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Chapter

Cardiorenal Syndrome in Patients 
on Renal Replacement Therapy
Evgeny Shutov and Natalia Filatova

Abstract

In this chapter authors discusses cardiorenal relationships in patients with renal 
replacement therapy (RRT) which are considered as a separate type of cardiorenal 
syndrome (CRS). Frequency and severity of CRS in patients on dialysis are cor-
related with quantity of years of the dialysis treatment; depend on quality of dialysis 
regimen and level of residual renal function. RRT-associated cardiac pathology are 
including left ventricular hypertrophy, ischemic cardiomyopathy, congestive heart 
failure, coronary atherosclerosis and calcinosis, severe arrhythmias. The article 
analyzes role of malnutrition and dialysis-induced cachexia, bio-incompatibility 
of dialysis membranes, oxidative stress and inflammation, arterio-venous fistula, 
decrease of residual renal function in the development of dialysis-induced CRS. 
The review examines the mechanisms of progressive myocardial ischemia induced 
by dialysis: myocardial stunning, hemodialysis-induced hypotension, uremic 
small vessel disease. Prevention of dialysis-induced CRS includes a choice of the 
optimal RRT method (peritoneal dialysis or hemodialysis), соntrol of dialysis 
regimen, residual renal function, biocompatibility of membrane, inflammatory 
markers, body mass index, serum level albumin, phosphate, calcium, parathyroid 
hormone, fibroblast growth factor-23. Electrocardiogram, ultrasonic monitoring 
and coronarography reveals indications for соnservative cardioprotective therapy 
and angioplasty interventions, including coronary artery bypass surgery and cardiac 
pacemaker implantation, in patients with dialysis-induced CRS.

Keywords: cardiorenal syndrome, hemodialysis, peritoneal dialysis, residual renal 
function, oxidative stress, malnutrition

1. Introduction

Cardiorenal syndrome (CRS) refers to the “vicious circle” of interrelated 
damage of the heart and kidneys, in which dysfunction of one organ compli-
cates the dysfunction of the other, with gradual development of the cardiorenal 
decompensation.

C. Ronco distinguished 5 clinical types of CRS [1]:

 Type 1: Acute worsening of heart function leading to kidney injury and/or 
dysfunction.
 Type 2: Chronic abnormalities in heart function leading to kidney injury or 
dysfunction. This subtype refers to a more chronic state of kidney disease com-
plicating chronic heart disease, the so-called chronic kidney disease (CKD).
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 Type 3: Acute worsening of kidney function leading to heart injury and/or 
dysfunction (acute heart failure).
 Type 4: Chronic kidney disease causing cardiac overload, leading to progressive 
chronic cardiac dysfunction.
 Type 5: Systemic condition (e.g., sepsis, vasculitis) leading to simultaneous 
injury and/or dysfunction of heart and kidney.

We can see the interplay of decreased glomerular filtration rate and impaired 
cardiac contractile function early in chronic kidney disease (CKD) worsening as 
renal failure increases. However, the existing classification of CRS does not consider 
the population of patients on renal replacement therapy (RRT), where the effect of 
dialysis treatment itself engages additional mechanisms of pathogenesis of cardiac 
pathology. Thus, the progression of cardiac dysfunction with decreasing ejection 
fraction reduces the effectiveness of hemodialysis (HD), while reducing the inten-
sity of dialysis regimen and gradual loss of residual renal function speeds up the 
atherosclerosis and cardiomyopathy progression.

Thus, one can consider the cardiorenal relationships in patients on RRT, reflect-
ing progression and myocardial damage in dialysis patients, as a separate type 
of CRS where the renal component implies end stage renal disease (ESRD) with 
complicating metabolic and endocrine disorders, complete loss of residual renal 
function, and dialysis therapy.

The features of cardiac dysfunction in patients on RRT include its widespread 
prevalence and severity [2]. The incidence of left ventricular myocardial hypertro-
phy (LVH) increases with increasing stage of CKD, reaching 90% in stages 4–5 [3]. 
Prevalence and severity of cardiac pathology, both coronary and non-coronary, 
increases rapidly in the dialysis stage of renal failure, correlating with dialysis 
experience. In 75–80% of patients with CKD stage 5D, secondary cardiomyopathy 
develops predisposing to congestive heart failure (CHF), acute coronary syndrome, 
or complex rhythm and conduction abnormalities. In patients on RRT, progressive 
atherosclerosis is associated with activation of inflammatory reactions and high 
frequency of protein-energy malnutrition (PEM) [4]. Thus, PEM is diagnosed 
in 20–50% of patients with pre-dialysis stages of CKD, increasing to 50–80% in 
patients on regular HD and permanent PD.

