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Chapter

Pattern Formation in a RD-MCNN
with Locally Active Memristors
Ahmet Samil Demirkol, Alon Ascoli, Ioannis Messaris

and Ronald Tetzlaff

Abstract

This chapter presents the mathematical investigation of the emergence of
static patterns in a Reaction–Diffusion Memristor Cellular Nonlinear Network
(RD-MCNN) structure via the application of the theory of local activity. The pro-
posed RD-MCNN has a planar grid structure, which consists of identical memristive
cells, and the couplings are established in a purely resistive fashion. The single cell
has a compact design being composed of a locally active memristor in parallel with a
capacitor, besides the bias circuitry, namely a DC voltage source and its series
resistor. We first introduce the mathematical model of the locally active memristor
and then study the main characteristics of its AC equivalent circuit. Later on, we
perform a stability analysis to obtain the stability criteria for the single cell.
Consequently, we apply the theory of local activity to extract the parameter space
associated with locally active, edge-of-chaos, and sharp-edge-of-chaos domains,
performing all the necessary calculations parametrically. The corresponding
parameter space domains are represented in terms of intrinsic cell characteristics
such as the DC operating point, the capacitance, and the coupling resistance.
Finally, we simulate the proposed RD-MCNN structure where we demonstrate the
emergence of pattern formation for various values of the design parameters.

Keywords: pattern formation, memristor, reaction–diffusion, cellular nonlinear
networks, destabilization, local activity, complexity

1. Introduction

An important feature of complex systems is the emergence of spatiotemporal
patterns, which can be observed in numerous physical systems consisting of homo-
geneous media [1]. Among many examples, the emergence phenomenon can occur
as a result of oscillatory kinetics in a chemical reaction [2], self-organization of
biological organisms [3], mechanical vibration on liquid surfaces [4], or mineral
precipitation on geologic surfaces [5]. In particular, network dynamics of pattern
formation is considered to be the key attribute of information processing and
memory storage in biological neural networks [6] and, hence, is the main concern in
neuroscience. Following the consequences of the seminal paper of Turing [7] where
he introduced the chemical basis of morphogenesis, the mechanism behind pattern
formation dynamics has been extensively studied in various scientific branches. On
one hand, different mathematical models have been proposed to elucidate the
analytical principles of pattern formation dynamics [8]. On the other hand, there
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has been an ambiguity on the conceptual definition of the complexity phenomenon,
which was previously described as symmetry breaking, instability of the homoge-
nous, exchange of energy, or self-organization. In [9], Chua has proposed the
theory of local activity, as the origin of complexity, where he quantitatively defined
the mathematical principle behind the emergence of complex patterns in a homog-
enous medium. In this way, the theory of local activity assembled various defini-
tions under the same framework and enabled the quantitative investigation of
pattern formation dynamics, especially through electrical circuits. Since then, sev-
eral works dealing with pattern formation dynamics on electrical hardware have
referred to the theory of local activity to perform robust and quantitative analysis
(e.g., see [10]). Mathematically, a well-known method to realize pattern formation
dynamics is to implement reaction–diffusion partial differential equations (RD-
PDEs) [11]. Various physical systems adopting reaction–diffusion equations have
been shown to create well-known spatiotemporal phenomena such as traveling
waves or clustering patterns [12]. Therefore, circuit implementations of RD-PDEs
would be a reasonable approach to capture pattern formation dynamics on electrical
hardware. Cellular nonlinear networks (CNNs), which can be described as homo-
geneous structures composed of evenly spaced and locally coupled identical cells,
are prominent hardware solutions to implement the RD-PDEs. In particular, the
reaction dynamics of an RD-PDE can be implemented by the identical cells of a
CNN, while the diffusive dynamics of the same RD-PDE can be successfully
discretized using the central difference approach and then implemented via
resistive coupling between the identical neighboring cells, resulting in the so-called
RD-CNN structure [13]. Motivated by this approach, emergent phenomena,
such as Turing patterns or auto waves, have already been demonstrated across
RD-CNNs [14].

