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Chapter

Thrust Force Generated by
Heaving Motion of a Plate: The
Role of Vortex-Induced Force
Kazuo Matsuuchi

Abstract

To understand the force acting on birds, insects, and fish, we take heaving
motion as a simple example. This motion might deviate from the real one. However,
since the mechanism of force generation is the vortex shedding due to the motion of
an object, the heaving motion is important for understanding the force generated by
unsteady motion. The vortices released from the object are closely related to the
motion characteristics. To understand the force acting on an object, information
about momentum change is necessary. However, in vortex systems, it is impossible
to estimate the usual momentum. Instead of the momentum, the “virtual momen-
tum,” or the impulse, is needed to generate the force. For calculating the virtual
momentum, we traced all vortices over a whole period, which was carried out by
using the vortex-element method. The force was then calculated based on the
information on the vortices. We derived the thrust coefficient as a function of the
ratio of the heaving to travelling velocity.

Keywords: heaving motion, virtual momentum, unsteady effect, extended Blasius
formula, vortex street

1. Introduction

Motion of insects or birds is inherently unsteady. The creatures utilise the
unsteadiness efficiently. For example, a coherent structure called the leading edge
vortex (LEV) plays an essential role in the generation of unsteady force. Many
authors have published studies on the topic and hilighted its importance, experi-
mentally and numerically. The magnitude of the unsteady force cannot be
explained by a steady-state approach. In many cases, the unsteadiness generates
greater forces more efficiently than that in the steady state [1, 2]. Experiments have
been conducted in three-dimensional space and numerical analyses have been car-
ried out to understand the mechanism of force generation. These studies explained
several aspects of unsteady phenomenon, but the role of vortices generated close to
the object is still unclear. How does the behaviour of vortices affect the generation
of force? In particular, how does momentum change depend on the force? We are
not sure how to estimate the momentum of a vortex system, because the usual
momentum has no definite value. Our aim is to establish a rule that governs the
force generation by the momentum change. Characteristics such as the magnitude,
the rotation direction, and the position are key to determining the momentum.
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Unless we determine their properties, the evaluation of force cannot be made
quantitatively.

When an object of a constant circulation Γ moves with a constant speed dx0=dt,
a fluid force acts perpendicular to the direction of motion. The magnitude is known
to be ρ dx0=dtð ÞΓ. It should be noted that the magnitude is the derivative of the
virtual momentum ρx0Γ with respect to time, see [3], Art.157. Here, ρ is the density
of fluid. This is a simplest application of a well-known law that governs the conser-
vation of virtual momentum. In other words, this is a typical example of the second
law of motion in the vortex motion. In general, the virtual momentum plays an
essential role in the generation of force instead of the normal momentum. As
illustrated above, in unsteady flows, the virtual momentum is important for the
generation of force. We would like to illustrate the role of the virtual momentum by
applying it to a heaving motion of a thin plate.

A lot of attention has been paid to the dependence of parameters characterising
the unsteadiness known as the reduced frequency or the Strouhal number of the
propulsive motion of insects, fish and humans (for example, [4–6]). Here, we also
discuss the dependence of the reduced frequency on the thrust.

The heaving motion of a thin plate is the simplest and most suitable example of
the analysis of unsteady phenomena. In addition, the heaving motion is solved in
the limit as the heaving amplitude becomes smaller. For investigating the unsteady
phenomenon, the vortex motion is a key concept. The analytical tool used here is
not specific and can be extended to wider problems.

2. Direct effect of a heaving plate

First, we have a look at the relation between the force acting on a body fixed in a
stream and the free vortices flowing behind it. It is known that a drag acts on a still
body set in the stream. We can see two vortex rows here, called the Kármán vortex
street (see Figure 1(a)).

We can also notice another similar vortex street behind the flying birds and the
swimming fish. However, the direction of rotation of the vortices is inverse. In the
case of the Kármán street, a momentum defect is observed while the momentum
seems to increase behind the birds and fish. In the latter case, a thrust acts on the
object to move forward due to the increase in momentum. As an example, we show
the vortex street appearing in heaving motion (see Figure 1(b)). In pitching

Figure 1.
Vortex street and an object in the stream. (a) an object fixed in the stream; (b) a thin aerofoil heaving
vertically. Two thick arrows denote the direction of momentum increase.
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motion, a similar street can be observed (see example, [7]). In general, those cases
where backward momentum increases generate thrust acting against the flow. In
the figure, the thick arrows denote the direction of the increased momentum.

