mean multivariate Gaussian distribution for the
momentum vector p. The temperature T ¼ 1 in this discussion on the HMC.

The kinetic energy of the dynamical system for a unit mass is expressed as:

K pð Þ ¼ 1
2
pTp (15)

On applying the Hamiltonian partial derivatives in (9) to the definition of the
HMC in (10) we get the following differential equations which describe the time
evolution of the dynamical system:

dq

dt
¼ ∂H

∂p
¼ ∂ U qð Þ þ K pð Þ½ �

∂p
¼ ∂

∂p

1
2
pTp

� �

¼ p

dp

dt
¼ � ∂H

∂q
¼ � ∂ U qð Þ þ K pð Þ½ �

∂q
¼ � ∂U qð Þ

∂q

(16)

Since the Hamiltonian equations for the time evolution of the system are differ-
ential equations, computer simulation of the HMC must discretize time. A popular
scheme to implement this discretization is the “Leapfrog” algorithm [4]. The HMC
algorithm uses the leapfrog algorithm to update the momentum and the position
while computing the trajectory towards the next sample proposal in the
distribution. The Leapfrog integrator has 2 main advantages:

1. It is time reversible. A Leapfrog integration by N steps in the forward direction
and then in the backward direction results in the same starting position

2.It is symplectic in nature. In other words, it conserves the energy of dynamical
systems

The steps of the Hamiltonian MCMC algorithm are:

1.At every time step t, determine a trajectory of the system potential and kinetic
energy. To do that, generate a random value from a standard normal
distribution for the momentum variable.

2.Execute the Leapfrog algorithm to update the position and momentum
variables according to the differential equations in (Eq. (16)). This determines
the trajectory of the system towards the next sample proposal

3.Compute the potential and kinetic energy U qt�1
� �

,K pt�1
� �� �

of the system at

the beginning of the trajectory and at the end U qproposed

	 


,K pproposed

	 
	 


of

the proposed trajectory

4.Calculate the acceptance probability of the new trajectory using the following
ratio of probabilities:
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β ¼ min 1,
P qproposal,pproposal

	 


P qt�1,pt�1
� �

8

<

:

9

=

;

¼ min 1,

1
Z
exp �U qproposal

	 
	 


exp �K pproposal

	 
	 


1
Z
exp �U qt�1

� �� �

exp �K pt�1
� �� �

8

>

<

>

:

9

>

=

>

;

¼ min 1, exp

U qt�1
� �

þ K pt�1
� �� �

�

U qproposal

	 


þ K pproposal

	 
	 


0

B

B

@

1

C

C

A

8

>

>

<

>

>

:

9

>

>

=

>

>

;

(17)

5.Generate a random number u � Uniform 0, 1ð Þ to accept or reject the proposal

if β> uð Þthen

qt  qproposal ==accept the proposed trajectory

else

qt  qt�1 ==reject the proposed trajectory

endif

4. Rényi’s entropy and Information Theoretic particles

The concept of Information Theoretic particles comes from Alfréd Rényi’s
pioneering work on generalized measures of entropy and information [7]. At the core
of Rényi’s work is the concept of generalized mean or the Kolmogorov-Nagumo
(K-N) mean [8–10]. For numbers x1, x2, … xN, the K-N mean is expressed as:

ψ�1
1
N

X

N

i¼1
ψ xið Þ

 !

(18)

where, ψ :ð Þ is the K-N function. This function is continuous and strictly
monotonic implying that it has an inverse. In the general theory of means, the
quasi-linear mean of a random variable X which takes the values x1, x2, … xN with
probabilities p1, p2, … pN is defined as:

Eψ X½ � ¼ Xh iψ ¼ ψ�1
X

N

k¼1
pkψ xkð Þ

 !

(19)

From the theorem on additivity of quasi-linear means [11], if ψ :ð Þ is a K-N
function and cis a real constant, then:

ψ�1
X

N

k¼1
pkψ xk þ cð Þ

 !

¼ ψ�1
X

N

k¼1
pkψ xkð Þ

 !

þ c (20)

if and only if ψ :ð Þ is either linear or exponential.