The cardiac function in patients on RRT deteriorates progressively under several 
pathogenetic mechanisms. These include bio-incompatibility of dialysis membranes 
and solutions, ineffective dialysis, PEM, dialysis hypotension, rapid decline and 
subsequent complete loss of residual renal function, vascular calcification, excessive 
shunt from arterio-venous hemodialysis fistula (AVF).

2.  Bio-incompatibility of dialysis membranes, activation of oxidative 
stress, and inflammation

CKD in RRT is characterized by higher level of uremia and the impact of dialysis 
procedure itself. Despite the successes of modern hemodialysis therapy, the problem 
of hemodialysis membranes’ bio-incompatibility is still unresolved. A key inducer 
of blood cell activation is dialyzer membrane material, along with the endotoxin 
contamination of dialysis solutions. Membrane contact with blood causes pro-
inflammatory and pro-oxidant stress, thrombosis, and release of oxidative stress 
biomarkers, inflammatory and anti-inflammatory cytokines (IFN-γ, TNF-α, IL -1β, 
IL-4, IL-6, IL-10, IL-12, and IL-18), and acute phase proteins (C-reactive protein, 
fibrinogen) [5]. Other consequences of bio-incompatibility are complement [6] and 
platelet activation [7].
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The oxidative events induced by extracorporeal treatment are thought to affect 
the concomitant pathology. Chronic inflammation, besides cardiovascular dysfunc-
tion, contributes to worsening renal anemia by reducing sensitivity to the erythro-
poietin-stimulating agent and shortening the life span of red blood cells [8, 9]. Also, 
blood leukocyte activation, oxidative stress, and mechanical factors damage the 
red blood cells. Leukocytes in contact with bio-incompatible dialysis membranes 
re-activate. The resultant leukopeniais considered a major cause of defective cellular 
immune response in patients on hemodialysis (HD) [10, 11]. Changes in lympho-
cyte phenotype (from Th1 to Th2) cause this response and excessive synthesis of 
pro-inflammatory cytokines [5]. Bio-incompatible membranes release pyrogens 
and active inflammatory mediators (histamine and bradykinin). These contribute 
to fever and hemodialysis-induced hypotension [12]. The latter is a key factor in 
residual renal function reducing in patients on regular HD [13].

Dialysate composition for peritoneal dialysis (PD) can also cause oxidative 
stress and inflammation [14, 15]. High concentrations of glucose and lactate, and 
low pH or hyperosmolality of dialysate for PD contribute to excessive production 
of reactive oxygen species and accumulation of oxidative damage products in the 
peritoneum, increasing calcification and fibrosis. The relationship between the 
preserved residual renal function and oxidative stress has been shown to correlate 
with cardiovascular risk and survival in patients on PD [14]. Given the longer 
preservation of residual renal function in patients on PD treatment, this method 
can be considered more favorable for patients with cardiovascular diseases (CVD). 
Also, several studies have shown a higher accumulation of oxidants and depletion of 
antioxidant reserves in patients on HD compared with those on PD [15, 16].

The accumulation of oxidative stress products is the highest in patients with 
ESRD. Peroxidizing agents oxidize unsaturated lipids [17–19] and endogenous 
pro-oxidants damage plasma proteins with the formation of glycation products 
[20–22]. Small reactive carbonyls and larger posttranslational uremic-modified 
proteins form many inflammatory mediators, reflecting uremic toxicity that is little 
dependent on the method of dialysis therapy [23]. However, all modern diffusion, 
convective, or mixed methods do not remove medium- and high-molecular-weight 
dissolved substances modified by reactive oxygen species (ROS) and reactive 
carbonyls effectively from blood [24–26].

Oxidative stress plays a key role in the development of cardiac dysfunction in 
patients on RRT. In patients with ESRD, the balance between nitric oxide (NO) and 
ROS is shifted toward the latter by increasing ROS production and decreasing NO 
availability [27]. Pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α can stimu-
late renin synthesis and norepinephrine secretion [28, 29]. IL-6 induces AT-1 recep-
tors and angiotensin II-mediated ROS production in cultured rat smooth muscle 
cells, supporting the link between inflammation, renin-angiotensin-aldosterone 
system (RAAS) activation, and oxidative stress [30]. Volume overload on RRT and 
venous stasis are additional sources of inflammatory mediators [31, 32]. Because of 
intravascular overload, the vascular endothelium may be a major source of cytokine 
production in response to biomechanical stress [33]. Thus, the above data confirms 
the potential role of circulating cellular precursors of ROS and/or local agonists of 
ROS synthesis in the development of CRS in dialysis patients.

