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Chapter

Effectiveness of Basic Sets of
Goncarov and Related Polynomials
Jerome A. Adepoju

Abstract

The Chapter presents diverse but related results to the theory of the proper and
generalized Goncarov polynomials. Couched in the language of basic sets theory, we
present effectiveness properties of these polynomials. The results include those
relating to simple sets of polynomials whose zeros lie in the closed unit disk U ¼
z : zj j≤ 1f g: They settle the conjecture of Nassif on the exact value of the Whittaker

constant. Results on the proper and generalized Goncarov polynomials which
employ the q-analogue of the binomial coefficients and the generalized Goncarov
polynomials belonging to the Dq- derivative operator are also given. Effectiveness
results of the generalizations of these sets depend on whether q< 1 or q> 1. The
application of these and related sets to the search for the exact value of the
Whittaker constant is mentioned.

Keywords: Basic sets, Simple sets, Effectiveness, Whittaker constant,
Goncarov polynomials, Dq operator

1. Introduction

The Chapter is on the effectiveness properties of the Goncarov and related
polynomials of a single complex variable. It is essentially a compendium of certain
results which seem diverse but related to the theory of the proper and generalized
Goncarov polynomials.

Our first set of results deals with simple sets of polynomial [1], whose zeros lie in
the closed unit disk U. It is a complement of a theorem of Nassif [1] which resolved
his conjecture on the value of the Whittaker constant [2]. We provide also the
relation between this problem and the theory of the proper Goncarov polynomials.

Next are results on a generalization of the problem where the polynomials are of
the form

p0 zð Þ ¼ 1; pn zð Þ ¼
X

n

k¼0

k
n

� �

an�k
n zk; n≥ 1, (1)

and the points anð Þ∞0 are given complex numbers with n
k

� �

the q-analogue of the

binomial coefficient n
k

� �

. From the results reported, it is shown that the location of

the points akð Þ∞0 that leads to favorable effectiveness results depends on whether
q< 1 or q> 1. The relation of this problem to the generalized Goncarov polynomials
belonging to the Dq-derivative operator is also recorded.
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It is shown that applying the results of Buckholtz and Frank [3] on the general-
ized Goncarov polynomials Qn z; z0, z1, … , zn�1ð Þf g belonging to the Dq-derivative
operator when q> 1, leads to the result that, when the points zkð Þ∞0 lie in the unit
disk U, the resulting polynomials fail to be effective.

Consequently, we provide some results on the polynomials
Qn z; z0, z1, … , zn�1ð Þf g when

zkj j≤ q�k; k≥0, (2)

with the obtained results justifying the restriction (2) on the points zkð Þ∞0 .
Finally, we provide other relevant and related results on the properties of the

generalized Goncarov polynomials Qn z; z0, z1, … , zn�1ð Þf g belonging to the Dq-
derivative operator. For a comprehensive and easy reading, background results are
provided in the Preliminaries of sections 2.1–2.5.

2. Preliminaries

We record here some background information for easy reading of the contents
of the presentation.

2.1 Basic sets and effectiveness

A sequence pn zð Þ
� 	

of polynomials is said to be basic if any polynomial and, in

particular, the polynomials 1, z, z2, … , zn, … , can be represented uniquely by a
finite linear combination of the form.

zn ¼
X

k¼0

πn,kpk zð Þ; n≥0: (3)

The polynomials pn zð Þ
� 	

are linearly independent.

In the representation (3), let f zð Þ ¼
P

∞

n¼0anz
n be an analytic function about the

origin. Substituting (3) into f zð Þ, we have

f zð Þ ¼
X

∞

n¼0

anz
n ¼

X

∞

n¼0

an
X

k¼0

πn,kpk zð Þ:

Formally rearranging the terms, we obtain the series

X

∞

k¼0

pk zð Þ
X

∞

n¼0

anπn,k

" #

:

We write

Y

k

fð Þ ¼
X

∞

n¼0

anπn,k; k≥0:

Hence, we obtain the series

X

∞

k¼0

Y

k

fð Þpk zð Þ,

2
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which is called the basic series associated with the function f zð Þ and the corre-
spondence is written as

f zð Þ �
X

∞

k¼0

Y

k

fð Þpk zð Þ: (4)

The coefficients Πk fð Þf g is the basic coefficients of f zð Þ relative to the basic set

pk zð Þ
� 	

and is a linear functional in the space of functions f zð Þf g.
If pn zð Þ is of degree n then the set is called a simple set and is necessarily a

basic set.
The basic series (4) is said to represent f zð Þ in a disk zj j≤ r where f zð Þ analytic,

if the series is converges uniformly to f zð Þ in zj j≤ r or that the basic set pn zð Þ
� 	

represents f zð Þ in zj j≤ r.