To understand the mechanism of thrust generation we study the heaving motion
of a thin plate in a uniform flow. We assume that the plate has a constant circulation
Γ. Even in unsteady conditions, we assume that the fluid flows smoothly at the
trailing edge according to Kutta’s condition. The circulation Γ is determined by this
smoothness condition. The velocity around the leading edge would diverge and hence
the pressure may not be finite because the edge is a mathematical singular point.

To evaluate the force acting on an object, we usually integrate the pressure on
the surface of the object. However, because a simple plate has two singular points at
the leading and trailing edges. In particular, the estimation of the pressure at the
leading edge is almost impossible when Kutta’s condition is applied at the trailing
edge. Instead of the integration of pressure, we apply Newton’s second law of
motion, which states that the force is a result of the momentum change. However, it
is known that the estimation of momentum is almost impossible, and hence virtual
momentum has to be used instead.

2.1 Effect of bound vortex

The coordinates system is shown in Figure 2. A thin aerofoil is located at z ¼
z0 tð Þ in the complex z-plane or at z0 ¼ 0. The coordinates z and z0 are related by the
equation

z0 tð Þ ¼ z� iy0 tð Þ: (1)

Consider a uniform flow whose velocity is U in the x-direction and a bound
vortex of a constant circulation Γ around the plate and no free vortices. The
circulation is positive when the fluid rotates in the anticlockwise direction, while
the vorticity is positive for vortices rotating in the clockwise direction. The force
X þ iY acting on the object located at z0 ¼ x0 þ iy0

� �

is given by:

X þ iY ¼ iρΓ _z0 � Uð Þ � 2πρa2€z0 þ 2πρa2€z0, (2)

where the dot denotes the derivative with respect to time t [8]. Here, the length
of the plate is 4a (=L) and located parallel to the uniform flow (see Figure 2).

Figure 2.
Coordinates system. The heaving plate is located at y = y0, �2a≤ x0 ≤ 2a.
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Confining ourselves to the oscillation only in the y-direction, or _z0 ¼ i _y0 tð Þ, the
force can be:

X þ iY ¼ iρΓ i _y0 � U
� �

þ 4πiρa2€y0: (3)

For cases without any motion, the above equation is written simply as Y ¼
�ρUΓ, which corresponds to the lift known as the Kutta-Joukowski theorem.

The second term on the right-hand side indicates the drag defined as

m0 d
2y0 tð Þ

dt2
, (4)

where m0 is called the virtual mass. The direction of this force is parallel to the
direction of motion. Accordingly, this force which acts in the y-direction cannot
contribute to the propulsion. The virtual mass for this thin plate is expressed as
πρ L=2ð Þ2 ¼ m0ð Þ (see [9], Art. 9.222, [10–12] for the general discussion). This force
acting only in the y-direction is independent of vortex formation and shedding. The
force is not related to thrust, and hence we will not discuss this force any more.
Finally, from Eq.(3) the force in the x-direction is

X ¼ �ρ _y0Γ: (5)

This formula corresponds to the Kutta-Joukowski theorem. When the object with
the circulation Γ is located at z ¼ z1, the virtual momentum is expressed as �iρz1Γ.

Eq. (5) can be derived easily by considering the virtual momentum. For an object
with a constant circulation Γ1 located at the position z1, the momentum, ormore
precisely the virtual momentum, P, of the flow is expressed as�iρz1Γ1.When the
vortexmoves at the speed _z1, the force F acts on it as a result ofmomentum change, i.e.,

F ¼ �
dP
dt

¼ iρ _z1Γ1: (6)

2.2 Effect of free vortex

Next, we proceed to discuss about the effect of free vortices on the force. The
general rule for estimating the force, when the viscosity is negligible, is the Blasius
formula, see [10]. Since the formula is valid only for steady flow conditions, it has
to be extended to include the unsteady effect. The extended formula for the force
X,Yð Þ, as seen in, for example, [13], is given as

