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1. Introduction       

Time series models (named also output or signal models), considered in this chapter, are 

functions of accessible process outputs, observed as a set of uniformly sampled data, which 

are one and the only information on the process itself.  They are mainly applied in signals 

modeling and prediction. Stochastic time series models, i.e. models that use white noise 

series as a part of the model, have been used in signal analysis since the sixties of the XX 

century. Time series modeling consists in fitting a function f(·) into a given data set iy .  

The f (·) is a function of previous data i jy − , for j=1,…, J and an innovation series i kw − , for 

k=1,…,K.   In general, stochastic time series model has the following form:  

 ( , )i i j i k iy f y w w− −= +  (1) 

 

The innovation series iw  use to be assumed either a white noise series ie , or series of model 

errors ˆ
i i iy yε = − . The function f(·) may be either linear or nonlinear.  Though real processes 

use to be non-linear and non-Gaussian, they are often modeled as linear ARMA  (Box, 1983), 

(Yaffee, 2000).  
 

 
0 1

( )

( )

dC dA

i i k i k j i j
k j

C D
y e c e a y

A D
− −

= =

= = +∑ ∑  (2) 

where: 

ie  - Gaussian white noise series, 

D  -  time delay operator:  k
i i kD y y −= . 

Theory of Gaussian linear time series models, including stability and invertibility 

conditions, as well as analysis and identification methods, are well established, e.g.  (Box, 

1983). However, asymmetrical time series or time series that are characterized by data 

anomalies cannot be modeled as linear. There are a great number of possible nonlinear 

structures of the function f(·), but the most common one is a nonlinear polynomial structure 

(3).  The model of such   form is named nonlinear ARMA model (NARMA). 

Source: New Approaches in  Automation and Robotics, Book edited by: Harald Aschemann, ISBN 978-3-902613-26-4, pp. 392,  
May 2008, I-Tech Education and Publishing, Vienna, Austria
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− − − − − −
= = = = = =

= + + + +

+ + + +

∑ ∑∑ ∑∑∑

∑ ∑∑ ∑∑∑
   (3) 

Bilinear ARMA models are a subset of the class of NARMA models, and are described by 
the following equation: 

 ,
1 1 1 1

JK K L

i i k i k k l i k i l j i j
k k l j

y w c w w y a yβ− − − −
= = = =

= + + +∑ ∑∑ ∑ . (4) 

Nonlinear time series analysis, particularly – establishing stability and invertibility 
conditions, is in general much more complex than analysis of the linear ones. Therefore, 
only the particular model structures are being analyzed in practice. In 1978, Granger and 
Andersen derived some interesting properties of the bilinear model with the simplest 
structure (Granger & Andersen, 1978) 

 ,1 111i i i iy e e yβ − −= +  (5) 

where ie  is an independent white noise sequence with zero mean and the variance (2)
em .  

Since then, simple bilinear models have been also investigated by Martins  (Martins, 1997), 

(Martins, 1999), Berlin Wu (Berlin Wu, 1995), Tong (Tong 1993), Granger and Terasvirta 

(Granger & Terasvirta, 1993). Opinion on the usefulness of bilinear series vary from a 

skeptic one "Using economic data, bilinear models have not been found to be very relevant”, (Tong 

1993) to an enthusiastic "The bilinear model has been used successfully to model time series that 

have been traditionally difficult to fit with classical linear time series methods” (Martins, 1999). The 

aim of the paper is to assume an attitude towards the above statements, especially in the 

field of technological and medical processes.  In the chapter, elementary bilinear model 

EB(k,l): 

  i i kl i k i ly w w yβ − −= + , (6) 

where k l≤ , is considered and then applied in signal analysis.  

The chapter is organized in the following way: 
Section 2 is dedicated to elementary bilinear processes. Analytical relations between process 

moments and process parameters are presented for diagonal and sub-diagonal elementary 

bilinear processes.  In general, they are valid under assumption that inaccessible process 

input is uncorrelated and symmetrically distributed.  

In Section 3, methods of parameters' estimation for elementary bilinear models are 
presented. Identification algorithms for simple and generalized methods of moments for 
elementary bilinear models are formulated. 
Section 4 is dedicated to application of elementary bilinear models in simulation and 

prediction. A hybrid linear-bilinear model is introduced and, on its basis, a bilinear 

minimum-variance prediction algorithm is derived, for model residuum represented by 

diagonal and sub-diagonal elementary bilinear model. 

In Section 5, the most important results are summarized. 
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2. Bilinear time series models 

Large amount of dynamical systems may be described with set of conservation equations in 

the following form: 

 
1

( )
( ) ( ) ( ) ( ),

m

k k

k

d t
t t u t t

dt =

+= + ∑x
Ax Bu N x  (7) 

where the last term creates the bilinear part of the equation. Bilinear equations are the 

natural way of description of a number of chemical technological processes like decantation, 

distillation, and extraction, as well as biomedical systems, e.g. (Mohler, 1999), (Nise, 2000).  