When the basic set pn zð Þ
� 	

represents in zj j≤ r every function analytic in

zj j≤R,R≥ r, then the basic set is said to be effective in zj j≤ r for the class H Rð Þ of
functions analytic in zj j≤R.

When R ¼ r, the basic set represents, in zj j≤ r, every function which is analytic
there and we say that the basic set is effective in zj j≤ r.

To obtain conditions for effectiveness, we form the Cannon sum

wn rð Þ ¼
X

k¼0

πn,kj jMk rð Þ, (5)

where

Mk rð Þ ¼ max
zj j¼r

pk zð Þ










: (6)

From (3), we have that wn rð Þ≥ rn,
so that, if we write

λ rð Þ ¼ lim
n!∞

sup wn rð Þf g
1
n, (7)

λ rð Þ≥ rn: (8)

The function λ rð Þ is called the Cannon function of the set pn zð Þ
� 	

in zj j≤ r.
Theorems about the effectiveness of basic sets are due to Cannon and Whittaker

(cf. [2, 4, 5]).
A necessary and sufficient condition for a Cannon set pn zð Þ

� 	

to be effective, in

zj j≤ r, is

λ rð Þ ¼ r: (9)

2.2 Mode of increase of basic sets

The mode of increase of a basic set pn zð Þ
� 	

is determined by the order and type

of the set. If pn zð Þ
� 	

is a Cannon set, its order is defined, Whittaker [2], by

w ¼ lim
r!∞

lim sup
n!∞

logwn rð Þ

n log n
: (10)
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where wn rð Þ is given by (5). The type γ is defined, when 0<w<∞, by

γ ¼ lim
r!∞

e

w
lim
n!∞

sup wn rð Þf g
1
n n�w

h i 1
w
: (11)

The order and type of a set define the class of entire functions represented by the
set.

Theorem 2.2.1 (Cannon [6]).
The necessary and sufficient conditions for the Cannon set of polynomials to be

effective for all entire functions of increase less than order p type q is

lim
n!∞

sup
epq

n

� �1
p
wn rð Þf g

1
n

� �

≤ 1 for all r>0: (12)

2.3 Zeros of simple sets of polynomials

The relation between the order of magnitude of the zeros of polynomials
belonging to simple sets and the mode of increase of the sets has led to many
convergence results, just as that between the order of magnitude of the zeros and
the growth of the coefficients has. In the case of the zeros and mode of increase, the
approach to achieve effectiveness is to determine the location of the zeros while
that between the zeros and the coefficients is to determine appropriate bounds
(cf. Boas [7], Nassif [8], Eweida [9]).

2.4 Properties of the Goncarov polynomials

We record in what follows certain properties of the proper and generalized
Goncarov polynomials together with the definitions of the q-analogues and the
Dq-derivative operator.

The proper Goncarov polynomials Gn z, z0, :… zn�1ð Þf g associated with the
sequence znf g∞0 of points in the plane are defined through the relations, Buckholtz
([10], p. 194),

G0 zð Þ ¼ 1,

zn

n!
¼

X

n

k¼0

zn�k

n� kð Þ!
Gk z, z0, … , zk�1ð Þ; n≥ 1: (13)

These polynomials generate any function f zð Þ analytic at the origin through the
Goncarov series

f zð Þ �
X

∞

k¼0

f k zkð ÞGk z, z0, … , zk�1ð Þ, (14)

which represents f zð Þ in a disk zj j≤ r, if it uniformly converges to f zð Þ in zj j≤ r.

In this case, if f kð Þ zkð Þ ¼ 0, k≥0, the Goncarov series (14) vanishes and f � 0.

A consideration of g zð Þ ¼ sin π
4 1� zð Þ, for which g nð Þ �1ð Þnf g ¼ 0 and

P

∞

n¼0g
nð Þ �1ð Þnf gGn z, 1,�1, ::ð Þ ¼ 0 cf. Nassif [8], shows that the Goncarov series

does not always represent the associated function and hence certain restrictions
have to be imposed on the points zkð Þ∞0 and on the growth of the function f zð Þ.