X � iY ¼
iρ
2
∮B

df
dz

� �2

dzþ iρ∮B
df
dt

dz, (7)

where B denotes the path along the surface of an object in the anticlockwise
direction. In the above equation, f zð Þ is the complex potential defined by f zð Þ ¼
ϕ x, yð Þ þ iψ x, yð Þ. Here ϕ and ψ are the velocity potential and the stream function,
respectively. The bar denotes the complex conjugate. Thisin Figure 10 formula
expresses two typical types of forces. One is the virtual momentum (VM) compo-
nent, and the other the direct-interaction (DI) component. VM acts due to the
change in momentum and DI is the direct interaction of the vortices with the body,
which becomes important when the vortex is near the object. We denote the two
forces Fv for VM and Fd for DI to distinguish between them. Before we discuss the
general case, we consider a simple one where one free vortex κ1 exists at z ¼ z1. The
forces for VM and DI are expressed as
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Fv ¼
iρ
2
∮B

df
dz

� �2

dz, (8)

¼ 2∮z1
iκ1

z� z1

df
dz

� �

c

dz, (9)

where df=dz½ �c means the convection velocity at z ¼ z1 by the vortex κ1. On the
other hand, the force for DI is estimated from

Fd ¼ iρ∮B
∂f

∂t
dz: (10)

First, we consider Eq.(10). This force is dependent on the object form. To
integrate it we map a plate in the z-plane to a circle of radius a in the ζ-plane as

z ¼ G ζð Þ ¼ ζ þ
a2

ζ
, (11)

When a vortex is located at z ¼ z1, the integration can be carried out to give

Fd ¼ 2πiρκ1a
2 1

ζ21 � a2
dz1
dt

þ
1

ζ1
2
� a2

dz1
dt

 !

, (12)

where

z1 ¼ G ζ1ð Þ, (13)

and the convection velocity,

dz1
dt

¼
df
dz

� �

z1

¼ 1�
a2

ζ21

� �

_ζ1: (14)

It is easy to see that the right-hand side of Eq.(12) is pure imaginary, because the
right-hand side expresses the sum of a complex and its complex conjugate. This
means that the force has only a y-component. Therefore, the component Fd is not
related to the thrust. Hence, we will not discuss Fd anymore. Only the VM would
contribute to the thrust force.

From Eq.(10), we have

Fv ¼ Xv � iYv ¼ 2πiρκ1 _z1, (15)

where _z1 is the covection velocity of vortex κ1. The above equation is to Eq.(6),
because 2πκ1=�Γ1. To determine the convection velocity _z1, we apply the conformal
mapping Eq.(13) and trace the vortex in the ζ-plane and then calculate the velocity
in the z-plane. The moving speed of vortex κ1 in the z-plane is already given by
Eq.(13). Hence, we have

Fv ¼ 2πiρκ1 1�
a2

ζ1
2

 !

_
ζ1 (16)

Formulas (5) and (15) are the main targets for the calculation of thrust.
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2.3 Determination of positions and velocities of a vortex

Now, we discuss how to generate a vortex under our boundary condition. What
determines the vorticity and its position? Consider a flat plate set parallel to the flow
(see Figure 2). Even in unsteady motion, the flow is subject to the condition that
the fluid flows smoothly at the trailing edge. In other words, Kutta’s condition at the
edge must be satisfied at all times. We consider the heaving motion whose velocity,
perpendicular to the plate is expressed as

wh tð Þ ¼ WTeiνt: (17)

In the above equation, ν is the radian frequency of the heaving motion, and WT

is the amplitude. Denoting the period of the oscillation as T, T ¼ 2π=ν.
Because the plate has a velocity in the y-direction at t ¼ 0, Kutta’s condition is

not satisfied. To satisfy the condition we set a new vortex at x ¼ 2aþ Δx, and we
determine the vorticity κ1 of the vortex so as to satisfy the condition. As for setting
the initial position, [14] serves as a useful reference. The condition for the flow
leaving the trailing edge smoothly determines κ1 uniquely. Later at t ¼ Δt the vortex
κ1 moves away and hence the flow does not satisfy Kutta’s condition again. To avoid
the undesirable flow, we set a new vortex κ2 at the same position as the initial
position of κ1, i.e., at x ¼ 2aþ Δx. Kutta’s condition fixes the value κ2 uniquely.
Similarly, the subsequent process determines sequentially κi i ¼ 1, 2, …ð Þ.

