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Chapter

Ubiquitination Enzymes
Toshiyuki Habu and Jiyeong Kim

Abstract

Posttranslational protein modifications by mono- or polyubiquitination are
involved in diverse cellular signaling pathways and tightly regulated to ensure proper
function of cellular processes. Three types of enzymes, namely ubiquitin-activating
enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin-protein ligases
(E3), contribute to ubiquitination. Combinations of E2 and E3 enzymes determine �
the fate of their substrates via ubiquitination. The seven lysine residues of ubiquitin,
Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63, can serve as attachment sites for
other ubiquitin molecules. Lys48 (K48)-linked polyubiquitination facilitates recogni-
tion of the conjugated protein by proteasome molecules and subsequent proteolytic
degradation of the target protein. By contrast, Lys63 (K63)-linked polyubiquitination
appears to be involved in polyubiquitin signaling in critical cellular processes, such as
DNA repair, regulation of the I-kappaB kinase/NF-kappaB cascade, or T cell receptor
signaling, but not protein degradation. In this review, we describe the properties of
ubiquitin modification enzymes and the structural interplay among these proteins.

Keywords: E1 ubiquitin, ubiqutin-activating enzyme, E2 ubiquitin-conjugating
enzyme, E3 ubiquitin ligase

1. Introduction

Very large-scale studies of protein ubiquitination have been conducted over the
past two decades. Ubiquitin modification is mediated by three types of enzyme activ-
ity, mediated out by E1 ubiquitin-activating enzymes (UBA; also referred to as UAE
or E1 enzymes; EC 6.2.1.45), E2 ubiquitin-conjugating enzymes (UBC; also termed E2
ubiquitin-carrier proteins or E2 enzymes; EC 2.3.2.23), and ubiquitin-protein ligases
(E3 enzymes). To better understand the molecular mechanisms underlying ubiquitin
modification, this review focuses on the structural interactions between ubiquitin
modification enzymes and their functions.

2. Types of ubiquitin and ubiquitin-like proteins (UBLs)

Ubiquitin is a small, highly conserved 76 amino acids polypeptide found through-
out eukaryotic cells, that modifies cellular proteins. Two mammalian ubiquitin genes,
UBB and UBC, encode polyubiquitin and another two genes, RPS27A and UBA52
encode ubiquitins fused with ribosomal proteins [1]. Ubiquitin is produced as precur-
sor peptides that are proteolytically processed by deubiquitinating enzymes into
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active forms with C-terminal glycine residues. The C-terminal glycine (Gly76) and
seven lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63) of
ubiquitin are essential for ubiquitin modification. There is 96% sequence identity
between human and yeast ubiquitin, and the two glycine and seven lysine residues are
conserved throughout the eukaryotic kingdom.

Ubiquitin-like proteins (UBLs) do not share sequence homology with ubiquitin but
also function as protein modifiers. A number of UBLs have been reported, including
SUMO1/SMT3, SUMO2–4 [2–4], Neural-precursor-cell-expressed developmentally
downregulated protein-8 (NEDD8)/RUB1 [3, 5, 6], ISG15 [6, 7], ATG8/APG8 [8],
ATG12/APG12 [9], URM1 [3], and homologous to ubiquitin 1 (HUB1) [10]. During
protein modification by ubiquitin and UBLs, specific activating, conjugating, and
ligase enzymes, catalyze attachment of the modifier to target proteins. Similar to
ubiquitin, UBLs are also produced as precursors, and deubiquitinating enzymes
expose their C-terminal glycine residues to activate them, although HUB1 lacks a
C-terminal diglycine sequence.

The SUMO-1 protein has only 18% sequence identity with ubiquitin, but contains
the ββαββαβ fold structure characteristic of the ubiquitin protein family [2]. The
hydrophobic cores of SUMO-1 and ubiquitin are similar; however, the overall charge
surface topology of SUMO-1 differs significantly from that of ubiquitin or other
UBLs [2, 11]. The selective modifications mediated by the four SUMO homologs,
SUMO-1, SUMO-2, SUMO-3, and SUMO-4 [12–16], remain to be determined. In
addition, SUMO has an N-terminal extension (approximately 20 amino acids) not
present in ubiquitin, which is required for SUMO function [17]. A consensus motif
and lysine residues involved in SUMOylation are present in SUMO-2, SUMO-3, and
SUMO-4 and well-conserved; however, these SUMO proteins do not have Lys residue
counterparts of ubiquitin Lys 48 and 63.