4
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Concerning the case where the points zkð Þ∞0 lie in the unit disk U, the Whittaker
constant W (cf. Whittaker, Buckholtz, [2, 10]), is defined as the supremum of the
number c with the following property:

If f zð Þ is an entire function of exponential type less than c and if each of

f , f 0, f}, ::… has a zero in U then f zð Þ � 0.
Buckholtz [10] obtained an exact determination of the constant W. In fact, if we

write

Hn ¼ max jGk 0; z0, … , zn�1ð Þ, (15)

where the maximum is taken over all sequences zkð Þn�1
0 whose terms lie in U,

Buckholtz ([10], Lemma 3) proved that lim n!∞H
1=n
n exists and is equal to

sup1≤ n<∞H
1=n
n :

Moreover, if we put

lim
n!∞

H
1=n
n ¼ H ¼ sup

1≤ n<∞

H
1=n
n , (16)

Buckholtz ([10], formula 2) further showed that

W ¼
1

H
: (17)

Employing an equivalent definition of the polynomials Gn z; z0, … , zn�1ð Þf g as
originally given by Goncarov [11] in the form

Gn z, z0, … , zn�1ð Þ ¼

ðz

z0

ds1

ðs1

z1

ds2, … ,

ðsn�1

zn�1

dsn; n≥ 1, (18)

and differentiating with respect to z, we can obtain

G kð Þ
n z, z0, … , zn�1ð Þ ¼ Gn�k z, zk, … , zn�1ð Þ; 1≤ k≤ n� 1: (19)

Writing

Gn 0, z0, … , zn�1ð Þ ¼ Fn z0, … , zn�1ð Þ n≥ 1, (20)

then (18) yields, among other results,

Gn z; z0, … , zn�1ð Þ ¼ Fn z; z0, … , zn�1ð Þ � Fn z; z1, … , zn�1ð Þ; n≥ 1, (21)

and

Fn 0, z1, … , zn�1ð Þ ¼ 0; n≥ 1: (22)

Applying (21) and (22) to (19) we obtain

F
kð Þ
k z0, z1, … , zn�1ð Þ ¼ �Fn�k z0, … , zn�1ð Þ (23)

for 1≤ k≤ n� 1, where the differentiation is with respect to the first argument.
Expanding Fn z0, … , zn�1ð Þ in powers of z0, in the form

Fn z0, … , zn�1ð Þ ¼
X

n

k¼0

zk0
k!

F kð Þ
n 0, z1, … , zn�1ð Þ,

5
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we arrive through (22) and (23) to the formulae of Levinson [12],

Fn z0, … , zn�1ð Þ ¼ �
X

n

k¼1

zk0
k!

Fn�k zk, … , zn�1ð Þ: (24)

Also, differentiating (18) with respect to zk, we obtain with Macintyre ([13],
p. 243),

∂

∂zk
G kð Þ

n z, z0, … , zn�1ð Þ
� �

¼ �Gk z, z0, … , zk�1ð ÞGn�k�1 zk, zk�1, … , zn�1ð Þ (25)

for 0≤ k≤ n� 1.

2.5 The q-analogues and Dq derivatives

Let q be a positive number different from 1. The q–analogue of the positive
integer n is given by

n½ � ¼
qn � 1

q� 1
: (26)

Also, the q-analogue of n! is

n½ �! ¼ n½ � n� 1½ �… 2½ � 1½ �; n≥ 1; 0½ �! ¼ 1, (27)

and the q-analogue of the binomial coefficient n
k

� �

is

n
k

� �

¼
n½ �!

k½ �! n� k½ �!
; 0≤ k≤ n: (28)

Moreover, the Dq– derivative operator, corresponding to the number q is
defined as follows: If f zð Þ is any function of z, then

Dq f zð Þð Þ ¼
f qzð Þ � f zð Þ

z q� 1ð Þ
, (29)

so that when f zð Þ ¼ zn, then according to (26), we have Dq znð Þ ¼ n½ �zn�1 and if

f zð Þ ¼
P

∞

n¼0anz
n�1 is any function analytic at the origin then

Dqf zð Þ ¼
X

∞

n¼1

n½ �anz
n�1: (30)