7

Markov Chain Monte Carlo in a Dynamical System of Information Theoretic Particles
DOI: http://dx.doi.org/10.5772/intechopen.100428



4.1 Rényi’s entropy

Consider a random variable X which takes the values x1, x2, … xN with probabil-
ities p1, p2, … pN. The amount of information generated when X takes the value xk is
given by the Hartley [12] information measurement function I xkð Þ:

I xkð Þ ¼ log 2
1
pk

� �

bits (21)

The expected value of I xkð Þ yields the expression for Shannon’s entropy [13]:

H Xð Þ ¼
X

N

k¼1
pkI xkð Þ ¼

X

N

k¼1
pk log 2

1
pk

� �

(22)

Rényi replaced the linear mean in (Eq. (22)) with the quasi-linear mean in
(Eq. (19)) to obtain a generalized measure of information:

Hψ Xð Þ ¼ ψ�1
X

N

k¼1
pkψ log 2

1
pk

� �� �

 !

(23)

For Hψ Xð Þ to satisfy the additivity property of independent events, it must
satisfy X þ ch iψ ¼ Xh iψ þ c where c is a constant. From (Eq. (20)), this implies that

ψ xð Þ ¼ cx (linear) or ψ xð Þ ¼ c2 1�αð Þx (exponential). Setting ψ xð Þ ¼ cx reduces
(Eq. (23)) to the linear mean and yields Shannon entropy equation. Substituting
ψ xð Þ ¼ c2 1�αð Þx and the corresponding inverse function ψ�1 ¼ 1

1�αð Þ log 2 in

(Eq. (23)) yields the expression for Rényi’s α�entropy:

Hα Xð Þ ¼ 1
1� αð Þ log 2

X

N

k¼1
pαk

 !

α>0 and α 6¼ 1 (24)

Rényi’s α�entropy equation is therefore a general expression for entropy and
comprises of a family of entropies for different values of the parameter α. Shannon’s
entropy is a special case of Rényi’s entropy in the limit as α! 1. The argument
of the logarithm function in (Eq. (24)) is called the Information Potential. The
α-Information Potential is expressed as:

Vα Xð Þ ¼
X

N

k¼1
pαk (25)

Substituting (Eq. (25)) in (Eq. (24)), we get the following expression for Rényi’s
entropy in terms of the Information Potential:

Hα Xð Þ ¼ 1
1� αð Þ log 2 Vα Xð Þð Þ (26)

The Information Potential in (Eq. (25)) can be written as the expected value of
the PDF of the sample distribution raised to α� 1:

Vα Xð Þ ¼
X

N

k¼1
pαk ¼

X

N

k¼1
pkp

α�1
k ¼ E pα�1k

� �

(27)
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For α ¼ 2 in (Eq. (24)), we get Rényi’s quadratic entropy, which has the useful
property that it allows us to compute the entropy directly from the samples. The
equations for Rényi’s Quadratic Entropy (QE) and Quadratic Information Potential
(QIP) are obtained by substituting α ¼ 2 in (Eqs. (26) and (27)):

H2 Xð Þ ¼ 1
1� 2ð Þ log 2 V2 Xð Þð Þ ¼ � log 2 V2 Xð Þð Þ

where V2 Xð Þ ¼ E p2�1k

� �

¼ E pk
� �

(28)

The QIP is therefore the expected value of the PDF of the given data samples.

4.2 Rényi’s quadratic information potential (QIP) estimator

From (Eq. (28)), it is evident that to compute the QIP we need to know the PDF
of the given data samples. In practical applications an analytical expression of the
PDF is rarely available. Therefore, the QIP computation involves a non-parametric
estimator of the PDF directly from the samples [14]. The Parzen-Rosenblatt win-
dow estimator [15, 16] is a non-parametric way to estimate the PDF of a random
variable from its sample values. This estimator places a kernel function with its
center at each of the samples. The resulting output values are averaged over all the
samples to estimate the PDF. The laws governing the interaction of the
Information Theoretic particles is defined by the shape of the kernel. We use a
Gaussian kernel, since this kernel when placed over the samples, behaves like an
Information Theoretic field whose strength decays with increasing distance
between the samples. Just like a charge in space creates an electric field, the samples
of a probability distribution behave like Information Particles with unit charge.
Information particles exert Information Forces on other particles through this
Information Theoretic field.