Though the nature of many processes is bilinear, identification of the model (7) can be 

difficult, at least because some of the state or input variables may be immeasurable.  This is 

the case of many biological or biomedical processes.  Often, the discrete set of the output 

observation  {yi}, for i=1,…,n, is the only information on the considered process.  In such 

cases bilinear time series model (8), which explains relation between the set of the output 

data only, may be considered. 

 1 1

11

( ) ( )
LK

i i i k i lkl
lk

A z y C z e e yβ− −
= + − −

==

∑∑   (8) 

 

Bilinear time series models have been mentioned in control engineering since early 

seventieth. Schetzen Theorem (Schetzen, 1980) states, that any stable time variant process 

may be modeled as time invariant bilinear time series. General structure of bilinear time 

series model (8) is complex enough to make its analysis very difficult. Therefore, in practise 

the particular model structures are being analysed. 

Stochastic processes are completely characterized by their probabilistic structure, i.e. 

probability or probability density p(y) (e.g. Therrien, 1992). However, in practice, 

probabilistic structure of a considered system is unknown and, therefore, the system 

analysis is performed on the ground of its statistical moments. The moments for any 

stochastic process with any probabilistic density p(y) are expressed as: 

 ( )
}{

rr
y iM E y=  (9) 

where E is an operator of expected value :  

 { } ( )
x

E y yp y μ= =∑ . (10) 

Central moments are: 

 
( )'

}{( )
r r

yM E y
i
μ= −  (11) 

When the structure of particular bilinear model is simple, the moments and the central 

moments may be analytically calculated based on the process equation, and the moments’ 

definitions (9), (11).  Elementary bilinear time series models, considered in this chapter, in 

dependence on their structures, are classified as sub diagonal or diagonal. 
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2.1 Sub diagonal elementary bilinear time series EB(k,l) 

When the structure k,l of elementary bilinear time series model EB(k,l) satisfy relation k l< , 

the model (12) is named sub diagonal. 

 ,i i kl i k i ly e e yβ − −= +  (12) 

The model is characterized by two parameters, klβ  and 2
em , related to each other. It may be 

proven, (e.g. Tong, 1993) that the model (12) is stable when 2 (2)
| | 1kl emβ < , and is invertible 

when 2 (2)
|| 0.5kl emβ < . Time series invertibility means that for a stable time series 

 1 , 1( , ,..., ,..., )i i i i k i i ly f e e e y y− − − −=  (13) 

operation of inversion 

 1 , 1( ,..., , ,..., )i i i k i i i le f e e y y y− − − −=  (14) 

is stable. The moments and the central moments of EB(k,l) may be analytically calculated 
based on the process equation (12), and the moments' definitions (9), (11). Relations between 

moments and parameters are given in the table 1. The variance (2) (0)yM of EB(k,l) is bounded 

when: 

 2 (2)
| | 1.kl emβ <  (15) 

The fourth moment (4) (0,0,0)yM  of EB(k,l) is bounded when: 

 4 (4)
| | 1kl emβ <  (16) 

Irrespective of the probabilistic density of ie , sub diagonal EB(k,l) is non-Gaussian and 

uncorrelated. Gaussian equivalent of the sub diagonal EB(k,l) with a bounded variance is a 
Gaussian white noise with the first and the second moments the same as the respective 
moments of the EB(k,l). Comparison of an EB(2,4) time series and its Gaussian equivalent is 
shown in the Fig.(1). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Relation between moments and EB(k,l) parameters 

Moments Formulae 
(1)
yM  0 

(2)(0)yM  

(2)( 0)yM m>  

(2)

2 (2)1
e

kl e

m

mβ−
 

0 
(3)(0,0)yM  

(3)
1 2( , )yM l k l l≠ ≠

(3)( , )yM k l  

0 
 

0 
(2) (2)(0)kl e ym Mβ  

(4)(0,0,0)yM  

(4) 2 (2) 2 (2)

4 (4)

6 ( ) (0)

1

e kl e y

kl e

m m M

m

β

β

+

−
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Fig. 1. Comparison of the estimated moments of EB(2,4) and an equivalent white noise 

2.2 Diagonal elementary bilinear time series EB(k,k) 

Elementary diagonal bilinear time series model, EB(k,k) has the following structure:  

 .i i kk i k i ky e e yβ − −= +  (17) 

Properties of the model depend on two parameters, kkβ  and (2)
em , related to each other.  

Stability and invertibility conditions for EB(k,k) are the same as for sub diagonal EB(k,l) time 
series model.  Having known the process equation (17) and the moments' definitions (9) and 
(11), moments and central moments of the EB(k,k)may be analytically calculated as functions 
of model parameters. Though EB(k,l) and EB(k,l) with respect to model equation are similar 
to each other, their statistical characteristics are significantly different.  Relation between 
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succeeding moments and model parameters are given in the table 2. An example of a single 
realization of EB(5,5) series as well as its sampled moments is shown in the the Fig. 2. 
 