In [3] we have a generalization of the Goncarov polynomials as in (13) belonging
to the operator D such that for f zð Þ ¼

P

∞

n¼0anz
n,

D f zð Þð Þ ¼
X

∞

n¼1

dnanz
n�1 (31)

associated with the sequence zkð Þ∞0 , where en ¼ d1d2 … , dnð Þ�1, e0 ¼ 1 and dnð Þ∞1
is a non-decreasing sequence of numbers to obtain

6
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p0 zð Þ ¼ 1,

enz
n ¼

P

n

k¼0

en�kz
n�k
k Pk z, ; z0, :… , zk�1ð Þ; n≥ 1:

8

<

:

(32)

When dn ¼ n, the relations (32) reduce to (6), hence the polynomials pn zð Þ
� 	

reduce to the proper Goncarov polynomials Gn z; z0, … , zn�1ð Þf g. Comparing (30)
and (32), Nassif [14] investigated the class of generalized Goncarov polynomials
Qn z; z0, … , zn�1ð Þf g belonging to the Dq- derivative operator when dn ¼ n½ � and

en ¼
1
n½ �! given by,

Q0 zð Þ ¼ 1

zn

n½ �!
¼

X

n

k¼0

zn�k
k

n� k½ �!
Qk z z0, :… , zk�1ð Þ; n≥ 1

8

>

<

>

:

, (33)

and the Goncarov series associated with the function f zð Þ ¼
P

∞

n¼0anz
n is

f zð Þ �
X

∞

k¼0

Dk
q f k zkð ÞQk z; z0, … , zk�1ð Þ: (34)

Writing

Rn z0, … , zn�1ð Þ ¼ Qn 0; z0, … , zn�1ð Þ (35)

so that

Rn 0; z1, … , zn�1ð Þ ¼ 0, n≥ 1 (36)

then we have from, (32) that

Rn z0, … , zn�1ð Þ ¼ �
X

n�1

k¼0

zn�k

n� k½ �!
Rk z0, :… , zk�1ð Þ: (37)

Also, Nassif ([14], Lemma 4.1), proved that

Qn z; z0, … , zn�1ð Þ ¼ Rn z0, … , zn�1ð Þ � Rn z; z1, … , zn�1ð Þ: (38)

We can verify, with Buckholtz ([10], Lemma 1), from the formulae (33), the
following:

Qn λz, λz0, … , λzn�1ð Þ ¼ λnQn z, z0, … , zn�1ð Þ; n≥ 1: (39)

Qn z0, z0, … , zn�1ð Þ ¼ 0; n≥ 1: (40)

DqQn z, z0, … , zn�1ð Þ ¼ Qn�1 z, z1, … , zn�1ð Þ; n≥ 1: (41)

And hence, by repeated application of Dq, we obtain

Dk
qQn z; z0, … , zn�1ð Þ ¼ Qn�k z; , zk, … , zn�1ð Þ; 1≤ k≤ n� 1: (42)

Expressing Qn z; z0, … , zn�1ð Þ as a polynomial of degree n in z, then we have
from (27), (29) and (42), that

7
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Qn z; z0, … , zn�1ð Þ ¼
X

n

k¼0

zk

n½ �!
Rn�k zk, :… , zn�1ð Þ: (43)

The identities (39) and (43) have been obtained, in their general form, in ([3];
formulae (2.5), (2.9)). Also, a combination of (38) and (42) yields

Dk
qRn 0, z1, … , zn�1ð Þ ¼ �Rn�k zk, :… , zn�1ð Þ, (44)

for 1≤ k≤ n� 1, where the differentiation is with respect to the first argument.
Expanding Rn z0, z1, … , zn�1ð Þ in powers of z0, then (36) and (44) imply that

Rn z0, z1, … , zn�1ð Þ ¼ �
X

n

k¼1

zk0
k½ �!