The high-speed data transfer capability of modern mobile communication sys-
tems has led to the introduction of 5G and, in the future, 6G networks successively
in a short period, which has enabled a new era in technology such as Industry 4.0
and Internet-of-Things (IoT) [15]. In parallel with the requirements of the new
technological applications and the performance criteria of the corresponding hard-
ware realizations, the design of bio-inspired neuromorphic systems utilizing the in-
memory-computing principle, which stands as an alternative option to the design of
conventional von-Neumann computing architectures where memory and processor
units are separated from each other, has recently gained a lot of attention [16].
Similarly, there is a huge research effort in academia and industry for developing
efficient fabrication techniques to implement the new in-memory computing cir-
cuit elements such as resistive switching memories, which can apparently be
described as memristors [17]. The memristor, a two-terminal circuit element that
was theoretically hypothesized 50 years ago, can be briefly considered as a
nonlinear resistor with inherent memory dynamics [18]. Due to recent develop-
ments in physical implementations of different types of memory devices, the
modeling and analysis of memristors and memristive systems have also gained
attention, resulting in comprehensive circuit and system theoretical investigations
[19]. Accordingly, the availability of manufactured nanoscale memristors emerges
as a key enabler for the implementation of memory and processing units realized in
the same place of compact hardware, and thus, provides the opportunity to design
novel bio-inspired systems with in-memory-computing capabilities. In this way, it
can be possible to overcome the end of Moore’s law by engineering the information
processing architectures, rather than downscaling the semiconductor device
dimensions, which practically has come to an end.

Consistent with the above-mentioned text, locally active memristors have
already been utilized in the design and application of spiking neural cells
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demonstrating promising results [20], while prominent artificial neural network
designs employing memristor crossbar arrays have been presented in several works
[21]. Besides, the theory of memristor cellular nonlinear networks (MCNNs) has
been comprehensively investigated in [22–25] and the formation of Turing patterns
with reaction–diffusion MCNNs (RD-MCNNs) has been introduced in [26]. In
addition, pattern formation utilizing locally active NbO memristors in an MCNN
has been presented in [27]. In a previous work [28], we have presented the model-
based analytical investigation of dynamic pattern formation in a RD-MCNN,
exploiting a manufactured locally active memristor, while the proposed single cell
structure, as well as the subsequent results, is different from those presented here.
Similarly, in [29], we have presented preliminary results of the mathematical
investigation of static pattern formation in a RD-MCNN structure. The goal of this
work is to extend the content of the previously presented works and to introduce an
analytical design procedure for the implementation of static pattern formation
across a compact RD-MCNN structure while taking into account the theory of local
activity for the mathematical treatment. To enable the locally active dynamics, we
employ a nanoscale locally active generic memristor model in the design of the basic
network cell. The proposed RD-MCNN has a planar grid form and is composed of
locally coupled identical cells. The compact unit cell consists of a locally active
memristor in parallel with a linear capacitor, besides the bias circuitry, namely a DC
voltage source and its series resistor. We first introduce the mathematical definition
of the locally active generic memristor employed and, then, study the main charac-
teristics of its AC equivalent circuit. Later on, we perform a quick stability analysis
and determine stability criteria for the single cell. Consequently, we apply the
theory of local activity in order to extract the parameter space with locally active,
edge-of-chaos, and sharp-edge-of-chaos domains, performing all the necessary cal-
culations parametrically. The corresponding parameter space domains are illus-
trated in terms of intrinsic network characteristics such as the cell DC operating
point, the cell capacitance, and the coupling resistance. Essentially, we adopt a
circuit theoretical approach, regarding the stability analysis of the single cell and the
destabilization process after the coupling is established, which promotes an efficient
investigation of the criteria to be derived. Finally, we carry out numerical simula-
tions where we demonstrate the emergence of pattern formation across the pro-
posed RD-MCNN structure for various values of the design parameters.

2. The locally active generic memristor

Nanoscale memristors with locally active (i.e., S-shaped) DC current–voltage
(I–V) characteristics have been utilized in the design of oscillatory neuron cells
[30, 31]. Furthermore, it was shown in [32–34] that memristor models in a generic
form are capable of representing the dynamics of these nanoscale devices accu-
rately. Similarly, in this work, we adopt a simplified generic memristor model to
implement locally active dynamics, which helps to reduce the complexity and the
simulation time of large-scale networks employing such devices. In addition, the
adoption of the generic form enables simplified calculations related to the deriva-
tion of the AC model of the device, further promoting the clarification of the
results.

2.1 The model definition

We introduce the memristor model equations, namely the I–V relationship in
Eq. (1), and the state equation in Eq. (2), where im (vm) is the memristor current
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(voltage), Rs is the series resistance, T is the state variable representing the temper-
ature, and G Tð Þ ¼ g0 ∙ exp �g1=T

� �

is the temperature-dependent memductance
function. We would like to note that Eqs. (1) and (2) define a sole memristor core

with current imc ¼ im and voltage vmc ¼ vm ∙ 1þ Rs ∙G Tð Þð Þ�1. The parameter values
of the given model employed during the numerical simulations can be found in
Table 1.

im ¼ vm ∙
G Tð Þ

1þ Rs ∙G Tð Þ
¼ vmc ∙G Tð Þ (1)

CT
dT

dt
¼ vmc ∙ im � gT ∙ T � T0ð Þ (2)

The S-shaped DC I-V curve under the current sweep and the schematic of the
complete device, which can be depicted as the series combination of the core
memristor and Rs, are introduced in Figure 1(a). At this point, we would like to
point out that the negative differential resistance (NDR) region, which hosts the
peculiar dynamics of the locally active memristor, is highlighted with the orange
color in Figure 1(a).