C. Vida et al. have shown in dialysis patients the activation of peripheral blood 
polymorphonuclear and mononuclear leukocytes, which leads to excess production 
of oxidative compounds such as reactive oxygen species, and it is this process that 
plays the leading role [34].

The imbalance between the RAAS, sympathetic nervous system, and inflam-
mation speeds up the CRS formation in dialysis patients. To prevent and slow the 
cardiac pathology in HD treatment, highly purified dialysis solutions and synthetic 
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dialysis membranes are being developed to reduce the risk of oxidative stress and 
other manifestations caused by low biocompatibility of membranes. For example, 
dialysis membranes made of regenerated cellulose that interact with the β-D-
glucose hydroxyl groups of blood components cause activation of the complement 
system and leukopenia. To improve the biocompatibility of these membranes, 
hydroxyl groups are modified chemically by acetylation to produce triacetate 
cellulose or addition of D-α-tocopherol polyethylene glycol-1000 succinate chains, 
an esterified form of α-tocopherol. HD and PD in CKD permanently excrete 
antioxidants through the membranes. To normalize their blood levels and suppress 
ROS generation in patients on HD, vitamins C, E, and glutathione are supplemented 
orally [27].

3. Protein and energy deficiency and dialysis cachexia

PEM should be noted among the factors influencing the progression of car-
diovascular pathology and the formation of CRS in patients on dialysis [35, 36]. 
Progressive blood pressure instability with LVH and diastolic dysfunction, acidosis, 
coronary atherosclerosis, as well as increasing hypoalbuminemia and severe anemia 
early lead to ineffective HD and loss of residual renal function. These exacerbate 
hyperhydration with overload and ischemia of myocardial muscle, oxidative stress, 
and heart chamber dilatation.

The causes of PEM in dialysis patients include protein hypercatabolism with 
decreased synthesis of albumin and essential amino acids and their subsequent 
losses (more on PD), L-carnitine deficiency, anorexia with depression, and 
chronic inflammation with hyperproduction of pro-inflammatory cytokines 
[37]. Uremic hyperparathyroidism with deficiency of anabolic hormones 
(insulin, erythropoietin) plays an important role in the PEM development. 
Progression of PEM is fixed by monitoring of anthropometry (BMI, shoulder 
muscle circumference, and triceps skinfold), levels of albumin, lymphocytes, 
TNF-α, transferrin, and CRP.

In the advanced stage of dialysis CRS, PEM progresses to MIA-syndrome 
(Malnutrtion, Inflammation, Atherosclerosis). This is manifested by ischemic 
cardiomyopathy provoking arrhythmias, stenotic atherosclerosis with diffuse 
calcification of arteries and heart valves, and treatment-resistant anemia and 
hypoalbuminemia [38].

Dialysis cachexia in MIA syndrome is formed in BMI under 15 kg/m2 with 
hypoalbuminemia (<30 g/l). Clinically it manifests by severe cardiovascular, 
endocrine, and immune disorders [39]. It is characteristic of the late stage of 
CRS, when dialysis cachexia is aggravated by cachexia of chronic heart failure 
(CHF). The formed CHF aggravates PEM because of acidosis with additional 
hypercatabolism, oxidative stress, impaired absorption syndrome and hypoal-
buminemia, and polypragmasia. These patients have poorly controlled hyper-
tension with recurrent intra-dialysis hypotension, ischemic cardiomyopathy 
with arrhythmias, widespread coronary atherosclerosis and calcinosis, severe 
hyperparathyroidism, and encephalopathy. There is a high risk of dementia and 
infection with outcome in bacterial sepsis. Successful treatment of anorexia, 
hypoalbuminemia, infectious complications, and encephalopathy is possible 
only with a comprehensive correction of depression, immunodeficiency (anti-
cytokines, antibiotics), anemia, amino acid and L-carnitine deficiency, tube 
(parenteral) feeding, and infusion of proteins. In severe cachexia, kidney trans-
plantation is effective.
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4.  Influence of residual kidney function reduction on progression of 
cardiovascular pathology in patients on RRT