Rn�k zk, :… , zn�1ð Þ: (45)

Finally, if we put

hn ¼ max Rn z0, z1, … , zn�1ð Þj j, (46)

where the maximum is taken over all sequences zkð Þn�1
0 and the terms lie in the

unit disk U, then Buckholtz and Frank ([3], Corollary 5.2), proved that

lim
n!∞

h
1=n
n ¼ h ¼ sup

1≤ n<∞

h
1=n
n : (47)

Also, in view of the formulae (33), we can verify that, when q< 1,

h≥ h
1=2
2 ¼ 1þ

1½ �

2½ �

 �1
2

>
3

2

 �1
2

> 1: (48)

3. Results on the zeros of simple sets

3.1 Zeros of simple sets of polynomials and the conjecture of Nassif
on the Whittaker constant are discussed here

The following result is known for simple sets of polynomials whose zeros all lie
in the unit disk.

Theorem A.([1], Theorem 1).
When the zeros of polynomials belonging to a simple set all lying within or on

the unit circle the set will be of increase not exceeding order 1 type 1.378.
Using known contributions in the theory of Goncarov polynomials, we show

that the alternative form of the above theorem is as follows:
Theorem 3.1.1 ([Nassif and Adepoju [15], Theorem B)
When the zeros of the polynomials belonging to a simple set all lying in the unit

disk, the set will be of increase not exceeding order 1 type 1
W, where W is the

Whittaker constant. It is shown also that the result in this theorem is bes t possible.
Indeed, applying the result of Buckholtz ([10], formula 2), the following theo-

rem which resolved the conjecture of Nassif ([8], p.138), is established.
Theorem 3.1.2 ([15], Theorem B)
Given a positive number ε, a simple set pn zð Þ

� 	

of polynomials, whose zeros all

lie in U can be constructed such that the increase of the set is not less than order 1
type H–ε.

8
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For completeness, we give the proof of Theorem 3.1.1 as a revised version of
Theorem A.

Proof of Theorem 3.1.1 (Proof of alternative form of Theorem A)
Let bnf g∞1 be a sequence of points lying in the unit disk and consider the set

qn zð Þ
� 	

of polynomials given by

q0 zð Þ ¼ 1; qn zð Þ ¼ zþ bnð Þn1 ; n≥ 1: (49)

Suppose that zn admits the representation

zn ¼
X

n

k¼0

~wn,kqnk zð Þ: (50)

Then multiplying the matrix of coefficients
n

k

 �

bn�k
n

� �

with its inverse ~wn,kð Þ,

we obtain

�~wn,0 ¼
X

n

k¼1

n

k

 �

bkn ~wn�k,0; n≥ 1:

Write.

un ¼
~wn,0

n!
; n≥0, (51)

then the above relation will give

un ¼ �
X

n

k¼1

bkn
k!

un�k; n≥ 1:

And to show the dependence of un on the points bnð Þ, this relation can be
rewritten as

un b1, b2, … , bnð Þ ¼ �
X

n

k¼1

bkn
k!

un�k b1, b2, … , bn�kð Þ:

Comparing this relation with the identify

Fn z0, z1, … , zn�1ð Þ ¼ �
X

n

k¼1

zk0
k!

Fn zk, … , zn�1ð Þ,

of Levinson [12], we infer that

un b1, b2, … , bnð Þ ¼ Fn bn, bn�1, … , b1ð Þ: (52)

Differentiating (50) k times, k ¼ 1, 2, … , n� 1, we obtain that

~wn,k ¼
n

k

 �

~wn�k,0 bkþ1, bkþ2, … , bnð Þ: (53)

9
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Hence, a combination of (15), (16), (20), (51)-(53) leads to the inequality.

~wn,kj j≤
n!

k!
Hn�k; 0≤ k≤ n: (54)

Observing thatM qk; r
� �

≤ 1þ rð Þk for any value of r≥0, then the Cannon sum of

the set qn zð Þ
� 	

for zj j ¼ r will, in view of (54), be

wn rð Þ ¼
X

n

k¼0

~wn,kj jΜ qk; r
� �

≤ n!Η n exp
1þ r

Η

 �

:

It follows from (17) that the set qn zð Þ
� 	

is of increase not exceeding order 1 type
1
W. The proof is now completed by applying the results of Walsh and Lucas, cf.

Marden ([16], pp. 15,46), with (54) and following exactly the same lines of
argument as in ([1], pp.109–110), to arrive at the inequality.

πn,kj j≤
n!

k!
Hn�k
� �

: (55)

Since pn zð Þ










≤ 1þ rð Þn in zj j≤ r, it follows that the set pn zð Þ
� 	

is of increase not

exceeding order 1 type H = 1
W.