2.2 The AC equivalent circuit

Since the small-signal equivalent of the memristor plays an important role dur-
ing the forthcoming circuit theoretical stability analysis, it is crucial to obtain the
AC equivalent circuit of the memristor device. For this purpose, we first derive the
small-signal equivalent of the core memristor and then combine it in series with Rs

to obtain the AC equivalent circuit of the overall memristor. Essentially, we set
Rs ¼ 0Ω in Eqs. (1) and (2) so that the updated equation set represents the core

g0=S g1=K Rs=Ω CT= J∙K�1
� �

gT= W ∙K�1
� �

T0= Kð Þ

5 ∙ 10�3 1700 200 10�14 6:67 ∙ 10�7 300

Table 1.
Parameter values for Eqs. (1) and (2).

Figure 1.
(a) DC I-V curve of the locally active memristor, with NDR region highlighted. The schematic of the memristor,
as the series combination between the core device and the series resistor Rs, is depicted in the inset figure. (b) AC
equivalent circuit of the entire memristor where R1 ¼ Rs þ R1i.
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memristor only. Then, we linearize Eqs. (1) and (2) by deriving their first-order
Taylor series expansions. As the next step, we apply Laplace transform to the
linearized equations, and after a suitable rearrangement of the Laplace equations,
we express the impedance function of the core memristor in Foster’s first form [35]
RL circuit configuration. The final configuration of the AC equivalent circuit of the
entire memristor is depicted in Figure 1(b).

Regarding the AC equivalent circuit, R1i represents the inverse of the slope of the
DC I-V curve for Rs ¼ 0Ω and naturally gets negative values in the NDR region.
Furthermore, the quantity R1i þ R2ð Þ corresponds to the instantaneous resistance,
V T0ð Þ=I T0ð Þ, of the core memristor, which always gets positive values at a given
temperature T0, since the I-V curve lies either in the first or in the third quadrant.
The same explanations are still valid also for Rs 6¼ 0Ω if R1i is replaced by
R1 ¼ R1i þ Rs. Lastly, L represents the dynamics of the core device, while L and R2

have positive values at all equilibrium points. The graphical representation of the
small-signal element values of Figure 1(b) versus the DC current IQ can be found in
Figure 2, where we use parameter values as given in Table 1 during the numerical
simulations. Finally, a similar procedure regarding the derivation of the AC equiv-
alent circuit of a generic memristor including a detailed investigation and graphical
illustration can be found in [36] as well.

Figure 2.
Small signal elements values of Figure 1(b) are depicted as a function of the DC equilibrium current IQ , while
the parameter values are adopted from Table 1 during the numerical simulations. (a) ∣R1∣ vs. DC current
where positive values of R1 are depicted in blue color and negative values of R1 are depicted in orange color. The
orange part of ∣R1∣ curve one-to-one corresponds to the NDR region of the DC I-V curve. (b) R2 vs. IQ where R2

always gets positive values. (c) R1 þ R2ð Þ vs. IQ . R1 þ R2ð Þ corresponds to the instantaneous resistance
V T0ð Þ=I T0ð Þ of the memristor and always gets positive values. (d) L vs:IQ where L represents the dynamics of
the memristor and takes positive values for all current values.
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3. The single cell

To achieve a compact single cell design, a basic solution is to establish oscillatory
dynamics by implementing a minimal second-order system accompanied by a
simple bias circuitry. Since the memristor itself implements a first-order system
with inductive dynamics, an efficient solution to increase the order of the system
would be to include an additional capacitor into the cell design. Additionally, we
prefer to realize the proper biasing via a DC voltage source and a bias resistor.
Consequently, the proposed single cell is depicted in Figure 3(a) where Vb is the
DC voltage source, Rb is the bias resistor, Rs is the series resistor, and C is the
parallel capacitor, while the open circle denotes the coupling node.