Preservation of residual kidney function in dialysis patients improves their sur-
vival and prognosis. For example, Dutch joint NECOSAD study [40] in 740 patients 
on HD showed an increase in residual kidney function (Kt/V by 1 unit) associated 
with a 66% reduction in the relative risk of death. Prospective analysis by W. Van 
der Wal et al., which included 1800 dialysis patients (1191 patients were on HD and 
609 on PD), found a 1.5-fold death risk increase after loss of residual renal function 
compared to patients with preserved residual renal function [41]. Y. Obi et al. found 
that higher and more stable residual renal function (GFR) was associated with 
better patient survival one year after initiation of regular HD. Mortality related 
inversely with residual renal function measured by urea clearance and daily urine 
output [42]. In several other multicenter studies [43, 44] residual function has been 
an independent predictor of survival in patients on PD. The Canadian-American 
Study (CANUSA) [45] showed on 601 patients on PD that residual renal function 
rather than peritoneal creatinine clearance and peritoneal ultrafiltration (UF) 
correlate with patient survival. A study of residual renal function in PD patients 
showed a 36% reduction in the relative risk of death with an increase in daily urine 
output by 250 mL.

Preservation of residual renal function provides better control of hyperhydra-
tion, dyselectrolytemia, inflammatory activity, and clearance of protein-bound low 
molecular weight toxins and medium-molecular-weight molecules. Even a small 
amount of residual function reduces the level of plasma dissolved uremic toxins and 
β2-microglobulin [46–48].

The residual renal function allows to reduce cardiac mortality and progression 
of cardiovascular disease in dialysis patients primarily through better hydration 
control. Both on regular and continuous PD, CKD patients with uncorrected 
hyperhydration are at high risk of developing cardiovascular complications: vol-
ume/sodium-dependent hypertension, left ventricular hypertrophy, arrhythmias, 
and congestive heart failure [49–51]. The expansion of intravascular volume leads 
to elongation of myocardial cells, and eccentric or asymmetrical left ventricular 
remodeling [52].

In patients on intermittent HD, UF causes post-ischemic impairment of 
myocardial contractile function (myocardial stunning) even in the absence of 
angiographically significant coronary disease [53]. Recurrent UF-induced isch-
emia provokes chronic left ventricular dysfunction, a cause of CHF progression 
in patients on HD [54]. Preserved residual renal function in patients on regular 
PD allows to reduce UF volumes during dialysis session, thus reducing risk of 
recurrent myocardial ischemia or systolic pressure drop during the session (hemo-
dialysis-induced hypotension) [54–57]. In patients on PD, maintenance of residual 
renal function and significant diuresis attenuates the damaging effects of dextrose 
on the peritoneal membrane and reduces hyperglycemia and the risk of obesity 
and diabetes.

The residual renal function not only increases survival but also improves 
hormonal, mineral-bone, and nutritional disorders and the quality of life in 
patients on HD and PD, as confirmed by the CHOICE study [58]. Higher quality 
of life in patients with diuresis over 250 ml per day is also associated with a less 
restriction in diet and fluid intake, and better nutritional status [59] and control 
of hyperphosphatemia, renal osteodystrophy, and anemia. The latter depend 
on a renal synthesis of erythropoietin and active forms of vitamin D3 in kidneys 
[60, 61]. Several data have shown an association between the preserved residual 
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renal function and decreased production of inflammatory markers: C-reactive 
protein and interleukin-6 [62, 63].

5.  Ultrafiltration, hemodialysis-induced hypotension and metabolic 
acidosis

In patients with end stage CKD, fluid removal is achieved by extracorporeal 
UF with HD or intracorporeal UF with continuous PD. Unlike intermittent HD, 
continuous PD is not associated with “stunned” myocardium, which largely 
explains the slower progression of CHF in patients treated with PD [64]. However, 
clinical studies showed contradictory results on the benefits of PD. V. Panday et al. 
found in a retrospective analysis of 139 patients with CKD stage 5 and concomitant 
CHF no difference in two-year mortality, cardiac outcomes, and hospitalization 
rates between patients on PD and HD [65]. In a study using the Taiwan National 
Database with over 35,000 patients, I. Wang et al. showed lower survival of ESRD 
patients and comorbid CHF on the PD treatment [66]. However, the findings could 
be related to difficulties in hydration management on PD, complete loss of residual 
renal function, and/or shortcomings and limitations of the analysis performed. In 
a registry analysis in Lombardy, F. Locatelli et al. found no significant difference 
in the magnitude of cardiovascular risk in the groups treated with HD compared 
to that on PD [67]. Recent studies based on the Taiwan National Registry (2016), 
which included over 45,000 patients with end stage CKD, showed the 29% higher 
risk of cardiovascular disease in patients treated with HD compared to those treated 
with PD [68].

