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Chapter

Post-Translational Modifications 
of Proteins Exacerbate Severe 
Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV2)
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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is severely 
affecting the worldwide population. It belongs to the coronavirus family which 
exhibit protein constituted enveloped single-stranded RNA. These viral proteins 
undergo post-translational modifications (PTMs) that reorganized covalent bonds 
and modify the polypeptides and in turn modulate the protein functions. Being 
viral machinery, it uses host cells system to replicate itself and make their copes, 
their proteins are also subject to PTMs. Glycosylation, palmitoylation of the spike 
and envelope proteins, phosphorylation, of the nucleocapsid protein are among 
the major PTMs responsible for the pathogenesis of the viral infection phase. The 
current knowledge of CoV proteins PTMs is limited and need to be exploring for to 
understand the viral pathogenesis mechanism and PTMs effect of infection phase.

Keywords: SARS-CoV-2, Post-translational modifications, Protein, glycosylation 
palmitoylation, phosphorylation

1. Introduction

SARS-CoV-2 is a culprit of the COVID-19 pandemic, caused 168, 599, 045 infec-
tions in people followed by 3,507,477 deaths worldwide as of 28th May 2021 according 
to the World Health Organization (WHO). Despite protective immunity and vac-
cination against SARS-CoV-2, it is spreading and affecting the worldwide popula-
tion causing an increase in severity of illness due to the absence of the pre-existing 
immunity against SARS-CoV-2. This virus belongs to the family of coronavirus (CoV) 
with Nidovirales order exhibiting protein-containing enveloped positive-strand RNA 
that causes disease in both humans and animals. SARS-CoV-2 exhibits 30 kb genome 
size constituted in single-stranded RNA. Its genome comprises 6–11 open reading 
frames (ORFs) associated with 5′ and 3′ flanking untranslated regions (UTRs).

Coronaviruses are morphologically found spherical accounting average diam-
eter of 80–120 nm with trimeric S-glycoprotein, sometimes with homodimeric 
HE protein [1, 2]. M-glycoprotein is the most abundant protein of virion which 
provides structural support to the virion. Moreover, E protein is also an essential 
protein needed for virion assemble and release [3, 4]. The nucleocapsid of the virus 
also comprised of the N protein. In the pathophysiology of virus replication, the 
S protein (180-200 kDa) plays a major role in binding and recognition with the 
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host cell via a cognate receptor(s). This trimeric S protein comprises two S1, S2, 
HR1 and HR2 subunits. This S protein comprised of two domain on its N-terminal 
extracellular transmembrane with another short intracellular C-chain domain [5]. 
The total length of the S protein of SARS-CoV-2 is 1273 amino acids (aa) arranged in 
a single peptide (1–13 aa) situated at N-terminus, S1 subunit (14–685 aa) and the S2 
(686–1273 aa). The last two-sector is responsible for receptor binding and membrane 
fusion respectively. Furthermore, the S1 subunit comprises of N-terminal domain 
(14–305 aa) along with the receptor-binding domain (319–541 aa). Similarly, S2 
protein constitutes the fusion peptide (788–806 aa), heptapeptide sequence (HR1) 
(912–984 aa), HR2 (1163–1213 aa), transmembrane domain (1213–1237 aa) along 
with cytoplasm domain ((1237–1273 aa) [6].

Post-translational modifications (PTMs) refers to the covalent bonds modifica-
tions of the proteins post-release from the ribosomes. PTMs adds new functional 
groups, like phosphate and carbohydrates along with other biological molecules of 
desired interest. PTMs is a naturally occurring process responsible for the regula-
tion of protein folding, stability, enzymatic activity, protein to protein, and cell-to 
protein interaction. The most common and routinely occurring PTMs includes 
glycosylation, phosphorylation and lipidation (addition of such as palmitoylation 
and myristoylation) via proteolytic cleavage, formation of disulfide bonds. Proteins 
can also be modified through other covalent modifications like ubiquitination, 
sumoylation, glycation and neddylation.