NEDD8 shows 58% sequence identity and 80% sequence similarity to ubiquitin
polypeptide. By contrast, the ATG12 sequence is unrelated to that of ubiquitin, and
forms a covalent protein complex with ATG5, which is required for autophagy; this
reaction requires the C-terminal glycine residue of ATG12 and a lysine residue in
ATG5 [18].

The ISG15/ubiquitin cross-reacting protein (UCRP) gene comprises two exons and
encodes a 17 kDa polypeptide [19, 20]. The immature polypeptide is cleaved at its
carboxy terminus, generating a mature 15 kDa product that terminates with an
LRLRGG motif that is also found in ubiquitin. The tertiary structure of ISG15 also
resembles ubiquitin, despite having only approximately 30% sequence homol-
ogy [21, 22]. ISG15 is induced by type I interferon and serves many functions, acting
as an extracellular cytokine and an intracellular protein modifier [23, 24].

HLA-F adjacent transcript 10 (FAT10; also known as ubiquitin D) also bears two
ubiquitin-like domains. HUB1 has only 22% sequence identity with ubiquitin and
possesses an invariant C-terminal double-tyrosine motif, unlike the double glycine
residues present in ubiquitin and other UBLs [25].

3. Ubiquitin modification enzymes

3.1 E1 ubiquitin-activating enzymes (UBA)

E1 UBA enzymes adenylate the C-terminal glycine residue (Gly 76) of ubiquitin
polypeptides, coupling them with ATP. The C-terminal ubiquitin polypeptide glycine
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residue is linked to AMP via an acyl-phosphate bond, and the adenylated ubiquitin
polypeptide is linked with the sulfhydryl side chain of a cysteine residue (Cys 632 in
human UBA1) in the E1 enzyme catalytic center. A thioester intermediate
(S-ubiquitinyl-(E1 UAE)-L-Cys) is synthesized in this two-step reaction, along with
AMP and diphosphate (Reaction (1)).

ATPþ Ubiquitinþ E1 UBA½ �‐L‐cysteine

< ¼ >AMPþ diphosphateþ S‐ubiquitinyl‐ E1 UBA½ �‐L‐cysteine:

(1)

In human, ten UBA orthologues have been identified that can activate ubiquitin or
UBLs. Ubiquitin-like modifier-activating enzyme 1 (UBA1) is mainly responsible for
ubiquitin-activation and can also activate the NEDD8 UBL peptide [26–28]. UBA2 (or
UBLE1B) is also known as SUMO-activating enzyme subunit 2 (SAE2), and activates
the SUMO UBL peptide as heterodimer with SAE1 [29]. UBA3 (or UBE1C) encodes
the NEDD8-activating enzyme E1 catalytic subunit and forms a heterodimer with
NAE1 (or APPBP1, an amyloid-beta precursor protein binding protein), which acti-
vates NEDD8. UBA5 activates UFM1 (ubiquitin-fold modifier 1) [30], while UBA6
(alternatively UBE1L2) is an E1 enzyme involved in UBL activation [31, 32].
Autophagy related 7 (ATG7) is an E1 enzyme for UBLs including ATG12 and ATG8.
NEDD8-activating enzyme E1 regulatory subunit (NAE1 or APPBP1) is an E1 enzyme
for NEDD8, along with UBA3 [33]. Ubiquitin-like modifier-activating enzyme 1 Y
(UBA1Y) is encoded by the Y chromosome and expressed specifically during sper-
matogenesis [34–37]. The UBL, FAT10, is activated by UBA1 and UBA6. UBA7 is
induced by interferon-α and β and involved in ISG15 induction.

UBA structures consist of an adenylation domain that interacts with ATP and
UBLs, a catalytic domain comprising a Cys residue that binds to UBLs, and a
C-terminal ubiquitin fold domain (UFD) required for binding to E2 enzymes.