The development of intradialysis hypotension on regular HD is caused by 
uremic polyneuropathy and CHF, when, in response to dialysis UF, the vascular 
bed fills inadequately slowly, causing hypovolemia and hypotension. Dialysis CRS 
with hypotension is often complicated by thrombosis of vascular access, resulting 
in rapid formation of underdialysis syndrome with hypercatabolism. Blood loss 
and sinus tachycardia combined with hemodialysis-induced hypotension signifi-
cantly increase the risk of acute coronary syndrome and cerebrovascular accident 
(CVA). Patients with diabetic nephropathy often develop severe hemodialysis-
induced hypotension refractory to conservative therapy. The hypotension can 
provoke target organ ischemia. Vasopressors and alpha-adrenergic agonists are 
not safe in treating hemodialysis-induced hypotension. Controlled UF with “dry 
weight” monitoring by bio-impedance, transfer to PD, or daily (nighttime) HD are 
recommended.

Metabolic acidosis is common in patientswith ESRD because of a decreased 
ability to excrete acids and reduced renal synthesis of bicarbonate. It leads to mal-
nutrition, inflammation, bone disease disorders, and even a higher death risk [69]. 
Significant acid–base variations during dialysis may play an important role in CVD 
development in HD patients. One study [70] has shown an association between low 
serum bicarbonate concentrations and cardiovascular disease in patients on dialy-
sis. It is important to avoid large variations in serum bicarbonate levels in dialysis 
patients because these variations can increase CVD.

6. Stenotic atherosclerosis

MIA syndrome is characterized by rapid stenosing of the major arteries by the 
progressing atherosclerosis combined with calcinosis. Frequent complications are 
ischemic kidney disease with uncontrolled renin-dependent hypertension, stenotic 
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atherosclerosis of cerebral arteries with the risk of CVA, ischemic occlusive enter-
opathy with malabsorption syndrome aggravating PEM and anemia.

In dialysis CRS with the expanded PEM, coronary heart disease (CHD) is 
typical with unstable angina and elevated blood CRP correlating with LDL levels 
[71, 72]. Hyperparathyroidism is associated with progressive coronary artery 
calcification, increasing atherosclerosis [73, 74]. Stenosis of the proximal coro-
nary artery is typical, which causes high mortality in patients on dialysis [75]. 
Early diagnosis of myocardial infarction in dialysis CRS is difficult because of 
confounding uremic polyneuropathy, dyselectrolitemia, myocardial calcification, 
and coronary calcinosis. Coronarography in 60% of patients with CKD stage 5 
admitted for regular HD treatment in Japan reveals low-symptomatic stenosis 
of one coronary artery and of several coronary arteries (multivessel disease) in 
some patients.

To prevent acute coronary syndrome, risk factors should be addressed in HD: 
hemodialysis-induced hypotension, sinus tachycardia, blood loss, and anemia. ACE 
inhibitors reduce the cardiac mortality [76]. Nitrates and beta-blockers are tolerated 
worse in dialysis CRS because of hemodynamic instability.

Hemodialysis-induced myocardial ischemiamight regress with the use of 
beta-blockers, which have substantially improved survival in patients with acute 
coronary syndromes and heart failure. In dialysis patients, carvedilol significantly 
improved cardiovascular mortality, LV function, and LV morphology. Dialysis 
patients treated with carvedilol had a 50% lower mortality rate than patients receiv-
ing placebo [77, 78]. The efficacy of statins on regular HD has not been proven 
conclusively, and the incidence of side effects is higher than in the early stages of 
CKD [79].

Current guidelines by KDIGO recommend not starting lipid-lowering therapy 
in dialysis patients. These recommendations are based on clinical trials which 
failed to show that statin therapy is beneficial in reducing cardiovascular mortality 
indialysis patients, in contrast to the general population [80]. High-density lipo-
protein cholesterol (HDL-C) from HD patients compared to healthy controls has 
been much less effective in cholesterol efflux and regulation of inflammation [81]. 
HDL-C from HD patients promotes endothelial dysfunction via accumulation of 
symmetric dimethylarginine (SDMA), which is associated with increased all-cause 
and cardiovascular mortality [82].

Erythropoietin drugs cannot fully realize their cardioprotective effect because 
of more frequent side effects of the high doses. Survival rate after acute myocardial 
infarction is extremely low at conservative therapy of CHD on hemodialysis (by 
the end of the 1st year, 41%, after 2 years, 27%, after 3 years, 10%). This causes 
intolerance of uremic myocardium to ischemia with small coronary artery remodel-
ing (uremic small vessel disease) and myocardial stunning on HD. In coronary 
angioplasty in patients with dialysis-related CRS, the acute postoperative mortality 
is over 3.5 times higher than the statistical average, and the long-term survival rate 
after stenting is significantly higher than in conservative therapy [83].