This completes the proof of the theorem.

3.2 Background and the proof of the conjecture

Before the proof of Theorem 3.2.1, we note that we can take, ε<H � 1 .(In fact,
according to Macintyre ([13]; p. 241), we have H >

1
0:7378). Hence it follows from

(16) that corresponding to ε, there exists an integer m such that

m> log Ηð Þ= log 1þ
∈

2Η

� �

(56)

such that

H
1
m
m >H �

∈

2
: (57)

Moreover, from (20), the definition (15) ensures the existence of the points
akð Þm1 lying in zj j≤ 1 such that

Hm ¼ Fm am, am�1, … , a1ð Þj j: (58)

Having fixed the integerm and the sequence akð Þm1 , the following Lemma is to be
first established.

Lemma 3.2.1 ([15], Lemma 3.2).
For any integer j≥ 1, write

f j z1, ƶ2, … , ƶ j
� �

¼ F jþ 1ð Þmþj am, … , ai; ƶ j; am, … , ai; ƶ j�1; … , am, … , ai; ƶ1; am, … , a1
� �

(59)

Then, the complex numbers ξkð Þ∞1 can be chosen so that

10
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ξkj j ¼ 1; k≥ 1, (60)

and

f j ξ1, ξ2, … , ξ j

� �















 ¼ H jþ1
m ; j≥ 1: (61)

Proof.
The proof is by induction.
When j ¼ 1, we have from (59) that

f 1 z1ð Þ ¼ F2mþ1 am, … , a1; z1; am, … , a1ð Þ:

Then the value ξ1 will be chosen so that

ξ1j j ¼ 1; f 1 ξ1ð Þ










 ¼ sup
z1j j≤ 1

f 1 z1ð Þ










: (62)

Applying the identify (25) of Macintyre to
F2mþ1 am, … , a1; z1; am, … , a1ð Þ, we obtain

d

dz1
f 1 z1ð Þ

� �

¼ �Fm am, … , a1ð ÞGm z1; am, … , a1ð Þ,

so that (20) and (58) imply that

f 01
0
0ð Þ

















 ¼ H2
m,

where the prime denotes differentiation with respect to z1.
Hence, in view of (62), Cauchy’s inequality yields

f 1 ξ1ð Þ










≥H2
m,

and the inequality (61) is satisfied for j ¼ 1. Suppose then that, for some value
j ¼ k, the complex numbers ξ1, ξ2, … , ξk have been chosen satisfying (60) and (61).

The numbers ξkþ1 will be fixed so that

ξkþ1j j ¼ 1

Fkþ1 ξ1, ξ2, … , ξkþ1ð Þj j ¼ sup
zkþ1j j≤ 1

Fkþ1 ξ1, ξ2, … , ξk, zkþ1ð Þj j

8

<

:

: (63)

Proceeding in a similar manner as for the Case j ¼ 1 and applying the identity
(25) of Macintyre with (58), (59) and (61),we can obtain the inequality.

f 1kþ1 ξ1, ξ2, … , ξk, 0ð Þ










≥Hkþ2
m , (64)

where the prime denotes differentiation with respect to zkþ1:.
Applying Cauchy’s inequality to the polynomial Fkþ1 ξ1, ξ2, … , ξk, zkþ1ð Þ,we can

deduce, using (63) and (64), that

Fkþ1 ξ1, ξ2, … , ξk, zkþ1ð Þj j≥Hkþ2
m :

Hence, by induction, the inequality (61) of the Lemma is established.
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We now prove theorem 3.1.2.
The required simple set pn zð Þ

� 	

of polynomials is constructed as follows:

P0 zð Þ ¼ 1,

p j mþ1ð Þ zð Þ ¼ zþ ξ j

� � j mþ1ð Þ
; j≥ 1,

p j mþ1ð Þþi zð Þ ¼ zþ a j

� � j mþ1ð Þþi
; 1≤ i≤m; j≥0,

8

>

>

>

<

>

>

>

:

(65)

where the points akð Þm1 are chosen to satisfy (63) and the numbers ξkð Þ∞1 are fixed
as in the Lemma.