In a study of mammalian UBA1 with a temperature-sensitive (ts) mutation, cells
expressing the ts-UBA1 mutant exhibited cell cycle arrest at the G2/M phase transi-
tion, as well as dramatically decreased ubiquitin conjugation [38, 39]. UBA1-knock-
down in human cells also leads to reduced cell proliferation [40]. Furthermore, cells
expressing the ts-UBA1 mutant show reduced receptor tyrosine kinase endocytosis
and degradation [41]. In addition, mice lacking UBA3 are characterized by a mitotic
defect in G1/G0 transition, that causes accumulation of SCF ligase targets, including
Cyclin E and β-catenin.

3.2 E2 ubiquitin-conjugating enzymes (UBC)

E2 UBC enzymes transthiolate activated ubiquitin from S-ubiquitinyl-[E1 UBA] to
themselves. A thioester linkage is formed between an E2 UBC and ubiquitin via the
C-terminal glycine of ubiquitin, and the sulfhydryl side chain of a Cys residue in the
E2 UBC catalytic center [42] (Reaction (2)).

S‐ubiquitinyl‐ E1 UBA½ �‐L‐cysteineþ E2 UBC½ �‐L‐cysteine

< ¼ > E1 UBA½ �‐L‐cysteineþ S‐ubiquitinyl‐ E2 UBC½ �‐L‐cysteine
(2)

The transthiolation reaction involving S-ubiquitinyl-[E1 UBA]-L-cysteine and E2
UBC is strongly stimulated by occupancy of the nucleotide-binding site by either
adenylated ubiquitin or ATP alone [43]. Ubiquitin transfer to the target protein is
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assisted by E3 ubiquitin ligases. Homologous to E6-AP C-terminus (HECT) domain
family E3 ligases transfer ubiquitin to the target via a Cys residue in the E3 ligase. By
contrast, Really Interesting New Gene (RING) family E3 ligases transfer ubiquitin
directly to target proteins. The properties of specific E2 UBC enzymes determine the
ubiquitin moiety and substrate specificity of E3 ligases. Indeed, the specificity of
interactions with E2 reflect E3 substrate specificity. Amino acids surrounding the Cys
residue are evolutionarily conserved among E2 UBCs, and referred to as the ubiquitin-
conjugating (UBC) domain or the core catalytic domain [44]. The UBC domain folds
an N-terminal helix (H1), a four-stranded β-meander structure (S1–S4), a short 310-
helix (H2), and three C-terminal helices (H3–H5) [45, 46]. Amino acid sequence
variations in the UBC domain contribute to specific interactions with E1 UBAs, E3
ligases, and target proteins [47–51].

E2 UBCs are divided into four classes based on structural differences [52]: class I E2
enzymes consist of only a UBC domain; class II E2 enzymes contain additional
C-terminal extension residues; class III E2 enzymes have N-terminal extension resi-
dues; and class IV E2s have both N- and C-terminal extensions. Class II UBC2 and
UBC3 proteins have acidic C-terminal extensions, which mediate a preference for
binding to basic substrates, including histones [53–55]. The acidic extension is also
required to contact basic canyon residues of the Cul1 subunit of the SCF RING
subcomplex (ROC1-CUL1) [56–58]. UBC6 processes C-terminal extensions, to pro-
mote ER localization [59, 60]. Class II UBCs include: E2-25K (yeast UBC1) [61], UBC4
[62], UBCH6, UBCH7 [63], UBE2E1 [64], UBE2E2 [65], and UBE2E3 [66, 67].

UBL-specific E2 UBC enzymes process proteins for ubiquitin-like modification.
UBC9 is an E2 UBC enzyme specific for the UBL, SUMO, and binds directly to SUMO
substrates through a specific short consensus amino acid motif, Y-K-X-[D/E], where
Y is any bulky hydrophobic amino acid, including isoleucine, leucine, or valine; K is
the lysine residue which is modified by SUMO; X is any residue; D is aspartic acid; and
E is glutamic acid [68]. UBC9 contains N- and C-terminal extension residues within
the UBC domain, and non-conserved residues in the H1 helix and the insertion β-sheet
(S1/2) are required for both interaction with UBA enzymes and formation of the
SUMO-thioester bond [69, 70]. ATG3/AUT1 is a dedicated E2 UBC for ATG8 [71].
UBC12 is an E2 UBC specific for NEDD8, which interacts with the NEDD8 E1 UBA via
its UBC domain [72, 73], and includes a unique N-terminal region that docks to the E1
enzyme, UBA3, but not to other UBAs. The E2 for ISG15, UBCH8, takes part in
reactions involving both UBEL1, the E1 for ISG15, and UBA1, the E1 for ubiquitin [7].