For scalar samples x1, x2, … xN, the Parzen window PDF estimator with a
Gaussian kernel is expressed as:

p̂ xð Þ ¼ 1
N

X

N

i¼1
Gσ x� xið Þ (29)

where Gσ uð Þ is the following standard univariate Gaussian kernel:

Gσ uð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp � 1

2
u

σ

	 
2
� �

(30)

σ is the kernel bandwidth of the estimator and it must be carefully chosen to
obtain an accurate and unbiased estimate of the PDF. The Parzen window
estimator of a multivariate PDF for vector samples x1,x2, …xN of dimension d is
expressed as:

p̂ xð Þ ¼ 1
N

X

N

i¼1
GC x� xið Þ (31)

where GC uð Þ is the following standard multivariate Gaussian kernel:

GC uð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Cj j
q exp � 1

2
uTC�1u

� �

(32)
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d is the dimension of the input vector u, C is the d� d covariance matrix and Cj j
is the determinant of the covariance matrix. For the multivariate PDF case, the
kernel bandwidth C must be carefully chosen to obtain an accurate and unbiased
estimate of the PDF.

Rényi’s quadratic entropy for a continuous random variable is expressed as:

H2 Xð Þ ¼ � log
ð

∞

�∞

p2 xð Þdx (33)

Substituting p̂ xð Þ from (Eq. (29)) for p xð Þ in the above equation as described in
[5], we get the following equation for the QE estimator:

Ĥ2 Xð Þ ¼ � log
1
N2

X

N

i¼1

X

N

j¼1
Gσ

ffiffi

2
p x j � xi
� �

" #

(34)

where:

Gσ
ffiffi

2
p uð Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π σ
ffiffiffi

2
p� �2

q exp � 1
2

u

σ
ffiffiffi

2
p

� �2
" #

(35)

The equation for the QE estimator shows that we can compute the QE estimate
directly from the samples of a distribution without knowing its PDF, by applying
the Parzen-Rosenblatt kernel on these samples. From (Eqs. (28) and (34)), the QIP
estimator can be expressed as:

V̂2 Xð Þ ¼ 1
N2

X

N

i¼1

X

N

j¼1
Gσ

ffiffi

2
p x j � xi
� �

(36)

4.3 Information potential energy and the information force of information
theoretic particles

The total QIP energy estimate of the system is given by (Eq. (36)). The QIP
energy estimate of sample x j due to the Information Potential field of a single
sample xi is:

V̂2 x j; xi
� �

¼ Gσ
ffiffi

2
p x j � xi
� �

(37)

The Quadratic Information Potential energy estimate of scalar sample x j in the
Information Field created by all the samples xi ∈, for i ¼ 1, 2, …N is defined as
the average of V̂2 x j; xi

� �

taken over all the samples xi:

V̂2 x j

� �

¼ 1
N

X

N

i¼1
Gσ

ffiffi

2
p x j � xi
� �

¼ 1
N

1
ffiffiffiffiffi

2π
p

σ
ffiffiffi

2
p� �

X

N

i¼1
exp � 1

2
x j � xi

σ
ffiffiffi

2
p

� �2
" #

(38)
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If the samples are d dimensional vectors, then the Quadratic Information Poten-
tial energy estimate of vector sample x j in the Information Potential Field created
by all vector samples xi ∈

d, for i ¼ 1, 2, …N is defined as:

V̂2 x j

� �

¼ 1
N

X

N

i¼1
G2C x j � xi

� �

(39)

where:

G2C ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Cj j 2d
� �

q

X

N

i¼1
exp � 1

2
x j � xi

� �T 2Cð Þ�1 x j � xi

� �

� �

(40)

From (Eqs. (39) and (40)) we can re-write the QIP energy estimate for vector
samples of d dimensions as:

V̂2 x j

� �

¼ 1
N

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Cj j 2d
� �

q

X

N

i¼1
exp � 1

2
x j � xi

� �T 2Cð Þ�1 x j � xi

� �

� �

(41)

To obtain the Quadratic Information Force estimate on scalar sample x j due to
the Information Potential field of sample xi, we take the derivative of the Quadratic
Information Potential energy estimate:

F̂2 x j; xi
� �

¼ ∂

∂x j
V̂2 x j; xi
� �

¼ ∂

∂x j
Gσ

ffiffi

2
p x j � xi
� �

¼ ∂

∂x j

1
ffiffiffiffiffi

2π
p

σ
ffiffiffi

2
p� � exp � 1

2
x j � xi

σ
ffiffiffi

2
p

� �2
" #" #

¼ 1
ffiffiffiffiffi

2π
p

σ
ffiffiffi

2
p� � exp � 1

2
x j � xi

σ
ffiffiffi

2
p

� �2
" #

� 1
2 2σ2ð Þ

� �

∂

∂x j
x j � xi
� �2

¼ 1
ffiffiffiffiffi

2π
p

σ
ffiffiffi

2
p� � exp � 1

2
x j � xi

σ
ffiffiffi

2
p

� �2
" #

� 1
2 2σ2ð Þ

� �

2 x j � xi
� �� �

F̂2 x j; xi
� �

¼ 1
2σ2

� �

1
ffiffiffiffiffi

2π
p

σ
ffiffiffi

2
p� � exp � 1

2
x j � xi

σ
ffiffiffi

2
p

� �2
" #

�1ð Þ x j � xi
� �� �

¼ 1
2σ2

� �

1
ffiffiffiffiffi

2π
p

σ
ffiffiffi

2
p� � exp � 1

2
x j � xi

σ
ffiffiffi

2
p

� �2
" #

xi � x j

� �

¼ 1
2σ2

� �

Gσ
ffiffi

2
p x j � xi
� �

xi � x j

� �

(42)

The Quadratic Information Force on scalar sample x j in the Information Poten-
tial Field created by all the samples xi ∈, for i ¼ 1, 2, …N is defined as the average
of F̂2 x j; xi

� �

taken over all the samples xi:
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F̂2 x j

� �

¼ 1
N 2σ2ð Þ

X

N

i¼1
Gσ

ffiffi

2
p x j � xi
� �

xi � x j

� �

¼ 1
2Nσ2ð Þ

1
ffiffiffiffiffi

2π
p

σ
ffiffiffi

2
p� �

X

N

i¼1
exp � 1

2
x j � xi

σ
ffiffiffi

2
p

� �2
" #

xi � x j

� �

(43)

If the samples are d dimensional vectors, then the Quadratic Information Force on
vector sample x j in the Information Potential Field created by all samples xi ∈

d, for
i ¼ 1, 2, …N is defined as:

F̂2 x j

� �

¼ 1

2dN Cj j
� �

X

N

i¼1
G2C x j � xi

� �

xi � x j

� �

¼ 1

2dN Cj j
� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Cj j 2d
� �

q

�
X

N

i¼1
exp � 1

2
x j � xi

� �T 2Cð Þ�1 x j � xi

� �

� �

xi � x j

� �

(44)

5. Hamiltonian MCMC with information theoretic particles

The expression for the potential energy in the Hamiltonian function (Eq. (11)) is
similar to the expression for Rényi’s quadratic entropy (Eq. (28)). This is consistent
with the principles of statistical mechanics where the entropy is related to the
dissipation of the potential energy of the system. Based on this intuition from
statistical mechanics, we replace the PDF of the position vector q in (Eq. (11)) with
the QIP energy estimator as follows:

U q j

	 


¼ � log P q j

	 
h i

¼ � log V̂2 q j

	 
h i

(45)

The change in momentum of the jth Information Theoretic particle in the
dynamical system is equal to the negative potential energy gradient defined in
(Eq. (16)). This can be expressed in terms of the QIP energy estimator as:

dp

dt
¼ �

dU q j

	 


dq j

¼ �
d log P q j

	 
h i

dq j

¼ �
d log V̂2 q j

	 
h i

dq j

(46)

From the above expression, we derive the expression for the Hamiltonian
system’s negative potential gradient in terms of the Information Potential and the
Information Force as follows:

�
d log V̂2 q j

	 
h i

dq j

¼ � d

dq j

log

1
N

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Σj j 2d
� �

q �

P

N

i¼1
exp � 1

2
q j � qi

	 
T
2Σð Þ�1 q j � qi

	 


� �

2

6

6

6

6

4

3

7

7

7

7

5
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�
d log V̂2 q j

	 
h i

dq j

¼ � d

dq j

log
1
N

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Σj j 2d
� �

q

2

6

4

3

7

5

� d

dq j

log
X

N

i¼1
exp � 1

2
q j � qi

	 
T
2Σð Þ�1 q j � qi

	 


� �

" #

¼ � 1
PN

i¼1 exp �
1
2

q j � qi

	 
T
2Σð Þ�1 q j � qi

	 


� �

�
X

N

i¼1

d

dq j

exp � 1
2

q j � qi

	 
T
2Σð Þ�1 q j � qi

	 