We proceed to the next step to discuss the problem of movement of vortices. A
vortex moves by the other free vortices including the bound vortex and the uniform
velocity. The induced velocity w ¼ u� iv at z by the vortex κc located at z ¼ zc is
written as:

u� iv ¼
iκc

z� zc
:

Actual calculations were done in the ζ-plane with respect to all the vortices
including those of the mirror image. The calculation step was carried out at every
time for the step Δt. See [14] for the suitable relation between Δx and Δt.

2.4 Calculation results

In the calculations, we determine the physical variables by choosing a ¼ 1, ρ ¼ 1
and U ¼ 1. In Figure 3, we show their positions and the direction of rotation for the
case when ν ¼ 0:5 and WT ¼ 0:5 at t ¼ 19:8. The symbol + denotes the vortices of
the clockwise rotation and those of the triangle (in red) the anticlockwise one,
respectively. It is seen that the vortices rotating in clockwise direction gather at
some places in the negative y-plane, while those rotating in anticlockwise direction
gather in the positive y-plane. Figure 4 shows the positions at t=39.8. We can find
three clusters of vortices of clockwise rotation at about x ¼7.5, 20, and 33, and three
clusters of anticlockwise rotation at x ¼13, 27, and 37. The clusters of positive or
negative vortices occur by the interaction of each vortex. At those positions, the
vorticities concentrate and have a structure in a large scale. Nonlinearity is seen
even for such low WT (=0.5). Three clusters of vortices rotating in the clockwise
direction are in the area for y<0, while three clusters rotating in the anticlockwise
direction are in the area for y>0. This array of two vortex streets would generate
the downward flow, which suggests that the momentum is generated in the positive
x-direction. Momentum generation in the positive x-direction means the generation
of thrust force, as will be explained later. The deviation of arrays from the ordered
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ones is the result of nonlinearity. Figure 4 also shows the deviation of sinusoidal
distribution of vortices. Next, we consider the positions of vortices at initial stages
near t=0. Those vortices generated initially, which are distributed near x ¼ 40,
fluctuate violently and move to the positive y-direction.

In Figure 5, the distribution of vortices κi determined in the manner explained
earlier is depicted. This plot shows the complex distribution of vortices based on the
interactions among many vortices. This may explain the reason why the clusters are
generated.

Figure 3.
Positions and the direction of rotation of vortices at t ¼ 19:8 for the case of WT ¼ 0:5 and ν ¼ 0:5. Vortices of
the positive sign generated in the initial stage gather near x = 12 and those of the negative sign near x=17.5. The
symbol þ stands for vortices rotating in the clockwise direction, while the triangle in red indicates vortices
rotating in the anticlockwise direction.

Figure 4.
Positions and the direction of rotation of vortices at t ¼ 39:8 for WT ¼ 0:5 and ν ¼ 0:5. Some clusters of
vortices rotating in the clockwise direction and those rotating in the anticlockwise direction appear.
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3. Calculation of force

In the following section, we describe calculations carried out when U=ρ=a=1
unless specified otherwise.

3.1 Direct force by movement of a plate with a circulation

According to Eq.(5), the movement in the y-direction of the plate with a
circulation Γ1 gives rise to the force Xb normal to it,

Xb ¼ �ρΓ1 _y0: (18)

We investigate the thrust generation due to the movement of a thin flat plate in
more detail. When the motion is subjected to Eq.(17), we consider the force in the
y-direction at the initial stage t≈0. Vortices rotating in the positive direction appear
under the lower place near the trailing edge. Similarly, in the ζ-plane, the mirror
images of the vortices rotating in the anticlockwise appear in a circle with radius a.
In these, circumstances the circulation Γ around the circle is positive. In this case
the force acts in the negative x-direction, because the sign of Xb is negative from
Eq.(18).

The case where two free vortices are outside the circle is shown in Figure 6. For
more than a vortex in the flow field there must be mirror images whose sign is
opposite to the free vortices. In general, at time t, many vortices of the same
number of free vortices exist inside the circle.