3.3 E3 ubiquitin ligases

E3 ubiquitin ligases are also referred to as ubiquitin-protein ligases, E3 ligases, or
E3 enzymes. Ubiquitin is covalently bonded to the ɛ-amino group of a lysine residue
within the substrate protein via an isopeptide bond. The last step in this binding is
mediated by E3 ubiquitin ligases, which determine the substrate specificity by � to
target proteins. E3 ubiquitin ligases transfer ubiquitin linked with a UBC to the ϵ-
amino group of a lysine residue of the target protein. An isopeptide bond is formed
between the C-terminal glycine residue of ubiquitin and an ϵ-amino group of a lysine
residue in the target protein.

E3 ubiquitin ligases are divided into three major classes: HECT type (Section 3.3.1),
RING-type (Section 3.3.3), and U-box E3 ligases (Section 3.3.4). HECT type E3
ubiquitin ligases form a thioester intermediate with the active-site cysteine of the E3,
following the formation of an isopeptide bond between the C-terminal glycine residue
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of ubiquitin and the ϵ-amino group of a lysine residue in the target protein. RBR-type
E3 ubiquitin ligases (Section 3.3.2) mediate similar reactions to HECT type E3 ligases.
RING-type and U-box E3 ligases mediate different reactions from HECT and RBR-
type E3 ligases, in which ubiquitin is transferred from ubiquitinyl-UBC directly to the
target protein without formation of a thioester intermediate. Multi-subunit RING-
type E3 ligases (Section 3.3.3.1) form complexes with a scaffold protein and a contain
recognition modules that bind to substrates.

3.3.1 HECT-type E3 ubiquitin transferases (EC 2.3.2.26)

HECT-type E3 ligases transfer ubiquitin from an E2 ubiquitin-conjugating enzyme
(EC 2.3.2.23) to a cysteine residue in the HECT domain in the C-terminal region of an
E3 ligase (Reaction (3)). The activated ubiquitin from S-ubiquitinyl-[E3 ligase]-L-
cysteine is transferred from the intermediate to the target protein (Reaction (4)). The
C-terminal glycine residue of the received ubiquitin is linked with the ε-amino chain
of a lysine residue of the acceptor protein, forming an isopeptide bond. Importantly,
the HECT domain forms a thioester intermediate with ubiquitin, unlike other E3
ligases.

S‐ubiquitinyl‐ E2 UBC½ �‐cysteineþ HECT‐type E3
� �

‐cysteine

< ¼ > E2 UBC½ �‐cysteineþ S‐ubiquitinyl‐ HECT‐type E3
� �

‐cysteine
(3)

S‐ubiquitinyl‐ HECT‐type E3
� �

‐cysteineþ acceptor protein½ �‐lysine

< ¼ > HECT‐type E3
� �

‐cysteineþN6‐ubiquitinyl‐ acceptor protein½ �‐lysine
(4)

S‐ubiquitinyl‐ E2 UBC½ �‐L‐cysteineþ acceptor protein½ �‐L‐lysine

< ¼ > E2 UBC½ �‐L‐cysteineþN 6ð Þ‐ubiquitinyl‐ acceptor protein½ �‐L‐lysine
(5)

HECT type E3 ligases catalyze a thioester bond between a C-terminal glycine
residue of ubiquitin and themselves and then transfer the ubiquitin to a substrate
protein. HECT type E3 ligase family proteins possess a well-conserved, approximately
350 residue, catalytic HECT domain close to their C-terminal region [74, 75]. The
HECT domain has a bi-lobal structure comprising an approximately 250 residue N-
lobe, required for the binding to UBC-ubiquitin complex, and a C-lobe of around 100
residues, required for ubiquitin transfer [74, 76, 77]. Various linker sequences
between the two HECT domain lobes mediate the properties of HECT type E3 ligases
in accepting ubiquitin from E2 enzymes and transferring it to a target substrate.