7. Progressive CHF with low cardiac output

CHF in patients on HD is manifested by worsening chronic hypervolemia, 
causing both circuits decompensation and a significant decrease in ejection fraction 
preventing effective HD, and development of critical progressive hyponatremia 
with a high risk of cerebral edema. The 3-year survival rate of patients with CHF on 
regular HD does not exceed 20%, and sudden cardiac death is most frequent fatality 
in this group of patients on HD [84].
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The rate of sudden cardiac death is 59 deaths in 1000 patient-years in the CKD 
stage 5D population, whereas it is 1 death in 1000 patient-years in the general popu-
lation [85]. Patients on dialysis have a high incidence of coronary heart disease, 
but the rate of sudden cardiac death is disproportionately high compared with the 
incidence of coronary heart disease in these patients. Even a complete revascular-
ization reduce the risk of sudden cardiac death only in part [86]. Dialysis, especially 
HD, is a risk factor for sudden cardiac death, providing the highest risk within the 
first 12 hours after dialysis and after a long dialysis-free interval [87]. Potential 
mechanisms include volume and sudden electrolyte shifts after dialysis, volume 
overload, and electrolyte disturbance.

These outcomes largely depend not on the severity of CHD, but on the value of 
the corrected QT-interval and QT dispersion and are caused by complex rhythm 
disturbances in dialysis malnutrition (hypercatabolism, acidosis, imbalance of 
potassium, sodium and calcium in dialysis solution, and hypomagnesemia) [88]. 
Cardioprotectors, antiarrhythmics, and vasopressors provide only short-term 
effect; myocardial reperfusion, artificial pacemaker, implanted cardioverter-
defibrillator are more effective [84, 88].

PD may be the method of choice in the treatment of patients with CHF, provid-
ing effective UF and sodium excretion in the required volumes, especially when 
using icodextrin solution. In patients with CRS and severe ascites, PD can reduce 
intra-abdominal pressure. PD in patients with CHF has several advantages: continu-
ous “mild” UF with minimal impact on hemodynamics and reduction of volume 
overload symptoms; weight reduction and correction of hypervolemia; increase 
in left ventricular ejection fraction; sodium “sieving” effect and better control 
of hypernatremia; removal of acute phase proteins, medium-molecular-weight 
molecules, abscence of pro-inflammatory activation of cytokines; reduction of 
intraabdominal pressure and improved quality of life in patients with severe ascites; 
and better control of serum potassium level with the possibility of using aldoste-
rone receptor blockers and ACE inhibitors. Heart transplantation should be used in 
refractory cases, sometimes in combination with the kidney transplantation.

8. Vascular calcification

Hyperparathyroidism, frequent in RRT patients, is prognostically unfavorable 
[89]. Elevation of serum fibroblast growth factor-23 (FGF-23) with the develop-
ment of resistance to it precedes Mineral Bone Disease (MBD). Elevated FGF23 
levels were independently associated with LVH.FGF23 caused LVH via FGF 
receptor-dependent activation of the calcineurin-nuclear factor of activated T-cells 
signaling pathway [90]. Klotho deficiency and FGF23 elevation are associated 
with poor outcomes and complications in dialysispatients. Klotho deficiency cause 
vascular calcification, cardiac fibrosis, and cardiac hypertrophy in patients with 
CKD [91].

Hyperphosphatemia and parathyroid hormone elevation increase with increas-
ing stage of CKD and correlate with cardiac mortality [92]. This is largely because 
of vascular calcification, especially pronounced in dialysis patients, which is associ-
ated with the use of solutions for PD and HD with increased calcium content.

Vascular calcification (VC) is defined as vascular deposition of calcium-
phosphate mineral complexes. Traditionally, two forms of calcification are pointed 
out: 1) intimal calcification in proximity to lipid deposits, clinically relevant in 
obstructive arterial disease and 2) medial calcification with differentiation of 
smooth muscle cells into osteoblast-like cells is akin to bone formation, related to 
several genes as BMP2, Msh Homeobox 2, and gene of alkaline phosphatase [93]. 
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Medial calcification is common in dialysis patients with CKD.VC has a clearrelation-
ship with atherosclerotic vascular disease [94]. Calcification of arterial vessels leads 
to arterial stiffness, contributes to increased pulse wave velocity, increased cardiac 
afterload, and thus heart failure [95]. Arterial stiffness is an independent predic-
tor of cardiovascular mortality [96]. Arterial stiffness and medial calcification 
intensify each other, to create a vicious cycle [97]. Heart valve calcification occurs in 
stage 5 CKD in up to 88–99% of patients, increasing from 40% of patients in CKD 
stage 3 [98].