Table 2. Relations between moments and EB(k,k) parameters 
 

 

Fig. 2. EB(5,5) sequence and its characteristics 
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Diagonal EB(k,k) time series { }iy has a non-zero mean value, equal to (1)
yM . Deviation from 

the mean (2)
i i yz y M= −  is a non-Gaussian time series. A Gaussian equivalent of iz  is a 

MA(k) series: 

 i i k i kz w c w −= +  (18) 

where iw  is a Gaussian white noise series.  Values of kc  and (2)
wm  can be calculated from the 

set of equations (19): 

 

(2) 2 (2) 4 (2) 2
(2) 2

2 (2)

2 (2) 2 (2)

(1 ( ) )
(1 )

1

                      ( )

e kk e kk e
w k

kk e

kk e k w

m m m
m c

m

m c m

β β
β

β

+ +
= +

−
=

 (19) 

3. Identification of EB(k,l) models 

Under assumption that the model EB(k,l) is identifiable, and that the model structure is 
known, methods of estimation of the model parameters are similar to the methods of 
estimation of linear model parameters.  The similarity stems from that the bilinear model 

structure, though nonlinear in ie  and iy , is linear in parameter klβ . A number of estimation 

methods originate from minimization of a squared prediction error (20).  Three of them, 
which are frequently applied in estimation of bilinear model parameters, will be discussed 
in the section 3.1. 

 | 1
ˆ

i i i iy yε −= −  (20) 

Moments’ methods are an alternative way of parameters’ estimation. Model parameters are 
calculated on the base of estimated stochastic moments (Tang & Mohler, 1988).  Moments’ 
methods are seldom applied, because hardly ever analytical formulae connecting moments 
and model's parameters are known. For elementary bilinear time series models the formulae 
were derived, (see table 1, table 2) and therefore, method of moments and generalized 
method of moments, discussed in section 3.2, may be implemented to estimate elementary 
bilinear models parameters. 

3.1 Methods originated from minimization of the squared prediction error 

Methods that originate from minimization of the squared prediction error (20) calculate 

model parameters by optimization of a criterion 2( )iJ ε , being a function of the squared 

prediction error. In this section the following methods are discussed: 

− minimization of sum of squares of prediction error, 

− maximum likelihood, 

− repeated residuum. 
a) Minimization of the sum of squares of prediction error 
Minimization of the sum of squares of prediction error is one of the simplest and the most 
frequently used methods for time series model identification.  Unfortunately, the method is 
sensitive to any anomaly in data set applied in model identification (Dai & Sinha, 1989). 
Generally, filtration of the large data deviation from the normal or common course of time 
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series (removing outliers) precedes the model identification. However, filtration cannot be 
applied to the bilinear time series, for which sudden and unexpected peaks of data follows 
from the bilinear process nature, and should not be removed from the data set used for 
identification. Therefore, the basic LS algorithm cannot be applied to elementary bilinear 
model identification and should be replaced by a modified LS algorithm, resistant to 
anomalies. Dai and Sinha proposed robust recursive version (RLS) of LS algorithm, where 

klβ  parameter of the model EB(k,l) is calculated in the following way: 

 

( ), , 1 , 1

-1
2

1

2 2
1

-1 2
1

1

kl i kl i i i i kl i

i i
i

i i i

i i
i i

i i i i

b b k y b

P
k

p

P
P P

p

α

α α

− −

−

−

−

= + −Φ

Φ
=

+Φ

⎛ ⎞Φ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜ +Φ⎝ ⎠

 (21) 

where: 

− ,kl ib -- evaluation of model parameter klβ  calculated in i-th iteration, 

− ˆ
i i k i lw y− −Φ = -- generalized input, 

− , 1
ˆ

i i i kl iw y b −= −Φ  -- one step ahead prediction error, 

− iα  -- coefficient that depends upon the prediction error as follows: 

ˆ( )
ˆ  for 

ˆ

ˆ 1                     for 

i tresh
i tresh

ii

i tresh

sign w y
w y

w

w y

α

⎧⎪⎪ >⎪⎪=⎨⎪⎪ ≤⎪⎪⎩

 

 treshy  -- a threshold value  

b)  Maximum likelihood 
Maximum likelihood method was first applied to bilinear model identification by Priestley  
(Priestley, 1980) then Subba (Subba, 1981), and others e.g. (Brunner & Hess, 1995). In this 
method, elementary bilinear model EB(k,l) is represented as a function of two parameters 

model( , )kl i ky b y − : 

 model kl i k i ly b y w− −=  (22) 

where iw  is an innovation series, equivalent to the model errors: 

 -mode- ( , ).i i kl i klw y y b y=  (23) 

Likelihood is defined as: 

 (2) (2)

1

( , ) ( , ; )
N

kl w kl w i
i

L L b m f b m w
=

= =∏  (24) 

Maximization of L is equivalent to minimization of -l=-ln(L): 

 (2) (2)

1

( , ) ln( ( , ; ))
N

kl w kl w i
i

l b m f b m w
=

− =−∑  (25) 
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Assuming that iw  is a Gaussian series with the mean value equal to zero, and the variance  

equal to (2)
wm , negative  logarithm likelihood  -ln(L) is: 

 
2

(2) (2)
-1 1 (2)

1

- ln( ) - ( , ,..., | , ) ln(2 ) .
2 2

N
i

N N kl w w
i w

N w
L l w w w b m m

m
π

=

= = +∑  (26) 

Having assumed initial values ,0klb  and (2)
0wm , parameters klb and (2)

wm  are calculated by 

minimization of (26).  Solution is obtained iteratively, using e.g. Newton-Raphson method.  