The HECT type E3 ligase, E6-AP, can ubiquitinate p53 in the presence of human
papillomavirus E6 protein [75, 78, 79], and another HECT E3 enzyme NEDD4
ubiquitinates SMAD proteins, thereby regulating transcription factors mediating
TGFβ signaling [80], the P63 tumor antigen [81], and MDM2 [82]. HECW1 [83],
HECW2 [84], WWP1 [85], HERC1 [86], HERC2 [87], and ITCH [88] also belong to
the HECT type E3 ubiquitin ligase family.

3.3.2 RBR-type E3 ubiquitin transferase (EC 2.3.2.31)

RBR-type E3 ubiquitin transferases possess two RING finger domains, each of
which is separated by an internal IBR (In Between RING) motif. These E3 ligases bind
to the Cullin-RING ubiquitin Ligase (CRL) complex (see Cullin-type E3 NDD8
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transferase), within which a neddylated cullin scaffold protein and a substrate recog-
nition module are required for ubiquitin transfer. The first RING domain binds S-
ubiquitinyl- [E2 UBC]-cysteine and transfers the ubiquitin to an internal Cys residue
in the second RING domain (Reaction (6)), followed by transfer of the ubiquitin from
the Cys residue in the second RING domain to a Lys in the acceptor protein (Reaction
(7)). RBR-type ligases stimulate a cycling ubiquitination reaction via the S-
ubiquitinyl-[E2 UBC]-cysteine in the first RING domain [88]. RBR-type ligase activity
depends on the neddylation of the cullin protein in the CRL complex. RBR-type E3
ubiquitin ligases include Parkin, Parc, RNF19, RNF144, RNF216 RFA1 HOIP, and
HHARI [89, 90].

S‐ubiquitinyl‐ E2 UBC½ �‐cysteineþ RBR‐type E3
� �

‐cysteine

< ¼ > E2 UBC½ �‐cysteineþ S‐ubiquitinyl‐ RBR‐type E3
� �

‐cysteine
(6)

S‐ubiquitinyl‐ RBR‐type E3
� �

‐cysteineþ acceptor protein½ �‐lysine

< ¼ > RBR‐type E3
� �

‐cysteineþN6‐ubiquitinyl‐ acceptor protein½ �‐lysine
(7)

S‐ubiquitinyl‐ E2 UBC½ �‐cysteineþ acceptor protein½ �‐lysine

< ¼ > E2 UBC½ �‐cysteineþN 6ð Þ‐ubiquitinyl‐ acceptor protein½ �‐lysine
(8)

3.3.3 RING-type E3 ubiquitin transferases (EC 2.3.2.27)

RING E3 ubiquitin ligases (also referred to as RING E3 ligases or ubiquitin trans-
ferase RING E3 enzymes) transfer ubiquitin peptides directly from a ubiquitinyl-E2
UBC enzyme to an acceptor protein. The ε-amino group of a lysine residue of the
target protein forms an isopeptide bond with the C-terminal glycine residue of
ubiquitin (Reaction (9)). Unlike HECT E3 ligases, the RING-E3 domain does not
create a catalytic thioester intermediate with ubiquitin through a Cys residue.

S‐ubiquitinyl‐ E2 UBC½ �‐L‐lysineþ acceptor protein½ �‐L‐lysine

< ¼ > E2 UBC½ �‐L‐cysteineþN 6ð Þ‐ubiquitinyl‐ acceptor protein½ �‐L‐lysine
(9)

Human proteome analysis has identified approximately 580 genes encoding puta-
tive RING-type ubiquitin E3 ligase family proteins, which is more than the number of
protein kinase genes (518) [91]. Among RING-type E3 ligase genes, 309 and 270
encode single and multi-subunit RING-type E3 ligase molecules, respectively. While
RING-type E3 ubiquitin ligase family proteins do not form thioester intermediates
with ubiquitin, they function as a scaffold for ubiquitin-charged UBC and the sub-
strate. RING-type E3 ligases contain both a RING domain and a substrate-binding site,
and almost half the RING proteins belong to multisubunit RING-type E3 ligases,
which require an additional subunit for substrate recognition (see multisubunit RING-
type ubiquitin ligases).