When n vortices are released, the intensity of the vortices is expressed as a sum
Pn

i¼1κi. At the same time, the sum of vortices within the circle of the radius a
determines the circulation Γ of the bound vortex. The circulation of the bound
vortex is expressed as

Figure 5.
Distribution of the vorticity at t ¼39.8 when WT ¼ 0:5 and ν ¼ 0:5.
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Γ ¼
X

n

i¼1

2πκi: (19)

Using this circulation, we try to evaluate the force generated by the heaving
motion. In Eq.(18) by changing Γ1 by Γ, we have the force,

Xb tð Þ ¼ �ρΓ
dy0
dt

, (20)

The variation of Xb calculated by using the above equation is shown in Figure 7
as a function of nondimensional time τ ¼ t= 2a=Uð Þ. The variation of the heaving
velocity wh τð Þ of the plate (Eq.(17) is also plotted there). Let us consider the initial
stage when the plate moves upward. Vortices generated by the upward movement
are rotating in the clockwise direction, as shown in Figures 4 or 5. At the initial
stage, mirror images inside the circle of the radius a rotate in the anticlockwise
direction. In other words, the plate has a positive circulation. Because the velocity
wh is initially positive, the force Xb is negative from Eq.(20). The force acts against
the main flow, i.e., the plate is pulled by the fluid in the negative x-direction.
Usually, the upward motion connects with positive circulation, and hence the force
becomes almost negative. On the contrary, negative circulation occurs when the
motion is downwards. As a result, the sign of Xb has a negative value in the mean.
The average value Xb avð Þ is �0.240. The index (av) stands for the mean over two
periods of oscillation. It should be noted that when the absolute velocity of the plate
∣wh∣ is the maximum, the force becomes maximum. This means that during the
generation of strong vortices, the pressure at the edge becomes large. Strictly
speaking, slight time delay is also observed. This may be because of the effect of the
convection due to other free vortices.

The right-hand side of Eq.(20) expresses the differentiation of the virtual
momentum ρΓy0 with respect to time, if the circulation could be independent of
time. It might be the incorrect estimation of the force. The right-hand side of Eq.
(19) expresses the summation of all vortices and each vorticity is independent of
time. However, because the number of vortices changes with time, the circulation Γ

should be considered to be time-dependent. The dependence of time on the

Figure 6.
A simple case where two free vortices κ1 and κ2 are released is illustrated in the ζ-plane. Two vortices of the
opposite signs exist in the circle in the ζ-plane. The circulation Γ around the circle is the sum of two vorticities,
2π κ1ð +κ2Þ.
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circulation must be taken into account. From this point of view, there is a room for
reconsidering the results.

As seen in Figure 7, the force Xb varies with a period π=ν ¼ T=2ð Þ and has a
negative value on an average. However, we did not take into account the variation
of Γ. The circulation Γ around the plate changes with the same period π=ν. In Eq.
(20) we took into account the differentiation of the vitual momentum partly, and it
could not give the correct force induced by virtual momentum. The x-component of
the real virtual momentum, ρΓ tð Þy0 tð Þ, has two time-dependent variables, Γ and y0.
To estimate the correct force Xb, we should take into account the variation of the
virtual momentum. The correct expression for the force:

Xb ¼ �
d
dt

ρΓ tð Þy0 tð Þ
� �

: (21)

In the present situation, Γ and y0 are both periodic function of time whose
period is 2π=ν ¼ Tð Þ. The product of two periodic functions with the same period is
also a periodic function. The differentiation with respect to t is also a periodic
function whose average is zero. Finally, we conclude that the force Xb gives no net
force, or Xb avð Þ=0. Here the subscript (av) stands for the average over two periods of
time, 2T.

3.2 Effect of moving vortices

In this subsection, we discuss the force resulting from the movement of free
vortices. First, we show the result of the force in the y-direction. This problem was
first discussed and the solution was analytically given by Kármán-Sears in the linear
limit [15]. Their solution corresponds to the sum of the forces Yv and Yd. The force
Yv has already been given in Eq.(15) only when one free vortex exists. For the
present aim, however, the formula should be extended to include all the vortices. In
the following, according to [15] the variation of force divided by 2aρU is shown.