Essential difficulty lies in the fact that iw  is immeasurable and, in each iteration, should be 

calculated as: 

 , -1 - --i i kl i i k i lw y b w y=  (27) 

Obtained estimates of  EB(k,l) parameters are asymptotically   unbiased if iw  is Gaussian 

(Kramer & Rosenblatt, 1993). For other distributions, Gaussian approximation of the 

probability density function mode( ( , ))i kl i klf y y b y −−  causes that the estimated parameters are 

biased.  
c) Repeated residuum method 
Alternative estimation method, named repeated residuum method, is proposed in (Priestley, 
1980).  Implemented to identification of elementary bilinear models, the method may be 
presented as the following sequence of steps: 
1. Model EB(k,l) is expressed as:  

 -(1 )k
i i kl i ly w b y D= +  (28) 

        or equivalently: 

 
-1

i
i k

kl i l

y
w

b y D
=

+
 (29) 

2. Assuming klb small, the (29) may be approximated by: 

 - - -(1 - ) - .k
i kl i l i i kl i l i kw b y D y y b y y= =  (30) 

        Presuming iw is an identification error, an initial estimate ,0klb of the parameter klb can 

        be evaluated from the (30), with the use of e.g. LS method. 

3. Next, starting from ,0klb  and 0 0w = , succeeding iw  can be calculated iteratively: 

 ,0  for  , 1,..., .i i kl i k i lw y b w y i k k N− −= − = +  (31) 

4. Having known iy and iw  for i=k,...N, an improved estimate klb that minimizes the 

following sum of squared errors (32) may be calculated. 

 2
- -( ) ( - ) .  

N

kl i kl i k i l
i k

V b y b w y
=

=∑  (32) 

5. The steps 3 and 4 are repeated until the estimate achieves an established value. 
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3.2 Moments method 
With respect to the group of methods that originate from the minimization of the squared 
prediction error, a precise forms of estimation algorithms can be formulated.  On the 
contrary, for moments method a general idea may be characterized only,  and the details 
depend on a model type and a model structure.  Moments method  MM consists of two 
stages: 
Stage 1: Under the assumption that the model structure is the same as the process  structure, 

moments and central moments ( )r
yM  are presented as a function of process parameters Θ : 

 ( ) ( )r
yM f= Θ  (33) 

If it is possible, the moments are chosen such that the set of equations (33) has an unique 
solution. 

Stage 2: In (33) the moments ( )r
yM are replaced with their evaluation ( )ˆ r

yM , estimated on the 

base of available data set iy .  

 ( )ˆ ( )r
yM f= Θ  (34) 

The set of equations (34) is then solved according to the parameters Θ . Taking into 
consideration particular relation between moments and parameters for elementary bilinear 
models, MM  estimation algorithm in a simple and a generalized version can be proposed. 
MM – simple version 
It is assumed that iw  is a stochastic series, symmetrical distributed around zero, and that 

the even moments (2 )r
wm satisfy the following relations: 

 (2 ) (2)
2 ( )    for 1,2,3... r r

w r wm k m r= =  (35) 

Identification  of EB(k,l) consists of identification  of the model structure (k,l), and estimation 

of the parameters klb and (2)
wm . Identification algorithm is presented below as the sequence 

of steps: 
1. Data analysis:  

a. On the base of data set  { }iy for i=1,...,N, estimate the following moments:  

(1) (2) (3) (4)
1 2 1 2

ˆ ˆ ˆ ˆ;   ( )  for 0,1,2...;   ( , )  for , 0,1,2...;   (0,0,0) y y y yM M m m M l l l l M= =    

b.  Find the values of  1 0l ≠ and 2 0l ≠ ( 1 2l l≤ ), for which the absolute       value of 

the third moment (3)
1 2

ˆ ( , )yM l l  is maximal. 

2. Structure identification: 

        a.      If 1 2,  l k l l= = then subdiagonal model EB(k,l) should be chosen. 

        b.   If 1 2,  l k l k= =  then diagonal model EB(k,k) should be chosen 

3. Checking system identifiability condition: 
        If the model EB(k,l) was chosen, than: 
        a.     Calculate an index 

                                                               
(3) 2
y

3 (2) 3
y

ˆ(M ( , ))
 W =

ˆ(M (0))

k l
                                                               (36) 
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         b.  If  3W <0.25 it is impossible to find a bilinear model EB(k,l) that has the same  

               statistical characteristics as the considered process. Nonlinear identification 
               procedure should be stopped.  In such case either linear model may be assumed, or  
               another non-linear model should be proposed. 
If the model EB(k,k) was chosen, than: 
          a.   Calculate an index 

 
(3)
y

4
(2) (2)
y y

M̂ ( , )
W =

ˆ ˆM (0) M ( )

k k

k
 (37) 

          b.   If 4

3

2
W ε− < , where ε  is an assumed accuracy, then the model input may be 

                assumed Gaussian. 
i.  Calculate an index  

 
(3) (2)
y y

5 (2) (3)
y y

ˆ ˆM ( , )M ( )
W =

ˆ ˆM (0)M (0,0)

k k k
  (38) 

ii.  If 5 0.23W < , than the  model EB (k,k) with the Gaussian input may be    

applied. If not than linear model MA(k) should be taken into account. 