The RING domain was initially thought to function as a DNA binding domain
because of the discovery of RING domain-containing proteins with DNA binding
activity [92, 93]. RING-type E3 ligases were subsequently identified as interacting
partners of the human E2 ubiquitin-conjugating enzyme UBCH5 [94], which has self-
ubiquitination activity that depends on its RING domain sequence. The canonical
RING domain structure consists of a Zn2+-coordination complex and o series of Cys
and His residues and mediates E2-dependent ubiquitylation. The coordination
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complex with two zinc ions forms a cross-brace structure. RING finger domains have
consensus sequences that are classified into two different types, C3HC4-type (RING-
HC) and C3H2C3-type (RING-H2), according to the cysteine/histidine arrangement
(where C = Cys and H = His) [95]. The C3HC5-type RING domain has different
properties from the C3HC4 RING-HC finger [96], Casitas B-lineage Lymphoma (c-
Cbl), which is a RING-HC type ligase. Ubiquitination activity modulates receptor
tyrosine kinase signaling [97] and structural analysis of the c-Cbl-UbcH7-substrate
tertiary complex showed that the interaction surface of the UbcH7 E2 enzyme is
commonly used by both c-Cbl and HECT-type E3 ligases, where c-Cbl binds UbcH7
using both its RING domain and linker helix structure [50]. The amino acid residues
involved in the interaction are structurally similar between E2 enzymes and E3 ligases.

BRCA1 forms a heterodimer with the RING-type ligase BARD. The dimerization of
two RING-type E3 ligases results in upregulation of ubiquitination activity. By bio-
chemical approaches, UbcH5c and UbcH7 enzymes were identified as candidate E2
enzymes for the BRCA1-BARD complex. Christensen et al. developed an excellent
method for identifying E2-E3 pairing [98, 99], using a BRCA1-BARD fusion protein;
BRCA1 can synthesize specific polyubiquitin chain linkages, depending on the pres-
ence of a paired E2 enzyme [98]. This approach has increased the identification of E2-
E3 pairs; for example, RNF213, a RING-HC type E3 ligase and its paired UBC13E2
enzyme were identified using this method [100]. UBCH5b mutants, which can bind to
E3 ligase, exhibit defective stimulation by E3 ligases [101]. Ubiquitin-charged E2 is
conformationally activated by binding to the RING domain [101–103]. Furthermore,
the interaction between E1 and E2 enzymes can direct substrate specificity, ubiquitin
transfer, and polyubiquitin chain linkages.

Some RING-type ubiquitin ligase family members form hetero- or homo-
multimers through the RING domain or its surrounding region. RING-RING com-
plexes, including MDM2-HMDX, BRCA1-BARD1, and RING1-BMI1, form
heterodimers. In heterodimers, one partner (HDMX, BRAD1, and BMI1) lacks
ubiquitin ligase activity, while the other partner (MDM2, BRCA1, and RING1) has E2
UBC binding activity. Heterodimer formation leads to stabilization of E2-E3 binding,
and in dimerizing E3 ligases, the five C-terminal residues of the RING domain are
essential for both dimer formation and E3 activity [104–106].

TRAF2, cellular inhibitor of apoptosis (cIAP; officially known as BIRC2), SIAH,
BIRC7, and RNF213 form homodimers [100, 107–111]. Dimeric BIRC7 recruits
UBCH5B-ubiquitin and optimizes the donor ubiquitin configuration for transfer [112].
Homo- and hetero-dimerization of RING-type ubiquitin ligases may stabilize their
interactions with ubiquitin-charged UBC E2 enzymes and optimize ubiquitin transfer
activity.

3.3.3.1 Multisubunit RING protein complexes

Enzymes of the RING-type E3 ubiquitin ligase family do not bind directly to a
substrate, but rather form a complex with a cullin scaffold protein and substrate
recognition modules, referred to as CRL complexes. The SCF complex (SKP, Cullin,
F-box containing complex) and anaphase-promoting complex/cyclosome (APC/C)
(anaphase-promoting complex/cyclosome) are two major multisubunit RING
containing complexes.