�

�

Figure 7.
The variation of force by the movement of the plate with circulation Γ. Denoting the force as Xb, the variation
divided by 2aρU is plotted as a function of τ ¼ t=2a=Uð Þ.
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WhenWT=0.5 and ν=0.5 the variations are given in Figure 8. The variation of Yv in
the VM, and that of the sum of Yv and Yd in the DI. The change of the sum Yv+Yd

agrees well with the analytical result of [15]. In particular, the agreement becomes
better for a lower WT. It is seen that the two components Yv and Yd have an
importance of the same degree on the generation of force. At an initial stage, τ≈0,
the sum has a negative value, and the minimum value of the force occurs at the
stage where the velocity in the y-direction becomes maximum, which corresponds
to the initial instant τ ¼ 0. The force acts as a drag in this heaving motion. It is
interesting to investigate the y-component of the force with respect to the virtual
momentum. Because such a force in the y-direction is not related directly to the
thrust force, hereafter we will not discuss it further.

At the initial stage, it is seen from Figures 4 and 5 that vortices of positive
vorticity appear. These vortices travel to the position near x ¼ 40 at τ≈ 20.

Next we consider the thrust component of the force generated by the change
of virtual momentum. From Eq.(15) the force component is expressed for a
vortex κ1 as

Xv ¼ 2πρκ1 _y1: (22)

Taking into account all the vortices existing in the flow field, we can get a
complete set of the component for the present problem. The variation is shown in
Figure 9. It seems to oscillate sinusoidally except for the initial stage and has a
positive value in the mean. For this example, the mean value Xv avð Þ is calculated to
be 0.148. This means that the force acts in the positive x-direction or the fluid
pushes the plate to the direction of the flow. Similarly, the plate is adding the force
to the flow as a reaction. In this sense, we may regard the positive Xv avð Þ as a thrust.
Whether this force acts as a thrust or a drag depends on the combination of the sign
of κ1 and that of the velocity _y0. Possible combinations are listed in Table 1.

Behind the heaving plate there appear two vortex streets, as shown in Figures 3
and 4. The upper street consists of vortices rotating in the positive direction, and
the lower one consists of vortices rotating in the negative one. By inspecting the
distributions of vortices at two different times t ¼ 19:8 and t ¼ 39:8, it is found that

Figure 8.
The variation of the force in the y-direction Yv due to the change of the virtual momentum. The variation of the
sum of Yv and Yd of the DI is also plotted.
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the vortices rotating in the positive direction move upward and those rotating in the
negative direction moves downward. This tendency is pronounced for the vortices
existing near the trailing edge. It is noted that the force has its peak when the
heaving velocity wh is at the maximum or the minimum. The period of the force
oscillation is T=2. When the plate passes through y ¼ 0, the vortex with a strong
intensity is generated. At this instant, the force reaches the maximum.

Table 1 suggests that the sign of the force Xv is positive. In fact, it is seen from
Figure 9 that the average of the force Xv is calculated to be positive.

By comparing Figures 7 and 9 it is clear that the force component Xv is small
compared to Xb. The heaving motion has an influence more effectively on the
generation of force in the y-direction As far as the thrust force is concerned,
however, the force Xb produced directly by the heaving motion has no effect.
Therefore, the force we should take into account is the force Xv only as a thrust.

3.3 Effect of heaving amplitude on the force

It seems that the thrust force is generated due to the motion of the plate against
the fluid. To understand the role of the heaving amplitude WT, we plotted Xv avð Þ as

Figure 9.
The force generated from the variation of the virtual momentum is Xv þ iYv. The variation of the x-component,
Xv=2aρU, is plotted as a function of the dimensionless time τ when WT=0.5 and ν=0.5.

κ1
a (Direction of rotation) _y1 (Heaving velocity) Xv

b (Direction of force) Thrust or drag

I þ þ þ thrust

II þ � � drag

III � þ � drag

IV � � þ thrust
aVorticity.
bForce in the x-direction.

Table 1.
Signs of κ1, velocity and force. The combination of the sign of κ1 and _y1 determine whether Xv acts as a thrust or
a drag.
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a function of WT in Figure 10. As mentioned earlier, the subscript (av) means the
average over two periods. It is easy to see that the thrust is proportional to W2

T

except when the WT value is lage. In this case, the proportional constant is esti-
mated to be 0.592. In addition to Xv avð Þ, the variation of Xb avð Þ is also plotted for
comparison.