          c.   If 4

3

2
W ε− ≥ than the model input iw  cannot be Gaussian. 

4. Estimation of model parameters : 
          a.   When the model EB(k,l) was chosen in the step 2: 

                i.      Find the solutions 1 2,x x  of the equation: 

 3 (1 - ),W x x=   (39) 

                         where 2 (2)
kl wx b m=  

                ii.   For each of the solutions 1 2,x x  calculate the model parameters from the 

                         following equations: 

 

(2) (2)

2

(2)

ˆ (0)(1 - ),w y

kl

w

m M x

x
b

m

=

=
  (40) 

                iii.  In general, the model  EB(k,l) is not parametric identifiable, i.e. there is no 

                        unique solution of the equation (39) and (40). Decision on the the final model 

                        parameters should be taken in dependance on model's destination. Models 

                        applied for control and prediction should be stable and invertible. Models  

                        used for simulation should be stable but do not have to be invertible. 

         b.   When in the step 2 the model EB (k,k) is chosen:   
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                i.   If  4

3

2
W ε− ≥  then 4 4

4 4 4

k -W 2
x= ,

W 2( 1) 2k k− −
where: 

4
4 4

2 3 2
 for <3:  

2 2

k
k W< <  , 

4
4 4

3 2 2
 for >3:  

2 2

k
k W< < . 

                ii.   If 4

3

2
W ≈ , i.e. iw is Gaussian, then  the folloving equation have to be solved: 

  5

6 (1 - )

3 2 22 ^ 2

x x
W

x x
=

+ +
 

                      Because the model EB(k,k) with the Gaussian input is not parametric 
                      identifiable, the final model should be chosen according to its destination,  
                      taking into account the same circustances as in the paragraph a) -iii. 
MM -- generalized version: 
Generalized moments method  (GMM) (Gourieroux et al., 1996) (Bond et al., 2001), (Faff & 
Gray 2006), is a numerical method in which model parameters are calculated by 
minimization of the following index: 

 2

1

 ( , ) ,
J

k i
j

I f y
=

= Θ∑  (41) 

where: 

Θ  -- vector of parameters, 

( , )j if y Θ    -- a function of data ( )y i  and  parameters Θ , for which: 

 { }0 0, 0   when   =iE y Θ = Θ Θ  (42) 

0Θ  -- vector of parameters minimizing the index I. 

Function ( , )j if y Θ   for  j=1,2,...,J   is defined as a difference between  analytical moment  

( )( )k
yM Θ dependant upon the parameters Θ , and the evaluation ( )ˆ k

yM calculated on the base 

of iy  for i=1,...,N. The number J  of considered moments depends on the model being 

identified.  
Identification of the subdiagonal, elementary bilinear model EB(k,l) makes use of the four 

moments. Functions jf , for  j=1,...,4 are defined in the following way: 

(2) (2)
1

(3) (3)
2

(4) (4)
3

(2) (2)
4

ˆ( , ) (0) - (0)  

ˆ( , ) ( , ) - ( , ) 

ˆ( , ) (0,0,0) - (0,0,0)
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i y y
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f y M M

f y M k l M k l
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Θ =
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Diagonal model EB(k,k) is identified on the base of three moments. The functions jf  for 

j=1,...,6  are: 
(1) (1)

1

(2) (2)
2

(2) (2)
3

(3) (3)
4

(3) (3)
5

(2) (2)
6

ˆ( , ) -

ˆ( , ) (0) - (0) 

ˆ( , ) ( ) - ( ) 

ˆ( , ) (0,0) - (0,0) 

ˆ( , ) ( , ) - ( , )

ˆ( , ) -  

i y y

i y y

i y y

i y y

i y y

i w w

f y M M

f y M M

f y M k M k

f y M M

f y M k k M k k

f y m m

Θ =

Θ =

Θ =

Θ =

Θ =

Θ =

 

For elementary bilinear models vector of parameters contains two elements: (2)  and w klm b .  

The parameters are calculated by minimization of the index (41), using e.g. nonlinear least 

squares method. It is assumed that starting point (2)
0 ,0 0,kl wb m⎡ ⎤Θ = ⎢ ⎥⎣ ⎦  is a solution obtained with 

the use of the simple method of moments. Minimum of the index I may be searched 

assuming that the parameters klb and (2)
wm  are constrained.  The constrains result from the 

following attributes: 

− The variance (2)
wm  of the model input should be positive and less than the output 

variance, hence: 

 (2) (2)0 ,w ym m< <  (43) 

− The model should be stable, hence: 

 2 (2) 1kl wb m <  (44) 

3.3 Examples  
The methods discussed above were applied to elementary bilinear time series identification 
under the following conditions: 
1. Elementary diagonal and subdiagonal time series were identified. 

2. Distribution of the white noise iw  was assumed: 

• Gaussian, 

• even 

        with the zero mean and the variance  (2) 1wm = . 