� �

¼ � 1
PN

i¼1 exp �
1
2

q j � qi

	 
T
2Σð Þ�1 q j � qi

	 


� �

� 1

2d Σj j
� �

X

N

i¼1
exp � 1

2
q j � qi

	 
T
2Σð Þ�1 q j � qi

	 


� �

qi � q j

	 


¼ �
F̂2 q j

	 


V̂2 q j

	 


(47)

This result shows that the gradient of the potential energy of the Hamiltonian
system of Information Particles is just the Information Force estimate normalized
by the Information Potential energy estimate. This also shows that the Information
Force vector influences the trajectory of sample proposals in the HMC algorithm.
This equation is one of the important contributions of our work. Our simulation of
the HMC of a dynamical system of Information Theoretic particles uses this
potential energy gradient equation to evolve the system over time.

5.1 Quality of the information potential energy estimator

As described in [5], the Information Potential energy estimator is a kernel
estimator of the 2-norm of the underlying PDF of the Information Particles. Just like
a PDF estimator, we can define metrics to describe the quality of the Information
Potential energy estimator. The Mean Integrated Square Error (MISE) is an
important metric used to assess the quality of an estimator. This is expressed as:

MISE V̂2 q j

	 
h i

¼ E

ð

V̂2 q j

	 


� V2 q j

	 
	 
2
dq

� �

¼
ð

E V̂2 q j

	 


� E V̂2 q j

	 
h in o2
dqþ

ð

E V̂2 q j

	 
h i

� V2 q j

	 
n o2
dq

¼
ð

Variance V̂2 q j

	 
	 


dqþ
ð

Bias2 V̂2 q j

	 
	 


dq

(48)
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The bias and variance of the Information Potential estimator can be derived as
follows:

Bias:

E V̂2 q j

	 
h i

� V2 q j

	 


¼ E
1
N

X

N

i¼1
Gσ

ffiffi

2
p q j � qi

	 


" #

� V2 q j

	 


¼ E Gσ
ffiffi

2
p q j � qi

	 
h i

� V2 q j

	 


(49)

Since the Gaussian kernel is symmetric under the expectation operation:

Gσ
ffiffi

2
p q j � qi

	 


¼ Gσ
ffiffi

2
p qi � q j

	 


(50)

Substituting this in (Eq. (49)) and using the definition of Gσ
ffiffi

2
p from (Eq. (35)):

E V̂2 q j

	 
h i

� V2 q j

	 


¼ ¼ E Gσ
ffiffi

2
p qi � q j

	 
h i

� V2 q j

	 


¼ 1

σ
ffiffiffi

2
p E G

qi � q j

σ
ffiffiffi

2
p

� �� �

� V2 q j

	 


¼ 1

σ
ffiffiffi

2
p
ð

G
s� q j

σ
ffiffiffi

2
p

� �

V2 sð Þds� V2 q j

	 


(51)

In the above equation sis the dummy variable of integration. Let y ¼ s�q j

σ
ffiffi

2
p :This

implies that dy ¼ ds
σ
ffiffi

2
p . Substituting this in (Eq. (51)), we get:

E V̂2 q j

	 
h i

� V2 q j

	 


¼
ð

G yð ÞV2 q j þ σ
ffiffiffi

2
p

y
	 


dy� V2 q j

	 


(52)

When σ
ffiffiffi

2
p

is small, we can write the Taylor series expansion of V2 q j þ σ
ffiffiffi

2
p

y
	 


as:

V2 q j þ σ
ffiffiffi

2
p

y
	 


¼ V2 q j

	 


þ σ
ffiffiffi

2
p

yV 02 q j

	 


þ 1
2
2σ2y2V 002 q j

	 


þ o σ2
� �

(53)

Substituting this in (Eq. (52)), we get:

E V̂2 q j

	 
h i

� V2 q j

	 


¼
ð

G yð Þ V2 q j

	 


þ σ
ffiffiffi

2
p

yV 02 q j

	 


þ σ2y2V 002 q j

	 


þ o σ2
� �

h i

dy� V2 q j

	 


¼ V2 q j

	 


ð

G yð Þdyþ σ
ffiffiffi

2
p

V 02 q j

	 


ð

yG yð Þdyþ σ2V 002 q j

	 


ð

y2G yð Þdyþ o σ2
� �

� V2 q j

	 