PTMs are naturally occurring process catalyzed by enzymes. For instance, 
N-linked glycosylation needs series of enzyme reaction that generates precursor 
dolichol-linked oligosaccharide, oligosaccharyltransferase that initiate the transfer 
of the glycan to a specific consensus sequence (N-X-S/T, where X is any amino acid 
except proline) along with glycosidases and glycosyltransferases that are needed for 
the processing of N-linked glycan. In another series of example, protein ubiquitina-
tion needed three different enzymes including ubiquitin-activating enzymes (E1), 
ubiquitin-conjugating enzymes (E2) and ubiquitin ligases (E3) acting sequentially. 
It is a known fact that a virus utilizes host machinery to replicate its copies, there-
fore several viral proteins are susceptible to PTMs. Many viral proteins including 
structural, non-structural and accessory proteins are modified by PTMs which are 
affecting viral replication and pathogenesis.

2. N-linked glycosylation

N-linked glycosylation of the S protein of coronavirus is reported first time in 
the 1980s [7]. Murine strain MHV S protein acquire several mannose residues in the 
rough endoplasmic reticulum (ER). It was demonstrated that the S protein of infec-
tious bronchitis virus (IBV), transmissible gastroenteritis coronavirus (TGEV) and 
bovine coronavirus is modified by the process of N-liked glycosylation [8]. S protein 
was also supposed to acquire mannose oligosaccharides and undergoes trimeriza-
tion post entry to the endoplasmic reticulum (ER) before entering to Golgi complex 
[9]. In previously published literature the glycosylation sites in S protein of MHV 
predicted are 20 and 21 in numbers [10].

N-linked glycosylation plays important role in maintaining the conformation 
of coronavirus S protein, can affect the binding with the receptor of host cells and 
antigenicity of S protein. In a previously published study of IBV, it was found that 
mutation on the sites of N-linked glycosylation sites significantly causes shifting in 
the antigenicity of IBV [11]. In another study, it was found that TGEV infected cells 
when incubated with tunicamycin (inhibitor of N-linked glycosylation) showed a 
reduction in the antigenicity of both S and M protein [12]. These research findings 
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suggest that N-linked glycosylation is playing a vital role in maintaining the 
structure and conformation of the S protein and any mutations occurring at these 
glycosylation sites contribute to the reduction of antigenicity. It may be proposed 
here that mutations in the N-linked glycosylation in the S protein of SARS-CoV-2 
can be beneficial in controlling the infections and reduction in their antigenicity. In 
another study conducted on IBV, it was demonstrated that N-D or N-Q mutations at 
the N-linked glycosylation sites N212 or N276 inhibit the function of S protein and 
in turn, hampers the cell-to-cell fusion and recognition [13].

Moreover, N-linked glycosylation of Dipeptidyl-peptidase 4 (DPP4), a similar 
receptor of Middle East respiratory syndrome coronavirus (MERS-CoV) sig-
nificantly affect the binding of MERS-CoV S protein. E protein of SARS-CoV is 
another important constituent of the virus, it has been demonstrated that it con-
tains two N-linked glycosylation sites N48 and N66, while IBV E protein contains 
one site at N5. In one of the studies published in past associated with SARS-CoV, 
it was demonstrated that transfected E protein with N-terminal Myc-tag showed 
glycosylation co-translationally [14]. However, two transmembrane domains are 
required to interact with SARS-CoV M protein and the hydrophilic region [14].