3. All considered processes were invertible, i.e. the parameters  satisfied the following 

condition: 2 (2) 0.5kl wb m < (Tong, 1993). 

4. Identification was performed for 200 different realizations of the time series consisted of 
1000 data. 

5. For generalized moments method: 

− Minimization of the performance index was carried out   with the constrains: 
 

(2) (2)

(2) (2)

-0.5 0.5ˆ

0

kl

y y

w y

b
m m

m m

< <

< <
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− Starting point was calculated using simple moments method. 
Result of conducted investigation  may be summarized as follows: 
1.     Not every invertible elementary bilinear process is identifiable. 

2.    Correct identification results were obtained for processes, for which 0.4klβ ≤ , what is 

        equivalent to: 2 (2) 0.16kl wmβ ≤ . 

3.    When 2 (2) 0.16kl wmβ >   number of process realization, for which elementary bilinear model 

        cannot be identified grows with the growth of  2 (2)
kl wmβ . 

4.    When  0.4klβ ≤  all the tested methods give the expected values of identified parameters  

        klb equal to the truth values  klβ . 

5.   Generalized moments method is somewhat better than other considered methods,  
         because the variances of the estimated parameters are the smallest. 
6.    For the processes with Gaussian excitation the variances of the identified parameters  
         are greater  than for the processes with even distribution of the input signal. 

4. Application of EB(k,l) in signal modelling and prediction 

Elementary bilinear time series models, which statistical attributes as well as methods of 
identification have been presented in the previous sections, are fit to modelling a limited 
class of signals only. However, an idea of using EB(k,l) models as a part of a hybrid linear-
bilinear model, let to widen the class of signals, for which improving accuracy of modelling 
and prediction become possible. 

4.1 Hybrid linear-bilinear model 

Idea of a hybrid linear-bilinear (HLB) model is presented in the Fig. 3. Elementary bilinear 

model EB(k,l), for which is assumed that k l≤ , and ( )e i  is an independent white noise 

series,  is applied as a part of the HLB.  For k<l  HLB model may be considered as linear 
autoregressive  model stimulated by EB(k,l) series. The hybrid model consists of two parts: 

− linear, that is built on the original data series ( )y i : 

 
1

dA
L
i j i j

j

y a y −
=

=−∑  (45) 

− nonlinear that is built on the residuum wi:  

 L
i i iw y y= −  (46) 

Residuum wi is described in the following way: 

 i iw η η= −   (47) 

where: 

 
(2)

model

for model 

  for  

0               
kk em EB(k,k)

EB(k,l)

β
η

⎧⎪⎪=⎨⎪⎪⎩
 (48) 
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and iη  is described by the elementary bilinear model  EB(k,l) or EB(k,k): 

 
 

for model

for model

 ( , ) 

  ( , ) 

  i kk i k i k
i

i kl i k i l

e e EB k k

e e EB k l

β η
η

β η
− −

− −

⎧⎪ +⎪=⎨⎪ +⎪⎩
 (49) 

 

Elementary bilinear

model 

Process

Linear Model 

AR(dA) 

yi

ei

w i 

 η i 

yi
LB

Hybrid LB 

 

Fig. 3. Hybrid Linear-Bilinear model 

The output of the HLB model is the following sum: 

 LB L
i i iy y η= +  (50) 

Identification of the HLB model is done in three stages.   
1. First stage -- data pre-processing -- is optional. If the original data set {x(i)} contain 

linear trends, they are removed according to:  

 1i i iz x x −= −  (51) 

        If it is necessary, obtained data set zi may be transformed. One of possible data 
        transformation is: 

 
var( )

i
i

z z
y

z

−
=      (52) 

2. The second stage -- linear model AR(dA) (53) is identified. 

 1( ) i iA z y w− =  (53) 

        From the experience follows, that the AR(dA) models satisfying the coincidence  
        condition: 

 0   for 1,...,j jr a j dA≥ =  (54) 

        where: 

 
1

1 N j

j i i j
i

r y y
N j

−

−
=

=
− ∑  (55) 
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        are not only parsimonious but also have the better predictive properties than the 
        AR(dA) models with the full rank. 
3. The third stage -- elementary bilinear time series model is identified for residuum wi  in 

a way discussed in section 3. 

4.2 Prediction 

Time series models are mainly applied for signals’ prediction.  In this section, a prediction 
algorithm derived on the base of HLB model is presented. As it was discussed in the section 
2, elementary bilinear models EB(k,l) and EB(k,k) have different statistical attributes.  
Therefore, prediction algorithms, though based on the same HLB model, have to be 
designed separately for residuum represented as EB(k,l) and EB(k,k). Minimum variance 
prediction algorithms have roots in the following theorems. 
Theorem 1.  