It follows that the zeros of the polynomials pn zð Þ
� 	

all lie in the unit disk U:

Also, if zn admits the unique linear representation.

zn ¼
X

n

k¼0

πn,kpk zð Þ, (66)

and if we write

un ¼
πn,0

n!
; n≥0, (67)

then from the relation (52), we deduce from (59) and (65), that

u jþ1ð Þmþj ¼ f j ξ1, ξ2, … , ξ j

� �

; j≥ 1: (68)

Now, in view of (66), the Cannon sum of the set pn zð Þ
� 	

for zj j ¼ r, is

wn rð Þ> πn,0j j.
Hence, combining (57), (61), (67) and (68) yields

w jþ1ð Þmþj rð Þ≥ jþ 1ð Þmþ jf g! H �
∈

2

� � jþ1ð Þm

; j≥ 1:

vIt follows from this inequality and Theorem 3.1 that the order of the set Pn zð Þf g
is exactly 1 and since H � ∈

2 > 1, the type of the set will be

γ ≥ H �
∈

2

� �
m

mþ1

≥ H �
∈

2

� �
m¼1
m

: (69)

In view of the inequality (56), we deduce from (69) that

γ >H � ∈

and Theorem 3.1.2 is established.
This settles the conjecture.

4. Generalization

4.1 As a generalization of the above problem, we consider the simple set
pn znð Þ

� 	

given by

p0 zð Þ ¼ 1; pn zð Þ ¼ pn z; að Þ ¼
X

n

k¼0

n

k

� �

an�k
n zk; n≥ 1, (70)
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where
n

k

 �

is the q-analogue of the binomial coefficient
n

k

 �

and akð Þ∞1 is a

sequence of given complex numbers. The set pn zð Þ
� 	

is in fact, the q-analogue of

the set qn zð Þ
� 	

in (49). This study is motivated by the fact that this set is related to

the generalized Goncarov polynomials belonging to the Dq-derivative operator. Our
results show that effectiveness properties of the set.

pn zð Þ
� 	

depend on whether q< 1 or q> 1.
We establish the following:
Theorem 4.1.1 ([17], Theorem 1.1)
When the points akð Þ∞1 all lie in the unit disk U, the corresponding set pn zð Þ

� 	

for q< 1,will be effective in zj j≤ r for r≥ h
1�q, where h is as in (47).

Theorem 4.1.2. ([17], Theorem 3.1)
Given ∈ >0, the points akð Þ∞1 lying in zj j≤ 1 can the chosen so that the corre-

spondence set pn zð Þ
� 	

of (70) with q< 1 will not be effective in zj j< r for r< h�∈

1�q :.

Theorem 4.1.3 ([17], Theorem 1.2)
When q> 1 and

akj j≤ q�k ; q≥ 1 (71)

the corresponding set pn zð Þ
� 	

of (70) will be effective in zj j≤ r for r> qγ
q�1, where

1
γ
is the least root of the equation.

X

∞

n¼0

q�n2xn ¼ 2: (72)

Theorem 4.1.2 shows that the result in Theorem 4.1.1 is best possible. Also, the
restriction (71) on the sequence akð Þ∞1 when q> 1, is shown to be justified in the

sense that if the restriction is not satisfied, the corresponding set pn zð Þ
� 	

may be of
infinite order and not effective.

Proof.
Proof of Theorem 4.1.1 is similar to the first part of Theorem 3.1.1.
Let zn admits the representation

zn ¼
X

n

k¼0

πn,k a1, a2, … , anð Þpk zð Þ, (73)

then multiplying the matrix of coefficients
n

k

� �

ann�k

� �

of the set pn zð Þ
� 	

with

the inverse matrix πn,kð Þ we obtain

X

n

k¼0

n

k

� �

ann�kπk,0 a1, a2, … , akð Þ ¼ 0; n≥ 1:

Putting

v0 ¼ 1, vk ¼ vk a1, a2, ::… , akð Þ ¼
1

k½ �!
πk,o a1, … , an�k‘ð Þ, (74)

the above relation yields
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vn a1, ::… , anð Þ ¼ �
X

n

k¼1

ak

k½ �!
vn�k a1, … , an�k‘ð Þ (75)

Comparing the formulae (45) and (75) we infer that

vk a1, ::… , akð Þ ¼ Rk ak, ::… , a1ð Þ: (76)

Moreover, operating Dq on the polynomials pn zð Þ
� 	

, we can deduce, from (28)

and (29), that

D
q
pk z; akð Þ
� �

¼ K½ �pk�1 z, akð Þ; k≥ 1: (77)