3.1 Stability analysis of the single cell

Pattern formation through a RD-MCNN prerequisites stable single-cell
dynamics in the isolated case. Therefore, in this section, we perform a parametric
stability analysis for the uncoupled single cell, which is also the first step of param-
eter extraction of the circuit element values. A straightforward procedure of stabil-
ity analysis would require performing linearity analysis on the state equations of the
second-order single cell, followed by the derivation of the eigenvalues, to express
the stability conditions [37]. In this work, we present a circuit theoretical approach
where we employ the AC equivalent circuit of the single cell, which is depicted in
Figure 3(b), and derive the stability conditions for the uncoupled case. Adopting
this approach, it is possible to express in an efficient way, the stability conditions of
the isolated cell in terms of linear circuit element values and of AC element values of
the memristor in a parametric form, which enables a direct evaluation of the results.
Finally, although the results to be derived should hold for any equilibrium point on
the DC I-V curve, without loss of generality, we assume that the memristor is biased
in the NDR region, where R1 <0 and the device is locally active, which is essential
for the emergence of complexity.

To derive the stability conditions of the single-cell circuit in Figure 3(a),
we firstly obtain the AC equivalent of it, simply by replacing the memristor
with its small-signal equivalent (previously introduced in Figure 1(b)) and by
assuming the DC voltage source as a short-circuit element, resulting in the circuit
given in Figure 3(b). Second, we calculate the impedance function Z sð Þ, which is
illustrated in Figure 3(b), and given in (3). Here, we would like to note that the
poles of Z sð Þ directly correspond to the eigenvalues of the state equations of the
single cell.

Figure 3.
(a) The single cell of the RD-MCNN structure. Vb is the DC voltage source, Rb is the bias resistor, Rs is the series
resistor, C is the parallel capacitor. The open circle denotes the coupling node. (b) AC equivalent of the circuit in
(a). The small-signal transfer function Z sð Þ is the impedance seen through the coupling node.
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Z sð Þ ¼
sL R1 þ R2ð ÞRb þ R1R2Rb

s2LC R1 þ R2ð ÞRb þ s L R1 þ R2 þ Rbð Þ þ R1R2RbC½ � þ R1 þ Rbð ÞR2
¼

N sð Þ

D sð Þ

(3)

The stability of Z sð Þ can be determined by examining the location of the poles of
Z sð Þ, or equivalently, the roots of D sð Þ via Routh-Hurwitz criteria. At this point, it is
timely to recall from Figure 2 that L>0, R2 >0, and R1 þ R2ð Þ>0, which reveals
the fact that the coefficient of the s2 term of D sð Þ is readily positive. Consequently,
to guarantee the (asymptotic) stability of Z sð Þ, remaining the coefficients of the
D sð Þ polynomial have to be nonnegative, as dictated by Routh-Hurwitz criteria.
Therefore, we have R1 þ Rbð Þ>0 and L R1 þ R2 þ Rbð Þ þ R1R2RbC>0 that respec-
tively imply that the bias resistor Rb has to be larger than the magnitude of the
inverse of the slope of the DC I-V curve (i.e., Rb > R1j j), while C has to be smaller
than a critical Cmax value, which is given in Eq. (4). Here, we would like to note that
D sð Þ would simplify in the absence of the parallel capacitor C, while the first
stability condition R1 þ Rbð Þ>0 would remain the same, as shown in [38], but
Eq. (4) would be unnecessary.

C<
L R1 þ R2 þ Rbð Þ

�R1R2Rb
¼ Cmax (4)

In Figure 4(a), Cmax is shown (in blue) as a function of the equilibrium point of
the memristor current IQ�NDR across the entire NDR region, for two different values
of Rb. It can be seen from Figure 4(a) that the smaller value of Rb results in a larger
value for Cmax, which would be beneficial during a hardware realization, while we
remind that Rb should be kept larger than R1j j for a stable operation.

3.2 Local activity analysis of the single cell

The small-signal behavior of an uncoupled cell, which is biased at a locally
passive operating point, can be represented by a positive real complexity function
(or similarly, by a positive real transfer function for the 1-port coupling case).
Subsequently, the AC equivalent circuit of the same cell at the given operating point
would be strictly composed of passive linear elements, which inherently results in
stable dynamics. Therefore, a diffusive coupling (i.e., the coupling established via a
resistor) obtained between these identical cells would similarly result in an

Figure 4.
(a) Cmax vs. IQ�NDR (blue curves) and Rc�max vs. IQ�NDR (orange curves). (b) Cmax * Rc�max product. It can
be seen from both graphs that smaller values of Rb results in larger values for Cmax, Rc�max , and Cmax * Rc�max

values, while the last product term is more influenced from Rb value.
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eventually stable structure since the combination of passive circuit elements
through a resistive coupling cannot give rise to instability. Thus, to be able to
observe the emergence of complexity in a diffusively coupled homogenous net-
work, it is vital to accommodate locally active cells, which cannot be represented by
positive real complexity functions in the small-signal regime. This fact at the same
time implies that local activity can be simply judged as a violation of local passivity
[9]. Furthermore, a locally active cell is defined to be on the edge-of-chaos, if it is
biased at an asymptotically stable operating point. Most importantly, an uncoupled
cell, which is poised on the edge-of-chaos and therefore considered as a “dead” or
“silent” cell due to its stability, can be potentially destabilized from its quite state
via resistive coupling, which leads to the generation of complex patterns across the
homogenous medium. Correspondingly, the edge-of-chaos domain involves a sub-
set called the sharp-edge-of-chaos domain, which defines the set of parameters that
destabilize the cell after coupling is introduced. Strictly speaking, a one-port cell is
said to be locally active if and only if its small-signal transfer function (e.g., Z sð Þ
given by Eq. (3) in our case) satisfies any of the conditions below [9]:

1.Z sð Þ has a pole with positive real part, that is, Re s½ �>0.

2.Z sð Þ has multiple poles on the imaginary (jω) axis.

3.Z sð Þ has a simple pole s ¼ jωp on the imaginary axis and the residue associated

with this pole, specifically r jωp

� �

¼ lim
s!jωp

Z sð Þ ∙ s� jωp

� �

, is either a negative

real number or a complex number.

4. Re Z jωð Þ½ �<0 for some ω∈ �∞,∞ð Þ.

To confirm the locally active dynamics of the complexity function Z sð Þ of
Eq. (3), which is associated with the uncoupled cell of Figure 3(a), a direct
approach would be to check whether these four rigorously defined criteria are
satisfied or not, an approach we had applied in a previous work [28]. However, in
this work, we apply a quick inspection method of local activity criteria, and rather
check if Z sð Þ clearly violates local passivity. In consistent with this approach, it can
be seen that Z sð Þ possesses a right half plane (RHP) zero (i.e., z ¼ �R1R2=L R1 þ R2ð Þ
>0, for R1 <0), a feature that cannot be realized with any locally passive transfer
function. Thus, without a need for a further examination, we can infer that once it
is biased in the NDR region, the uncoupled cell operates in the locally active regime.
Furthermore, since the uncoupled cell is designed to be asymptotically stable (via
tuning Rb and C accordingly), we can directly conclude that it is both locally active
and on the edge-of-chaos across the entire NDR region. Finally, we would like to
note that the RHP zero is a strong indicator of a possible destabilization scenario
after the coupling is established.

3.3 Destabilization analysis after the introduction of coupling

For the emergence of pattern formation, it is essential that the identical cells lose
stability after the resistive coupling is established between them. In the previous
section, we have studied the stability of the uncoupled cell, while in this section, we
investigate the destabilization process after a resistive array is added to couple the
elements of the network. Since a direct stability analysis that requires exploring the
complete network itself would be complicated and time-consuming, it would be
beneficial to apply a simplified stability analysis. Considering highly accurate
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illustrative examples, the stability analysis of two-cell [37] and three-cell [29] arrays
can be found in the literature. In this work, we present a quick inspection method,
which is conceptually introduced in [9] and has been implemented through an
example in [28], where the idea is to terminate the coupling node of the single cell
with a coupling resistor, resulting in the circuit depicted in Figure 5(a) for the case
study presented here.

To investigate the possible destabilization scenarios of the resistively terminated
cell in Figure 5(a), we follow the same circuit theoretical approach as in the
previous subsections and examine the corresponding AC equivalent circuit, which
is shown in Figure 5(b). Here, the poles of the impedance function Zc sð Þ coincide
with the eigenvalues of the second-order system equivalent of the circuit in
Figure 5(a) at a given equilibrium point and should be examined to determine the
destabilization conditions. At this point, it should be noted that the AC equivalent
circuits depicted in Figures 3(b) and 5(b) are qualitatively equivalent to each other,
while Rc appears additionally in parallel with Rb in Figure 5(b). Therefore, the
expression of Zc sð Þ, readily given in Eq. (5), is identical to the expression of Z sð Þ,
where the term Rb is replaced with the parallel equivalent term Rbc, that is,
Rbc ¼ Rb ∙Rc= Rb þ Rcð Þ.

Zc sð Þ ¼
sL R1 þ R2ð ÞRbc þ R1R2Rbc

s2LC R1 þ R2ð ÞRbc þ s L R1 þ R2 þ Rbcð Þ þ R1R2RbcC½ � þ R1 þ Rbcð ÞR2
¼

Nc sð Þ

Dc sð Þ

(5)

To claim instability of Zc sð Þ, at least one coefficient of the Dc sð Þ polynomial has
to be negative, as dictated by Routh-Hurwitz criteria. Here, it is straightforward to
see that the coefficient of the s2 term of Dc sð Þ is readily positive. Similarly, it is
possible to show after some algebraic rearrangement that the coefficient of the s
term remains positive as long as the stability precondition given by Eq. (4), with Rb

replaced by Rbc, is satisfied. Thus, for instability, the constant term of Dc sð Þ, namely
R1 þ Rbcð Þ ∙R2, has to be negative. Starting with the inequality R1 þ Rbcð Þ ∙R2 <0 and
replacing Rbc with Rb ∙Rc= Rb þ Rcð Þ directly give us the destabilization condition
introduced by Eq. (6).