If yi is a non-Gaussian stochastic time series described by the hybrid model HLB:  ( ) i iA D y η= , 

where: 

− residuum ηi  is represented as a sub diagonal model EB(k,l) and k<l: 

i i kl i k i lw b wη η− −= + , 

− iw is an independent white noise series with the variance (2)
wm , 

 then the h-step prediction according to the algorithm: 

 ( )|
ˆ ( ) ( )i kl i h k i h li h iy G D y F D ηβ ε η+ − + −+ = +  (56) 

where:  

|
ˆ

i i i i h
ηε η η −= − , 

|
ˆ

kl i h k i h li i h b ηη ε η+ − + −− = , 

gives the prediction error i

y

i wDF )(=ε  with the minimal possible variation: 

 { }
1

2 (2) 2

1

1
h

y
i w i

i

E m fε
−

=

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠∑  (57) 

In the above equations D – states for a nonlinear delay operator defined as follows: 

( )k
i i kD y y −=  

( )  k
i i i k i kD y x y x− −=  

( )k
i i i k iD y x y x−= , 

A(D),  F(D), G(D) – are polynomials in D with degrees dA, h-1, dA-1 respectively. The 
polynomials are related to each other so to satisfy the following equation: 

 1 ( ) ( ) ( )hA D F D D G D= +  (58) 
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When residuum is a diagonal EB(k,k) process, the following theorem is formulated. 
Theorem 2.  

If yi is a non-Gaussian stochastic time series described by the hybrid model  HLB: ( ) i iA D y z= , 

where residuum zi  may be presented as: 

i iz η η= − , 

i i kk i k i kw wη β η− −= + , 

(2)
kk wmη β= , 

then the h-step prediction according to the algorithm: 

 ( ) ( )|
ˆ ( ) ( ) ( ) ( )i kk i h k i i h k kk i h ki h iy G D y F D z z F D F Dη ηβ ε η β ε η η+ − + − + −+ = + + + + +  (59) 

where:  

|
ˆ

i i i i h
ηε η η −= − , 

|
ˆ

kk i h k i h ki i h b ηη ε η+ − + −− = , 

gives the prediction error:  ( )y
i iF D wε =  with the minimal possible variation: 

{ }
1

2 (2) 2

1

1
h

y
i w i

i

E m fε
−

=

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠∑  

Delay operator D and the polynomials A(D), F(D), G(D) are defined in the same way as in 
the Theorem 1. 

4.3 Prediction strategy  

Prediction strategy means a way of data processing that should be applied to the original 

data series to obtain the accepted prediction. In this section MV -HLB prediction strategy is 

formulated. The strategy has the form of an algorithm built of a sequence of the following 

steps: 

1. The original set of data iy , i=1,…,N  is divided into two sets: 

− training set, for 1,..., traini N= , that is used for model identification, 

− testing set, for 1,..., testi N= , on which the prediction algorithm is tested. 

2. On the training set, parameters of a linear AR(dA) model:  

 1 1 2 2 ...i i i dA i dAy a y a y a y− − −=− − − −  (60) 

        are estimated. For further consideration, such models that satisfy coincidence condition 
        (54) are accepted only. 
3. On the training set the residuum is calculated according to the equation: 

 1 1 2 2 ...i i i i dA i dAy a y a y a yη − − −= + + + +  (61) 
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4. In the following steps 4-7 identification procedures described in details in section 3 are 
realized. 

5. The first, the second, the third and the fourth moments of the residuum ηi are 
estimated. 

6. Identifiability criterion for EB(k,l) process is checked for the series of residuum. If fitting 
elementary bilinear model is possible, one can continue in the step 7. If not, one should 
move to the step 12. 

7. The structure (k,l) of the EB(k,l) model is established on the base of the third moment for 
residuum. 

8. The values of klβ  and (2)
wm  are calculated using e.g. one of the moments’ methods. 

9. For the assumed prediction horizon h and the estimated polynomial A(D) the 

diophantine equation (58) is solved, and the parameters kf , k=1,…,h-1  of the 

polynomial F(D) as well as the parameters jg ,  j=1,…,dA-1 of the polynomial G(D) are 

calculated. Then, if the prediction horizon min( , )h k l≤ , prediction algorithm is 

designed either on the base of the Theorem 1 -- for the EB(k,l) model of the residuum, or 
on the base of the Theorem 2 -- for the EB(k,k) model of the residuum. 

10. The designed prediction algorithm is tested on the testing set. STOP. 

11. If min( , )h k l>  then move to the step 12.  

12. Design linear prediction algorithm e.g. [1], [4]:      |
ˆ ( ) ii h iy G D y+ =  

13. Test it on the training set. STOP.  
The above prediction strategy was tested for simulated and real world time series. In the 

next section, the strategy is applied to series of sunspot numbers and MVB prediction is 

compared with the non-linear prediction performed using the benchmark SETAR model, 

proposed by Tong (Tong, 1993). 

4.4 Sunspot number prediction  

Sunspots events have been observed and analysed for more than 2000 years.  
 