In previously published literature it was demonstrated that M protein of 
α-coronavirus transmissible gastroenteritis virus (TGEV) and Porcine Epidemic 
Diarrhea Virus (PDEV), gamma coronavirus IBV along with turkey enteric corona-
virus are susceptible to N-linked glycosylation which can be inhibited by the tunica-
mycin [15–17]. The SARS-CoV-2 S glycoprotein possesses 22 N-linked glycosylation 
sites as confirmed from the recently published literature [18–20]. SARS-CoV-2 S 
glycoprotein showed a conserved S2 subunit for N-linked glycosylation with a low 
tendency for O-linked glycosylation. The N-linked glycosylation in SARS-CoV-2 is 
featured by binding of GlcNAc with the Asp amino acid residue in the Asp-X-Ser/
Thr consensus sequence in which the residue X is amino acid except for proline.

It is known that N-linked glycosylation is compulsory for understanding the 
location, structure and infectivity of the viruses and also their interaction with 
the host cells. These glycoproteins plays important role in immune responses but 
still need more research [21, 22]. The S glycoprotein represents unique pathogen-
associated molecular patterns (PAMPs) that further recognized by the host pattern 
Recognition Receptors (PPRs). These PPRs includes Toll-like receptors 3, 4, 7, 8 and 
9 along with C-type lectins and collectins [23, 24]. SARS-CoV is recognized by the 
toll-like receptors 3 and 4 via MyD88 and TRIF, furthermore, the same process may 
be proposed for the pathogenesis and infectivity in SARS-CoV2 [22, 25].

3. O-linked glycosylation

O-linked glycosylation involved in providing structural and functional stabil-
ity to protein and believed to play important role in the maintenance of viral 
entity and biological activities associated with these viral proteins [26]. It has been 
demonstrated from a previously published study that Ser673, Thr678 and Ser686 
are the conserved sites of O-linked glycosylation in human SARS-CoV-2 and other 
coronaviruses especially in S protein [26]. Moreover, O-glycosylation sites were 
predicted using the tool Net-O-Gly server 4.0 and found three sites for O-linked 
glycosylation at Ser673, Thr678 and Ser686 [26]. In another study, it was found that 
O-glycosylation at Thr 323 and Ser 325 and Thr 323 of the S1 glycoprotein are the pos-
sible and predicted sites of O-linked glycosylation in SARS-CoV-2 viral proteins [27].

The O-linked glycosylation at the Thr323 is confirmed by the presence of proline 
amino acids at position 322, making the possibility that the presence of proline 
amino acid is higher adjacent to the O-linked glycosylation sites [28]. Cryo-electron 
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microscopic images of the SAS-CoV2 indicate that the binding of S protein to the 
human angiotensin I-converting enzyme 2 (hACE2) receptor involves an associa-
tion between receptor-binding domain (RBD) and the hACE2 peptidase domain 
[29, 30]. The RBD of the S protein in the S1 subunit endures hinge-like dynamic 
movement of accelerating the detention of RBD with hACE2, exhibiting a 10–20 
fold increase in affinity for the hACE2 receptors [31, 32].

In another published study it was found that application of tunicamycin showed 
normal glycosylation of the M protein despite inhibiting the N-linked glycosylation 
of S protein [33]. In one of the study, the structures of the associated glycans to the 
M protein during the O-linked glycosylation showed that it added into two-step 
processes; GalNAc first added before the addition of galactose and the sialic acid. 
After the possession of the GalNAc, galactose and sialic acid sequentially, the M 
protein was further undergone modification in the trans-Golgi apparatus [34].

Recently it was reported that there are low levels of O-linked glycosylation in 
the S protein of SARS-CoV2 [35]. These glycans regulate the recognition of the 
antibodies and impinge on priming by the host proteases enzyme system. Mucin-
type O-linked glycosylation is featured with the presence of GalNAc associated with 
the hydroxyl group of serine and threonine amino acid residues. Mucins contain a 
significant number of O-GalNAc glycans [36]. The presence of the O-linked glycans 
involved in the O-linked glycosylation of viral proteins suggests a vital role in bio-
logical activity. In the SARS-CoV-2 S1 protein, the O-linked glycosylation as GalNAc 
and O-GlcNAc appears to be involved in the structural and functional stability of 
the protein. The current scenario involves the use of a vaccine that utilizes the S 
protein glycosylation as a target.