¼ V2 q j

	 


1ð Þ þ σ
ffiffiffi

2
p

V 02 q j

	 


0ð Þ þ σ2V 002 q j

	 


ð

y2G yð Þdyþ o σ2
� �

� V2 q j

	 


¼ σ2V 002 q j

	 


ð

y2G yð Þdyþ o σ2
� �

(54)

This result implies that as the kernel bandwidth σ ! 0 the bias of the Informa-
tion Potential energy estimator for sample q j reduces at the rate of O σ2ð Þ. From the
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above equation it is also evident that the main reason for the bias is the second
derivative of the true Information Potential energy (i.e., the rate of curvature of the
true PDF of the samples). In other words, if the true PDF of the samples has a sharp
spike, the bias of the Information Potential energy estimator will increase. The
Information Potential energy estimator tends to smooth out sharp curvatures or
spikes in the PDF which increases bias. The amount of smoothness is governed by
the bandwidth parameter σ.

Variance:

E V̂2 q j

	 
h i2
� �

� E V̂2 q j

	 
h in o2
¼ E V̂2 q j

	 
h i2
� �

� 1
N

V2 q j

	 


þ Bias
	 
2

¼ E V̂2 q j

	 
h i2
� �

þO N�1
� �

¼ E
1
N

X

N

i¼1
Gσ

ffiffi

2
p q j � qi

	 


" #2
8

<

:

9

=

;

þO N�1
� �

¼ E
1
N

X

N

i¼1
Gσ

ffiffi

2
p qi � q j

	 


" #2
8

<

:

9

=

;

þO N�1
� �

¼ 1
N
E Gσ

ffiffi

2
p qi � q j

	 
h i2
� �

þO N�1
� �

¼ 1
2Nσ2

ð

G2
s� q j

σ
ffiffiffi

2
p

� �

V2 sð ÞdsþO N�1
� �

(55)

Let y ¼ s�q j

σ
ffiffi

2
p :This implies that dy ¼ ds

σ
ffiffi

2
p . Substituting this in (Eq. (55)), we get:

E V̂2 q j

	 
h i2
� �

� E V̂2 q j

	 
h in o2
¼

1

Nσ
ffiffiffi

2
p
ð

G2 yð ÞV2 q j þ σ
ffiffiffi

2
p

y
	 


dyþ O N�1
� �

(56)

When σ
ffiffiffi

2
p

is small, we can write the Taylor series expansion of V2 q j þ σ
ffiffiffi

2
p

y
	 


as:

V2 q j þ σ
ffiffiffi

2
p

y
	 


¼ V2 q j

	 


þ σ
ffiffiffi

2
p

yV 02 q j

	 


þ o σð Þ (57)

Substituting this in (Eq. (56)), we get:

E V̂2 q j

	 
h i2
� �

� E V̂2 q j

	 
h in o2

¼ 1

Nσ
ffiffiffi

2
p
ð

G2 yð Þ V2 q j

	 


þ σ
ffiffiffi

2
p

yV 02 q j

	 


þ o σð Þ
h i

dsþO N�1
� �

¼ 1

Nσ
ffiffiffi

2
p V2 q j

	 


ð

G2 yð Þ þ o
1

Nσ
ffiffiffi

2
p

� �

(58)

This result shows that as the number of samples N ! ∞ and kernel bandwidth
σ ! ∞, the variance of the Information Potential energy estimator for the sample
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q j reduces at the rate of O
1

Nσ
ffiffi

2
p

	 


. However, as σ ! 0, the variance of the estimator

increases. The result also shows that the variance of the estimator is large where the

value of the Information Potential energy V2 q j

	 


(i.e., true probability of the

sample) is also large. This happens when there are many Information Particles
closer together.

5.2 The Kernel bandwidth parameter and the information potential energy
estimator bias-variance trade-off

We have shown that the Gaussian kernel bandwidth σ directly influences the
bias and variance of the Information Potential energy estimator. This in turn affects
the sample distribution of the PDF estimate generated by the Hamiltonian MCMC.
From (Eq. (54)) it is evident that the bias of the estimator reduces when we
decrease the kernel bandwidth σ. However, (Eq. (58)) clearly shows that the
decreasing σ increases the variance of the estimator. Therefore, we must choose an
optimum bandwidth which minimizes both the systematic error (bias) and the
random error (variance) of the Information Potential energy estimator. An iterative
algorithm to converge to the optimum kernel bandwidth is described in the follow-
ing section.