 

year 

Sunspot

number

 

Fig. 4.  Sunspot events  
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The earliest recorded date of a sunspot event was 10 May 28 BC. The solar cycle was first 
noted in 1843 by the German pharmaceutical chemist and astronomer, Samuel Heinrich 
Schwabe as a result of 17 years of daily observations. The nature of solar cycle, presented in 
the  Fig. 4   characterized by a number of sunspots that periodically occurs, remains a 
mystery to date. Consequently, the only feasible method to predict future sunspot number is 
time series modeling and time series prediction. Linear prediction do not give acceptable 
results hence, the efforts are made to improve the prediction using nonlinear models and 
nonlinear methods.  Tong (Tong, 1993) has fitted a threshold autoregressive (SETAR) model 
to the sunspot numbers of the period 1700-1979: 

 

1 2 3 4 5

1
6 7 8 9 10 8

2
1 2 3 8

1.92 0.84 0.07 0.32 0.15 0.20

0.00 0.19 0.27 0.21 0.01         11.93

4.27 1.44 0.84 0.06                                  

i i i i i

i i i i i i i

i

i i i i i

Y Y Y Y Y

Y Y Y Y Y e when Y
Y

Y Y Y e when Y

− − − − −

− − − − − −

− − − −

+ + − + −

− + − + + + ≤
=

+ − − + 11.93

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪ >⎪⎪⎩

  (62) 

 The real data were transformed in the following way:  

 2( 1 1)i iY y= + −  (63) 

where iy is the sunspot number in the year 1699+i.  

Based on the model (62) prediction for the period 1980-2005 was derived, and used as a 
benchmark for comparison with the prediction, performed in the way discussed in the 
paper. The HLB model (64) was then fitted to the sunspot numbers, coming from the same 
period 1700-1979, under the assumption that the linear part of the HLB model satisfies the 
coincidence condition.  

 
1 8

7 7

0.81 0.21

0.02
i i i i

i i i i

Y Y Y

e e

η
η η

− −

− −

= + +
= +

 (64) 

The iY  is a variable transformed in the same way as in the Tong’s model (62), and the 

variance of residuum is var( ) 8.13η = .  
 

1980 1981 1982 1983 1984

1981 198419831982

real  data

prediction

 

Fig. 5.  Scheme of prediction calculation 

Sunspot events prediction for the period 1981—2005 was performed according to the 
scheme showed in the Fig. 5. One step ahead prediction 1|

ˆ
i iy + calculated at time i depends on 

the previous data and the previous predictions. Prediction algorithm has the form specified 
in Theorem 2.For the data transformed according to (63) predictions obtained based on 
Tong’s model and the HLB model are compared in the Fig. 6. 
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Fig. 6. Prediction for the period 1981-2005 based on Tong’s and HLB models 

The HLB prediction is evidently more precise than the one derived on the base of the Tong’s 
model. Sum of squares of the Tong’s prediction errors was: 
 

41.07 10TS = × , 

while sum of squares of the HLB prediction errors was: 
 

31.70 10MLBS = ×  

Data transformation (63) is not natural for minimum variance prediction. Therefore, HLB 
model was once more identified, for the data transformed in the following way:  

 
var( )

i
i

y y
Y

y

−
= . (65) 

This time the following HLB model was identified: 

 
1 7 8

3 3

0.80 0.29 0.52

0.08
i i i i i

i i i i

Y Y Y Y

e e

η
η η

− − −

− −

= − + +
= +

 (66) 

and variance of the residuum var( ) 0.24.η =  Prediction algorithm was built on the base of 

model (66) in a way specified in Theorem 2.  The sum of squares of the HLB prediction 
errors was this time: 
 

30MLBS = , 

hence, higher quality of the HLB prediction was obtained this time than previously.  Fig. 7 
illustrates prediction for the period 1981-2005, obtained on the base of Tong’s model (62), 
built on the data transformed according to (63), and on the base of HLB model (66). 
Tong (Tong, 1993) after discussion with Sir David Cox, one of the greatest statisticians in XX 
century, defined genuine prediction, as the prediction of data that are entirely not known at 
the stage of prediction establishing. The idea is illustrated in the following scheme, and is 
known also as a multi-step prediction.  
In 1979, genuine prediction of sun spot numbers was established for years 1980—1983 on 
the base of Tong, and HLB models. Sums of squares of the prediction errors were equal to 
347 and 342, respectively. The results are showed in the Fig. 9. 
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Fig. 7. Prediction for the period 1981-2005 based on Tong’s and HLB models.  
 

 

Fig. 8. Illustration of genuine prediction 
 

 

Fig. 9. Genuine prediction for the period 1980-84 

5.  Resume 

In the chapter, a new method of time series analysis, by means of elementary bilinear time 
series models was proposed. To this aim a new, hybrid linear – elementary bilinear model 
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structure was suggested. The main virtue of the model is that it can be easily identified. 
Identification should be performed for the linear and the non-linear part of the model 
separately.  Non-linear part of the model is applied for residuum, and has elementary 
bilinear structure. Model parameters may be estimated using one of the moments’ methods, 
because relations between moments and parameters of elementary bilinear time series 
models are known. 
Based on HLB model, minimum-variance bilinear prediction algorithm was proposed, and 
the prediction strategy was defined. The proposed prediction strategy was than applied to 
one of the best-known benchmark – sunspot number prediction.  Prediction efficiency 
obtained with the use of HLB model, and bilinear prediction algorithm, in the way described 
in the paper, occurred much better than the efficiency obtained on the base of SETAR model, 
proposed by Tong. 
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