Calcinosis of heart valves leads to the formation of acquired heart valvular dis-
ease (aggravating CHF) and increases the risk of infective endocarditis. The extent 
of vascular calcifications in CKD herald a poor prognosis [99]. Resulting hemody-
namic alterations induce left ventricular hypertrophy associated with a decrease in 
coronary perfusion [100].

In dialysis CRS, active vitamin D metabolites are contraindicated because of the 
risk of soft tissue calcification (including skin calcification with sepsis). Calcium-
free phosphate binders are advisable: sevelamer, lanthanum carbonate [101]. 
Sevelamer corrects hyperphosphatemia and decreases mortality in dialysis patients 
by 1.5 times, slowing coronary calcification, reducing blood levels of atherogenic 
lipids, FGF-23, and pro-inflammatory cytokines [102]. Iron-containing phosphate 
binders effectively lower blood phosphate levels, but are often complicated by diar-
rhea and nutritional disorders exacerbation in PEM [103]. Total parathyroidectomy 
in patients with dialysis cachexia is effective in MBD and CHF progression but 
carries a risk of acute postoperative complications [104]. An alternative to parathy-
roidectomy is administration of calcimimetics. Prolonged-release cinalcet reduces 
the need for parathyroidectomy, slows arterial and cardiac valve calcification, and 
reduces cardiovascular mortality [105, 106].

9. Immunodeficiency

In dialysis-associated CRS, infection is severe, both induced by thrombosis 
of sclerosed AVF or not associated with vascular access. Pneumonia risk factors 
in dialysis CRS with malnutrition include immune deficiency with activation of 
opportunistic infections and Staphylococcus carrying in the nasopharynx, CHF 
with chronic hyperhydration and hypoxia of lung tissue, hydrothorax, hyperpara-
thyroidism with lung tissue calcification, obstructive night apnea syndrome, and 
epoetin-resistant anemia.

Pathogens of acute pneumonia on dialysis include staphylococcus, oppor-
tunistic bacteria (E. Coli, Haemophylis influenzae, Klebsiella, Pseudomonas, 
Listeria, Legionella), and pathogenic fungi (Aspergillus, Candida, Cryptococcus, 
Mucormyces). In dialysis CRS, the mortality is extremely high from pneumonia 
caused by the association of influenza virus with Staphylococcus aureus [107] 
or superinfection with pneumocysts in MIA syndrome patients infected with 
cytomegalovirus. At the advanced stage of CRS in diabetic patients, purulent 
complications of obliterating atherosclerosis of lower limb arteries and diabetic foot 
typically cause high mortality from gangrene and sepsis. Risk factors for infectious 
endocarditis in dialysis CRS are vascular access infection, calcinosis of valves in 
severe hyperparathyroidism, their myxomatous degeneration, thrombotic deposits, 
or severe anemia [108].

Antibiotic therapy is carried out after removal of the infected fistula with 
the formation of a new AVF or with transfer to PD [109]. Treatment with 
broad-spectrum antibiotics should be started immediately and corrected by 
the blood culture results. Antibiotic therapy is ineffective in CHF, recurrent 
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thromboembolism, fungal endocarditis, tricuspid or pulmonary artery valves 
lesions (frequent in HD patients). In these cases, surgery is necessary to replace 
the affected valve [108].

10. Epoetin-resistant anemia

Anemia in CKD patients induces eccentric LVH and exacerbates myocar-
dial ischemia, increasing cardiovascular mortality in dialysis CRS [110, 111]. 
Erythropoietin drugs improve the quality of life of dialysis patients. However, the 
mortality-reducing effect of erythropoietin in dialysis CRS has not been proven, 
and the most effective and safe target Hb level is not established. The currently 
recommended target Hb level of 10–12 g/dL does not stimulate sufficiently neo-
angiogenesis and endothelial stem cells activity.

Resistant anemia often develops within MIA syndrome (under the influence of 
chronic inflammation, acidosis, iron malabsorption, vit. B12 and folic acid defi-
ciency), as well as because of ineffective HD syndrome and hyperparathyroidism, 
requiring the unusually high doses of erythropoietin. Since this therapy is often 
complicated by poorly controlled hypertension and thrombosis, combined antihy-
pertensive therapy, complete correction of iron deficiency, vit. B12 and metabolic 
acidosis, and control of the coagulation system are indicated [112]. Intensification 
of HD regimen, correction of hyperparathyroidism, influence on chronic inflam-
mation syndrome (anti-cytokine drugs, etc.) are of great importance for overcom-
ing resistance to epoetin. At critically low hemoglobin, blood transfusions can 
be used.