5.3 Computational complexity of the information potential energy estimator

From (Eqs. (38) and (41)) it may appear that the complexity of computing the
Information Potential is O N2� �

. However, as described in [5], the Information Poten-
tial can be written as a symmetric positive GrammMatrix which can be approximated
using the incomplete Cholesky decomposition (ICD) as an N �D matrix where
D≪N. Using this technique, the time complexity for computing the Information
Potential reduces to O ND2� �

and the space complexity reduces to O NDð Þ.

6. Maximum-likelihood iterative algorithm to adapt the kernel
bandwidth of the information potential energy estimator

There are many iterative kernel bandwidth adaptation techniques available
in the literature. We present a simple iterative technique to illustrate how MCMC
with Hamiltonian of Information Theoretic Particles can be used to adjust the
bandwidth parameter of the iterative PDF estimator. Here, we have chosen to
minimize the Kullback–Leibler (K-L) divergence between the samples of the esti-
mated PDF and the target sample distribution as the criteria for adapting the kernel
bandwidth of the Information Potential energy and Information Force estimator. As
described in [17], this is equivalent to maximizing the likelihood that the estimated
PDF samples output by the MCMC, has the same distribution as the target samples.

The ML estimate of the optimum kernel bandwidth CML for vector Information
Particle samples q j is the solution to the following log-likelihood maximization
problem:

CML ¼ argmax
C

X

N

j¼1
log V̂ q j Cj

	 
h i

(59)

Using (Eq. (41)) in the summation of the above equation, we get:
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X

N

j¼1
log V q j Cj

	 
h i

¼
X

N

j¼1
log

1
N � 1

X

N

i¼1
i 6¼j

G2C q j � qi

	 


2

6

6

6

6

4

3

7

7

7

7

5

¼
X

N

j¼1
log

1
N � 1ð Þ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd 2d
� �

Cj j
q �

P

N

i¼1
i 6¼j

exp � 1
2

q j � qi

	 
T
2Cð Þ�1 q j � qi

	 


� �

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(60)

To maximize the above equation, we take the derivative and equate it to 0. This
gives us the following update equation for scalar Information Theoretic particles:

σ2tþ1 ¼
1

2N N � 1ð Þ
X

N

j¼1

1

V̂ q j

	 


X

N

i¼1
i 6¼j

Gσ
ffiffi

2
p q j � qi

	 


q j � qi

	 
2

2

6

6

6

6

4

3

7

7

7

7

5

t

(61)

In the above equation, σtþ1 is the kernel bandwidth at iteration tþ 1. It is updated
with the result of the right-hand side of the equation obtained at time t. This kernel
bandwidth update equation (Eq. (61)) is in the form of a fixed-point (or invariant
point) equation. This equation is like the equation in [18] except for the factor of 1=2.
For vector Information Theoretic particles, the kernel bandwidth update equation is:

Ctþ1 ¼
1

2N N � 1ð Þ
X

N

j¼1

1

V̂ q j

	 


X

N

i¼1
i 6¼j

G2C q j � qi

	 


q j � qi

	 


q j � qi

	 
T
� �

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

t

(62)

In this equation, C is the kernel bandwidth matrix and can have unequal ele-
ments along its diagonal or non-zero off-diagonal elements. If the kernel bandwidth
matrix is constrained to an identity matrix multiplied by a scaling factor, the kernel
bandwidth matrix update equation can be expressed as:

Ctþ1 ¼
1

2N N � 1ð Þ
X

N

j¼1

1

V q j

	 


X

N

i¼1
i 6¼j

G2C q j � qi

	 


q j � qi

	 
�

�

�

�

�

�

2

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

t

(63)

From the fixed- or invariant-point theorem, the range over which the
fixed-point bandwidth update equations will converge to a unique solution is:

min q j � qi

	 
2

2
,Trace E qqT

� �� �

2

6

4

3

7

5
(64)
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In the above equation, qi,q j are information particles from the target sample
distribution and q is the column vector of all the target information particles. From
the fixed-point theorem, this fixed-point equation will converge to a unique
solution if f 0 σ2ð Þ

�

�

�

�< 1.