Next, we show the variation of the thrust Xv avð Þ=2aρU as a function of U in
Figure 11. The curve seems to be inversely proportional toU except for large values of
U. This means that the thrust Xv does not depend on the velocity U. WhenWT=0.5,
the constant of proportionality is estimated as 0.148.

3.4 Effect of heaving frequency on the force

From the previous subsection, it can be seen that Xv is proportional to W2
T and

does not depend on U. To confirm it, we have plotted the nondimensional variable
Xv avð Þ= L=2ð Þ=ρU2 as a function of WT=Uð Þ2 in Figure 12 for three different WT ‘s,
i.e., 0.3, 0.5 and 0.7. The coefficient Xv avð Þ=2aρU2 is called the thrust coefficient
denoted as CL. The coefficient has almost linear relation to the velocity ratioWT=U.
The constant of proportionality must be nondimensional. In such unsteady loco-
motions, the most important dimensionless parameter is the reduced frequency
k ¼ 2aρν=Uð Þ or the Froude number. However, Figure 12 gives no defined depen-
dence of the reduced frequency on the coefficient CT. The plotted data include
various values of k between 0:2≤ k≤ 2:5. We can draw our conclusion that the
reduced frequency k does not affect the thrust coefficient in this heaving motion.

We summarise the thrust coefficient in the nondimensional form,

CT ¼
Xv avð Þ

L 1
2 ρU

2 ∝
WT

U

� �2

, (23)

where L is the chord length being equal to 4a.

Figure 10.
Thrust variation as a function of WT when U=1 and ν=0.5. Thrust increases proportional to W2

T .
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4. Concluding remarks

Thrust force can be generated by a simple heaving motion of a plate. The force is
perpendicular to the direction of oscillation. A pair of rows of vortices plays an
important role in the generation of the force. The two vortex streets give rise to an
increase in momentum in the direction normal to the direction of oscillation. The

Figure 11.
Thrust variation as a function of U for WT ¼ 0:5. The thrust is inversely proportional to U. The proportional
constant is estimated as 0.148.

Figure 12.
Thrust coefficient CT as a function of WT=Uð Þ2. For three different WT the data are almost decomposed into a
unique line.
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word “momentum” here does not mean the usual momentum but the virtual one,
because the usual momentum cannot be determined in such a vortex system. The
direct integration of the pressure around the surface of a body is not a correct way
to know the thrust generation. Application of the virtual momentum to the
generation of force made the estimation of the force possible.

In general, the most important parameter characterising the unsteady flow is the
reduced frequency k or Froude number. How the parameter plays a part in the
generation of force has been a main concern of many people. Many researchers have
tried to address this problem experimentally. However, the task was difficult to
address, and only few researchers have answered analytically.

Our result is for the coefficient of thrust CT,

CT ∝
WT

U

� �2

: (24)

The proportional constant is nondimensional and does not depend on the param-
eter k expressing the unsteadiness of flow. The thrust force Xv avð Þ is independent of

uniform velocity U, and therefore the coefficient CT is proportional to WT=Uð Þ2.
Although our analysis is confined to the heaving motion of a thin plate, we

summarise that the force due to the vortex movement can be expressed as a func-
tion of nondimensional quantity in a simple form. It is expected that our analysis
could apply to more complex movement of an aerofoil.
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Nomenclature

a Radius of circle in mapped plane
CT Thrust coefficient
k (=2aρν=U) Reduced frequency
L Chord length (=4a)
T ¼ 2π=ν Period of oscillation
U Uniform velocity
WT Amplitude of heaving velocity
X þ iY Complex force
xþ iy Coordinates in complex plane
w ¼ u� iv Complex velocity
ν Radian frequency of heaving
Γ Circulation along the curve in the anticlockwise direction
κ Vorticity (positive for clockwise, negative for anticlockwise)
ρ Density of fluid
ζ Plane mapped from real z-plane
VM Virtual momentum component
DI Direct interaction component
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Subscript

v Virtual component
d Direct interaction component
b Bound vortex
av. Average

Abbreviations

LEV Leading edge vortex
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