Rc < �
R1 ∙Rb

R1 þ Rb
¼ Rc�max ¼ � R1∥Rbð Þ (6)

In Figure 4(a), we plot (in orange) Rc�max as a function of the equilibrium point
of the memristor current IQ�NDR across the entire NDR region, for two different
values of Rb. Similar to the characteristics of Cmax, the smaller value of Rb results in
a larger value for Rc�max , which would relieve the design constraints for an

Figure 5.
(a) A simplified scenario for the resistively coupled single cell where Rc stands for the coupling resistor. (b) AC
equivalent circuit of the cell in (a). The poles of Zc sð Þ shall be investigated for analyzing the stability of the
circuit in (a) at a given equilibrium point.
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hardware realization. On the other hand, Eq. (6) reveals the fact that considering
the memristor model-dependent quantities, Rc�max depends only on the slope of the

I-V curve (i.e., R1
�1), while Cmax depends on other quantities (see Eq. (4)) as well.

Besides, as a function of IQ�NDR, the characteristics of Cmax increase (decrements),
while the characteristics of Rc�max decrease (increments). Moreover, it is interest-
ing to mention that the condition derived in Eq. (6) is qualitatively equivalent to the
results presented in [29, 37], indicating the fact that the simplification considered in
this work is accurate and provides a quick insight into the destabilization scenario of
the coupled cell in Figure 5(a).

Considering a typical time constant based design approach, we characterize the
term Rc�max ∙Cmax, introducing the exact and an approximate product in Eq. (7),
and plot these quantities in Figure 4(b) as a function of IQ�NDR, for two different
values of Rb. Here, we would like to note that the approximate product term
L= R1 þ Rbð Þ is obtained under the assumption R1 þ R2 þ Rbð Þ ffi R2.

Rc�max ∙Cmax ¼ �
R1 ∙Rb

R1 þ Rb
∙
L R1 þ R2 þ Rbð Þ

�R1R2Rb
¼

L R1 þ R2 þ Rbð Þ

R2 R1 þ Rbð Þ
ffi

L

R1 þ Rbð Þ
(7)

It can be seen from Figure 4(b) that the approximated time constant term given
in Eq. (7) follows the original expression very closely, especially for the smaller
value of Rb. Moreover, the approximated value is independent of R2, but rather
dependent on the dynamic quantity L, or in other words, the switching speed of the
memristor device. As a final and crucial remark, referring to the instability region of
parameters, that is, the sharp-edge-of-chaos domain, it is possible to rigorously
define the necessary circuit design variables by taking into account the parametric
equations given by Eqs. (4) and (6).

4. RD-MCNN structure and static pattern formation

The proposed RD-MCNN structure has a planar grid arrangement and it is
composed of m� n identical cells where m is the number of rows, n is the number

of columns, and Ci,j represents the cell at i
th row and the jth column. All the cells are

resistively coupled to the respective nearest neighbors in vertical and horizontal
directions only, and the CNN structure assumes periodic boundary conditions; that
is, the first and the last cells in each row, and respectively, in each column, are
resistively coupled to each other as well. To study the emergence of pattern forma-
tion dynamics in the proposed RD-MCNN, among several structures investigated,
here we present typical simulation results of a two-dimensional 51� 51 structure.
We define the same initial conditions (T0 ¼ 300K and Vc0 ¼ 0V) for all the cells
unless otherwise stated, except for the cell, namely C26,26, which is in the center of
the network. This exception for the definition of initial conditions is adopted to
initiate the emergence of the transient behavior in the numerical simulations.

First of all, we investigate the effect of changing the DC operating point on the
static pattern formation. To this end, we set the design parameters Rb to 2kΩ and Rc

to 0:1kΩ, while we tune Vb to vary the location of the DC operating point of each
cell. We present the emergent static patterns in Figure 6, where Vb ¼ 1:2V in
Figure 6(a), Vb ¼ 1:3V in Figure 6(b), Vb ¼ 1:4V in Figure 6(c), and Vb ¼ 1:5V
in Figure 6(d). Here, we plot the memristor voltage, or equivalently, the capacitor
voltage, of each cell and assign a color code to its amplitude value, as depicted on
the right side of each plot. It is possible to observe from Figure 6 that a shift in the
location of the operating point due to an increase in Vb may lead to static patterns
featuring a reduced spread in capacitor voltage amplitude through the array,
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reflected by a gradual decrement in the variety of colors in the emergent patterns,
as especially observed in Figure 6(d).