Ubiquitination by SCF and APC/C are implicated in the degradation of cell cycle
proteins [113–116]. APC/C regulates mitosis and entry into the G1 phase of the cell
cycle, and SCF controls S phase progression.
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SCF E3 complexes comprise at least four different subunits, including the F-box
protein, SKP adaptor protein, Cullin scaffold protein, and Rbx RING-type E3 ligase
[116–119]. The F-box motif is a protein–protein interaction motif comprising approxi-
mately 50 amino acid residues. There is low sequence identity among F-box proteins,
which recognize and bind substrate and bridge connections between adaptor proteins
(including SKP1) and substrates. Phosphorylation of F-box proteins regulates their
interactions with substrates. The SKP adaptor proteins, SKP2 (S-phase kinase-associated
protein 2), β-TrCP (beta-transducin repeat-containing protein), FBW7, and FBXO4 are
F-box proteins involved in cell-cycle regulation. Cullins are scaffold proteins for
ubiquitin ligases; CUL1 is a subunit of the SCF complex, and the Cullin-homology
domain at its C-terminus interacts with RING E3 ligases while the N-terminal region
can interact with the adaptor protein, SKP2. Cullin family members function as adap-
tors for multisubunit RING-type E3 ligase complexes. The adaptor proteins SKP1 and
CUL1 and the RING-type E3 ligase RBX1 form the CRL catalytic core complex.

APC/C is a multisubunit RING-type E3 ligase containing approximately 13 subunits.
The Cullin subunit protein, APC2, and the RING H2 type E3 ligase, APC11, form the
catalytic core domain [120–122]. TPR (tetratricopeptide residue) motif-containing sub-
units, including CDC16, CDC27, CDC23, and APC5, are thought to function as scaffold
assembling proteins. Two co-activators, CDC20 (cell division cycle homologue 20) and
FZR/CDH1 (Fzy-related/cell division cycle 20 related 1), bind to the CDC27 subunit of
APC/C through their WD40 repeat and determine APC/C substrate specificity depen-
dent on cell cycle to stages [115, 118, 123–128]. The APC10 subunit contributes to
optimal co-activator-dependent substrate recognition and substrate affinity [129–131].
APC/C-mediated ubiquitination depends on destruction box, KEN box, and CRY box
sequences in the substrate [132–140]. Assembly of these co-activators into the APC/C
complex in G1 or M phase during cell cycle is regulated by phosphorylation [141–144].

3.3.4 U-Box E3 ubiquitin ligases

The U-box domain displays a similar three-dimensional structure to the RING
domain [145]. The U-box domain shows similarity to UFD2, which has a multiubiquitin
chain elongation activity (known as E4 activity) [146]. Unlike the RING domain, the U-
box domain does not form a coordination complex consisting of a central zinc ion
through Cys residues; rather, the U-box domain structure is maintained by hydrogen
bonding. The U-box domain has ubiquitin ligase activity, and the U-box protein, car-
boxyl terminus of HSC70-interacting protein (CHIP), also has E4 activity and includes
tetratricopeptide repeat and U-box domains. The C-terminal U-box domain interacts
with the molecular chaperones HSC70, HSP70, and HSP90 [147], in the presence of
unfolded or misfolded proteins, where CHIP regulates protein quality control [148, 149].

U-box proteins have various structures; for example, ARC1, CMPG1, PUB13, and
PUB20 contain armadillo which represents approximately 40 amino acids tandem
repeats sequence. PUB23 has a serine/threonine kinase domain while PUB59 and
PUB60 have WD40 repeats. These domains may coordinate the function of ubiquitin
ligase activity by the U-box domain.

4. Conclusions

Research conducted over several decades has uncovered the cellular and biochem-
ical functions involved in ubiquitin modification. Protein–protein networks and
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studies of complex structures have contributed to unraveling the biochemical mecha-
nisms underlying ubiquitin modification. Identification of physiological E2 UBC-E3
ligase pairings has facilitated understanding of modification-types and associations.
Deep understanding of the structures and biochemical processes involved in ubiquitin
modification has contributed to determination of E3 ligase-substrate pairing and
network construction. RING-type ubiquitin ligases comprise the largest gene family
and are associated with various cellular processes and several diseases. Fundamental
questions remain to be answered regarding the biological functions served by
ubiquitin modification. Extensive further study of enzymes involved in ubiquitination
and related processes has potential to contribute to the understanding of the
pathogenesis of several diseases.
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