7. Simulation results

The potential energy surface, which is the plot of (Eq. (41)), of a Hamiltonian
system of Information Theoretic particles for a bivariate Gaussian distribution is
shown in Figure 1. From this figure it is evident that the potential energy surface of
the Hamiltonian system has larger values when the Information Theoretic particles
are sparse and is lowest at the bottom of the bowl-shaped surface where the parti-
cles have the highest density.

The momentum variable of the HMC algorithm occasionally moves the “probe”
particle to a higher energy level but the Hamiltonian system has the tendency to fall
back to its lowest energy level along the bowl-shaped surface. As a result, the HMC
tends to sample the given target distribution more often where the density of the
Information Theoretic particles is the largest.

Figure 2 shows the potential energy gradient of the same bivariate Gaussian
distribution. This is the plot of (Eq. (47)) for this distribution. Each surface in this
figure is one component of the potential energy gradient. Each surface tilts towards
the corresponding mean value μ ¼ �5, 6½ � of the bivariate Gaussian distribution.
The figure shows that the potential energy gradient of the Hamiltonian system is
lowest near the mean of the distribution and is highest further away from the mean.
The time evolution trajectory of the Hamiltonian system lies on this surface.

The iterative PDF estimate of a bivariate Gaussian distribution with
μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ � using MCMC with 3 different kernel bandwidths is
shown in Figure 3.

From Figure 3, it is evident that the MCMC algorithm based on the Hamiltonian
of Information Theoretic particles accurately estimates the PDF of the target distri-
bution. The sample points generated by the HMC algorithm covers most of the
target samples in this figure. This figure shows that our intuition of comparing the
Entropy to the system’s potential and also using the Information Potential in the
derivation of the potential gradient (Eq. (47)) of the Hamiltonian system of
Information Theoretic particles, was correct.

Figure 1.
Potential energy surface of the Hamiltonian system of a bivariate Gaussian μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ �ð Þ
distribution of Information Theoretic particles.
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Figure 2.
Vector components of the potential energy gradient of the Hamiltonian system of a bivariate Gaussian
μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ �ð Þ distribution of Information Theoretic particles.

Figure 3.
The left-hand side figure shows the iterative PDF estimate of a bivariate Gaussian distribution
μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ �ð Þ with the MCMC method using the Hamiltonian of Information Theoretic
particles. The right-hand side figure shows that the samples generated by the HMC method mostly overlaps the
samples of the target distribution.

Figure 4.
Iterative estimation of the PDF of a bivariate Gaussian mixture distribution with the MCMC method using the
Hamiltonian of Information Theoretic particles.
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Our HMC algorithm using Information Theoretic particles also works well for
Gaussian mixture distributions. Figure 4 shows that our MCMC algorithm using the
Hamiltonian of Information Theoretic particles can be used to iteratively estimate
the PDF of different multivariate distributions.

Figure 5 shows that the contour plot of the estimated PDF matches closely to the
target PDF. The corresponding samples generated by the HMC algorithm traverses
the two clusters of the bivariate Gaussian mixture distribution and covers most of
the samples of the target distribution.

8. Conclusion

We have proposed a novel perspective on the MCMC method where we used it
to iteratively estimate the PDF of a given target sample distribution. We have
shown that the samples of a probability distribution can be viewed as Information
Particles in an Information Field. These particles have Information Potential energy
and are subject to Information Forces by virtue of their position in the field. The
concept of Information Potential energy fits perfectly within the framework of the
Hamiltonian of a dynamical system. We have derived an important result that the
gradient of the potential energy of the Hamiltonian system of Information Particles
is just the Information Force estimate normalized by the Information Potential
energy estimate.

Our simulation results show that our intuition of comparing Rényi’s Quadratic
Entropy equation with the Hamiltonian potential energy equation to derive the
equation for the potential gradient of a dynamical system of Information Theoretic
particles was correct. Using this equation, we were able to accurately estimate

Figure 5.
Contour plots of the target PDF and the estimated PDF of the bivariate Gaussian mixture distribution. Samples
generated by the MCMC algorithm using the Hamiltonian of Information Theoretic particles.
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univariate and multivariate PDFs. Based on the fixed- or invariant-point theorem,
we also derived an equation to iteratively update the bandwidth parameter of the
Information Potential and Information Force estimators.

In machine learning applications the dataset is sometimes resampled to the
appropriate size before starting the learning operation. Our algorithm can be used to
view the data samples as Information Theoretic particles and resample it using the
HMC described in this chapter.
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