Later on, we examine the effect of the coupling strength on the static pattern
formation by varying the value of the coupling resistance Rc. Similarly, we set the
design parameters Vb to 1:2V and Rb to 2kΩ while we tune the value of Rc to adjust
the coupling strength. The results are illustrated in Figure 7, where Rc ¼ 0:25kΩ in
Figure 7(a), Rc ¼ 0:5kΩ in Figure 7(b), Rc ¼ 1kΩ in Figure 7(c), and Rc ¼ 2kΩ in
Figure 7(d). It can be seen that as Rc increases, first a deformation starts to occur in
the outer parts of the static pattern of Figure 7(a)–(c), while clearly, a new static
pattern emerges, finally in Figure 7(d). The final pattern in Figure 7(d) also shows
that neighboring cells exhibit a sharper spread in the capacitor voltage amplitude,
which is reflected by the clear color contrast observable in this plot, especially as
compared to that of Figure 7(a).

In addition, we focus on the effect of the initial conditions on pattern formation,
as depicted in Figure 8, where we fix the values of all of the design parameters such
that Vb ¼ 1:2V, Rb ¼ 2kΩ, and Rc ¼ 0:1kΩ. The cells located in the center of each
side of the edges (i.e., C1,26,C26,1,C51,26,C26,51), or midpoint cells for short, have the
same initial condition as the center cell C26,26 in Figure 8(a), while only the corner
cells (C1,1, C1,51, C51,1, C51,51) have the same initial condition as the center cell C26,26

in Figure 8(c). On the other hand, only the midpoint cells share the same initial
conditions in Figure 8(b), while the center cell C26,26 features the same initial
condition as the rest of the network. Similarly, only the corner cells share the same

Figure 6.
RD-MCNN output values represented by the cell memristor voltages obtained in a simulation of a two-
dimensional 51 � 51 RD-MCNN structure for Rb ¼ 2kΩ, Rc ¼ 0:1kΩ, while Vb ¼ 1:2V in (a), Vb ¼ 1:3V
in (b), Vb ¼ 1:4V in (c), and Vb ¼ 1:5V in (d). All the cells have the same initial conditions except for the
center cell C26,26. A shift in the memristor DC operating point may lead to static patterns with a reduced range
in capacitor voltage amplitude, as mostly pronounced in (d).
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initial conditions in Figure 8(d), while the center cell C26,26 features the same initial
condition as the rest of the network cells. The difference between the patterns
presented in Figure 8(a) and (b), and equivalently in Figure 8(c) and (d), shows
the effect of a change in the number of cells sharing the same initial conditions.
Likewise, the difference between the patterns presented in Figure 8(a) and (c),
and equivalently in Figure 8(b) and (d), shows the effect of a change in the
location (indeed, a rotation of half-side length) of cells sharing the same initial
conditions, which can result in clearly different patterns. Since there exists a very
high number of spatial permutations for the location and the number of cells with
the same initial conditions, we conjecture that there may appear a large class of
clearly distinguishable patterns, such as those presented in Figure 8, which results
in a significant memory capacity of the network.

Lastly, we investigate the effect of the size of the network on the patterns
generated through. For this purpose, we set the design parameters Vb to 1:2V, Rb to
2kΩ, and Rc to 0:2kΩ, while we define the same initial conditions for the corner cells
as it is the case for the center cell. Then, we simulate structures of different size
while preserving their square geometry, and depict the results in Figure 9, where
m ¼ n ¼ 31 in Figure 9(a), m ¼ n ¼ 41 in Figure 9(b), m ¼ n ¼ 51 in Figure 9(c),
and m ¼ n ¼ 61 in Figure 9(d). Once more, it can be concluded from Figure 9 that
the patterns generated across networks of different sizes and square geometry are
clearly distinguishable one from the other.

Figure 7.
RD-MCNN output values represented by the cell memristor voltages obtained in a simulation of a two-
dimensional 51 � 51 RD-MCNN structure for Rb ¼ 2kΩ, Vb ¼ 1:2V, while Rc ¼ 0:25kΩ in (a), Rc ¼
0:5kΩ in (b), Rc ¼ 1kΩ in (c), and Rc ¼ 2kΩ in (d). All the cells have the same initial condition except for the
center cell C26,26. As Rc increases, first a deformation occurs in the outer parts of the pattern observed in (a), as
shown in (b) and (c), while a clearly new pattern emerges in (d). With reference to the pattern in (d), the
capacitor voltages in neighboring cells exhibit a sharper change in the amplitude, which is practically reflected
by the color contrast observable, especially as compared to that of (a).
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5. Conclusion