4. Palmitoylation

Palmitoylation refers to the attachment of the palmitic fatty acid to the cysteine 
(S-palmitoylation) but less frequently to the serine and threonine amino acid 
residues (O-palmitoylation). In coronaviruses studies, the S protein undergone 
palmitoylation in infected cells and in the presence of tunicamycin it does not 
undergoes palmitoylation [37]. In another study conducted on MHV S protein 
reduces infectivity of MHV when treated with palmitoyl acyltransferase inhibitors 
2-bromopalmitate [38]. The cytoplasmic part of the SARS-CoV S protein consists 
of four cysteine-rich clusters among them 2 clusters modified upon palmitoylation. 
However, cell surface expression of SARS-CoV S protein was unaffected due to this 
palmitoylation. In one of the previously published study, it was found that treat-
ment of nitric oxide significantly leads to a reduction in the palmitoylation of the S 
protein of SARS-CoV [39].

In one of the study, it was found that there is three cysteines at position 40, 43 
and 44 are found to undergo palmitoylation in the E protein of the SARS-CoV [40]. 
In another study, homologous cysteine of the E protein of MV-A59 at position C40, 
C44 and C47 were mutated to the alanine residues as resultant infectivity decreased 
[41]. It is therefore concluded that palmitoylation of the MHV E protein contributes 
to the stability and biological activity of the mature virions. Contrary, palmitoylation 
of the SARS CoV E protein is not mandatory for its interception with N protein.

5. Phosphorylation

In SARS-CoV2 the most abundant genomic protein encoded is the N protein 
with a significantly higher level of translation at the early stage of the infection. In 
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all form of the coronaviruses, the N-protein is almost the same and conserved con-
taining two globular domains, the N- terminal domain (NTD) and the C-terminal 
domain (CTD). Around these domains, intrinsically disorganized regions are 
present. N protein is dimeric with multiple RNA binding sites including one major 
RNA-binding groove, which is created by the two CTD piling on each other on NTD 
[42]. In previously published literature it has been found that in the disorganized 
region, there is an abundance of serine-arginine residues that is essential for the 
essential function and regulation of the N-protein [42]. Cytoplasmic kinases medi-
ate the phosphorylation of the N-protein in the early infection phase. N protein, 
a helical nucleocapsid, constituent of SARS-CoV2 virus arranged in beads on a 
string pattern which shows binding with the RNA. It has two domains namely the 
N-terminal domain and C-terminal domain. It has been found that both domains 
contribute to the binding of the viral genome. In one of the recently published 
study, it was demonstrated in truncation analysis that an L/Q-rich region placed 
within the intrinsically disordered region of the SARS-CoV-2 N protein plays a vital 
role in RNA-mediated phase separation, which is located adjacent to the phos-
phorylated SR-rich region (constituting residues 176–206) [43]. In the same study, 
it was concluded that N protein central intrinsically disordered region shown to be 
involved in protein–protein interactions mediated via putative hydrophobic α-helix 
spanning residues (213–225 residues) [43].

6. Prospects

The functional role of PTMs in SARS-CoV2 associated proteins has not been 
fully explored and many trials are needed for proposing the role of all types of 
glycosylation like N-linked and O-linked along with palmitoylation and phosphory-
lation in the initial phase of the infection. However multiple modification sites on 
the proteins of the SARS-CoV2 virus provides opportunities to explore more about 
the replication and pathogenesis of the virus into the host cells. Moreover, newer 
techniques for the detection of the PTMs are also needed to detect the modifica-
tions at multiple sites in dynamically changing virus structure. It is also needed in 
the current scenario to better understand the molecular mechanism of these PTMs. 
Also, the PTMs of the coronavirus proteins might be attractive targets for the thera-
peutic regime. PTMs of the coronavirus proteins might also provide a prospective 
target for the development of the vaccines.
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