Recently, a new group of drugs has been proposed to treat anemia, the so called 
hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs). HIF-PHIs 
promote erythropoiesis primarily through increased endogenous EPO production 
and modulation of iron metabolism. The results of phase 2 and 3 clinical trials have 
shown their advantages, such as decreased hepcidin levels, better iron utilization 
and thus less need for iron, the ability to influence the background of inflamma-
tion without increasing the dose [113]. These drugs will probably find their use in 
patients with epoetin-resistant anemia associated with both inflammation and iron 
metabolism disorders.

11. Impact of arterio-venous hemodialysis fistula

In dialysis patients, one can assume the relationship between CHF and 
recent AVF formation in slight reduction of cardiac output, absence of pulmo-
nary hypertension and other causes of heart failure progression (severe CHD, 
cardiomyopathy).

After AVF formation, peripheral vascular resistance decreases rapidly, leading 
to compensatory increase of cardiac output and possibly to acute CHF decompensa-
tion. Because of the increase of blood inflow to the heart, the diastolic size of the 
left ventricleand pulmonary pressure increase [114]. Subsequently, progressing 
myocardial hypertrophy and dilatation of heart cavities cause diastolic LV dysfunc-
tion and CHF development [115]. Pulmonary hypertension, found in 40–50% of 
patients on HD [116], joins soon after AVF formation and is associated with the size 
of arterio-venous shunt [117]. The inadequate pulmonary vasodilation in response 
to the AVF-induced increase in blood flow rate is thought to be caused by decreased 
NO synthesis in the endothelium or accumulation of uremic NO inhibitors, such as 
asymmetric dimethyl arginine [118].
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In all patients on regular HD, AVF with a large shunt should be considered as a 
factor aggravating the CHD and CHF development. Normalization of blood flow in 
AVF can lead to delay in cardiovascular pathology progression. In peripheral bypass 
syndrome, blood flow and perfusion in the limb distal to the fistula reduce dramati-
cally because of shunt redistribution of blood flow. Less known is coronary bypass 
syndrome, where left-sided AVF, bypassing the left internal thoracic artery, reduces 
coronary blood flow, which can lead to myocardial ischemia, especially during the 
HD session [119].

After the AVF formation, the blood volume increases to maintain a higher car-
diac output and can be complicated by severe (refractory) hypertension. In several 
“preload (end-diastolic pressure)-dependent” dialysis patients, poorly controlled 
dialysis-induced hypotension accompanies inter-dialysis hypertension in the first 
15–20 min of HD even with moderate volumes of UF. Among other complications, 
fistula infection with outcome in progressing CHF and thromboembolic syndrome 
provokes prognostically unfavorable bacterial endocarditis.

Thus, AVF, being essentially an iatrogenic vascular anomaly formed to treat HD, 
can contribute to cardiac mortality. The negative effect of AVF on cardiovascular 
mortality is directly proportional to blood flow in the fistula and severity of initial 
cardiovascular pathology. Thus, AVF should not be used in patients with LV ejec-
tion fraction <40% and significant pulmonary hypertension. Therefore, the AVF 
formation should be preceded by cardiac assessment (ECG and Echo-CG monitor-
ing) involving a consultation with a cardiologist.

AVF formation should be planned 2–3 months before the expected start of HD. 
It is unwise to form AVF a year or more before the start of HD and at Hb levels 
>12 g/dL because of high risk of fistula thrombosis. Blood flow in the fistula should 
be targeted at 400–600 ml/min; for blood flow over 800 ml/min, surgical reduction 
of arterio-venous blood shunt is reasonable. Ultrasonography, venography, and 
arteriography (fistulography) are used to monitor AVF.

In patients with refractory CHF, CHD with unstable angina, coronary or 
peripheral bypass syndrome, or severe pulmonary hypertension, AVF ligation with 
transfer to CAPD is indicated. In endocarditis after removal of infected AVF is 
recommended temporary transfer of a patient with HD to CAPD or low-flow dialy-
sis, increasing the effectiveness of antibiotic therapy, followed by prosthetic heart 
valves insertion. PD can be used also for the period of standard AVF formation and 
maturation instead of AVF with excessive shunt.

12. Conclusion

Further study is important of cardiorenal relationships in patients on RRT with 
the isolation of a separate “dialysis-related” type of CRS reflecting the progres-
sion of cardiac dysfunction during dialysis treatment. To analyze the features of 
dialysis CRS, a comprehensive approach should be developed for its treatment and 
prevention.
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