In this chapter, we have presented the mathematical investigation of static
pattern formation across a resistively coupled RD-MCNN structure via the applica-
tion of the theory of local activity. The considered networks have identical cells in a
compact form, each of which is composed of a DC bias voltage source, a bias
resistor, a locally active memristor, and a parallel capacitor. The memristor was
represented through a generic model, which helped to reduce the numerical com-
plexity and to shorten the simulation time of large-scale networks. A useful AC
equivalent circuit could be derived for the locally active device, which facilitated
further calculations related to the small signal model of the network cell. We have
adopted a systematic circuit theoretical approach that we applied for the stability
analysis of the isolated cell and for the extraction of its parameter values for its
operation on the edge-of-chaos and sharp-edge-of-chaos domains. In this way, we
have performed a simple, fast, and robust analysis, which at the same time allowed
an efficient interpretation of the results. All the calculations were performed in
parametric form, which allowed a deep investigation of the results, making it
possible to extract the related sets of parameters in terms of the cell characteristics,
namely the DC operating point and the capacitor value, as well as the value of the

Figure 8.
RD-MCNN output values represented by the cell memristor voltages obtained in a simulation of a two-
dimensional 51 � 51 RD-MCNN structure for Rb ¼ 2kΩ, Rc ¼ 0:1kΩ and Vb ¼ 1:2V. The cells in the middle
of each side of the edges, or briefly the midpoint cells (C1,26,C26,1,C51,26,C26,51), have the same initial
conditions as the center cell C26,26 in (a), while the corner cells (C1,1, C1,51, C51,1, C51,51) have the same initial
conditions as the center cell C26,26 in (c). On the other hand, only the midpoint cells share the same initial
conditions in (b), while the center cell C26,26 features the same initial condition as the rest of the network cells.
Similarly, only corner cells share the same initial conditions in (d), while the center cell C26,26 features the same
initial conditions as the rest of the network cells. A change in the location as well as in the number of cells sharing
the same initial conditions can result in clearly different patterns, conferring the network a significant memory
capacity.
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coupling resistance. The proposed RD-MCNN was shown to generate diverse pat-
terns while we have extensively investigated the effect of design parameters, initial
conditions, and the size of the network on the patterns generated therein. Further-
more, the mathematical and circuit theoretical approach employed during the
investigation of pattern formation dynamics in the RD-MCNN under focus in this
chapter can be easily adopted to RD-MCNNs with different cell designs.

Finally, the content of this work can be extended to the investigation of the role
of the network geometry and variety in cells’ initial conditions on pattern forma-
tion. Furthermore, the impact of memristor non-idealities such as variability in
memristor behavior from cycle to cycle, as well as from device to device, and
endurance degradation and short- and long-term reliability issues shall be further
examined to achieve a robust design. Such non-idealities, essentially, can affect the
NDR characteristics of the memristors and narrow the width of the NDR region, or
the devices can even get stuck in one of the high-resistance or low-resistance locally
passive regimes where they act as dead cells without any dynamics. Preliminary
simulation results show that endowing memristors with narrower NDR width neg-
atively affect the patterns’ color contrasts, while the presence of the high- or low-
resistance locally passive devices results in the formation of color clusters within the
patterns. Interestingly, similar color clusters emerge also when some of the array
memristors’ initial conditions are randomly selected, which suggests a possible
strategy to compensate for the disturbing action of locally passive cells on the
formation of predefined patterns through a dynamic conditioning of their initial
conditions. Similarly, the low color contrast quality in the patterns, which occur due

Figure 9.
Simulation results of various m� n RD-MCNN structures for Rb ¼ 2kΩ, Rc ¼ 0:2kΩ and Vb ¼ 1:2V, where
m ¼ n ¼ 31 in (a), m ¼ n ¼ 41 in (b), m ¼ n ¼ 51 in (c), and m ¼ n ¼ 61 in (d). The corner cells have the
same initial conditions as the center cell for all the structures. Although the four structures share a square
geometry, they differ in size, which leads to clearly distinguishable patterns.
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to the existence of memristors featuring a narrower NDR region, can be improved
by reprogramming dynamically the bias voltage sources in these “defect” cells. In
conclusion, proper control strategies including cells’ dynamic biasing and initial
condition conditioning, as well as reconfiguration of the network array, may be
considered as a solution to overcome the harmful effects which memristor non-
idealities may induce on the emergence of predefined patterns in the proposed RD-
MCNNs. Future studies will also be devoted to envision an application, where the
capability of our cellular medium to generate a variety of steady-state static patterns
may be useful to our modern society.
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