Hence, when the operator Dq acts on the representation (73), then (77) leads to
the equality

πn,k a1, :… , anð Þ ¼
n½ �

k½ �
πn�1,k�1 a1, … , anð Þ,

which, on reduction, yields

πn,k a1, :… , anð Þ ¼
n

k

� �

πn�k,0 aKþ1, … , anð Þ; 0≤ k≤ n: (78)

Applying (74), (76) and (78), we obtain

πn,k a1, :… , anð Þ ¼
n½ �!

k½ �!
Rn�k an, … , aKþ1ð Þ; 0≤ k≤ n: (79)

Identify (79) is the bridge relation between the set pn zð Þ
� 	

and the Goncarov
polynomials mentioned earlier.

Suppose q< 1 and assume that

r≥
h

1� q
: (80)

Since h> 1 as in (47), and restricting the points akð Þ∞1 to lie in the unit disk U as
in the theorem, it follows from (28) and (80) that

Μ pk; r
� �

≤ kþ 1ð Þrk ; k≥0: (81)

The Cannon sum of the set pn zð Þ
� 	

for zj j ¼ r, is evaluated from (46), (47),
(79), (80) and (81) to obtain

wn rð Þ ¼
X

n

k¼0

πn,kj jΜ pk; r
� �

≤ nþ 1ð Þ2rn, (82)

from which it follows that the set pn zð Þ
� 	

is effective in zj j≤ r for r≥ h
1�q and the

theorem is established.
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5. Proof

5.1 Proof of Theorem 4.1.2

We argue as in the Proof of Theorem 3.1.2. We first obtain an identity similar to
(25) of Macintyre using the following Lemma:

Lemma 5.1.1.
For n≥ 1 and k≥0, the following identity holds.

Dq,zkQkþn z; z0, … , zkþn�1ð Þ

¼ �Qk z; zo, … , zk�1ð ÞQn�1 zk, zkþ1, … , zkþn�1ð Þ,

�

(83)

where Dq,zk denote the Dq-derivative with respect to zk.
Proof of Lemma
The proof is by induction.
For n ¼ 1, k≥0, we have from the construction formulae (33),

QKþ1 z; z0, … , zkð Þ ¼
zkþ1

kþ 1½ �!

�
X

k�1

j¼0

z
kþ1�j
j

kþ 1� j½ �!
Q j z; z0, … , z j�1

� �

� zkQk z; z0, … , z j�1

� �

:

Hence, operating Dq,zk on this equality, we have that

Dq,zkQkþ1 z; z0, … , zk�1ð Þ ¼ �Qk z; z0, … , zk�1ð Þ,

so that the identity (83) is satisfied for n ¼ 1, k≥0. Suppose that (83) is satisfied
forn ¼ 1, 2, … ,m; k≥0. The formulae (33) can be written for kþmþ 1 in the form,

Qkþmþ1 z; z0, … , zkþmð Þ ¼
zkþmþ1

kþmþ 1½ �!
�
X

k�1

j¼0

z j
kþmþ1�j

kþmþ 1� j½ �!
Q j z; z0,… ,z j�1

� �

�
zmþ1

k

mþ 1½ �!
Qk z; z0, … , zk�1ð Þð Þ �

X

m

j¼1

zkþj
mþ1�j

mþ 1� j½ �!
Qkþj z; z0, … , zkþj�1

� �

:

Hence, the derivative Dq,zk operating on this equation gives, in view of (83),

Dq,zkQkþmþ1 z; z0, … , zkþmð Þ ¼ �
zm

m½ �!
Qk z; z0, … , zk�1ð Þ

þ
X

m

j¼1

z
mþ1�j
kþj

mþ 1� j½ �!
QK z; z0, … , zK�1ð Þ � Q j�1 zk; zkþ1, … , zKþj�1

� �

:

Or equivalently,

Dq,zkQkþmþ1 z; z0, … , zkþmð Þ ¼ �Qk z; z0, … , zk�1ð Þ

�
zmk
m½ �!

�
X

m�1

j¼0

z
mþj
kþjþ1

m� j½ �!
Q j zk; zkþ1, … , zKþj

� �

" #

:

Hence, formulae (33) imply that
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Dq,zkQkþmþ1 z; z0, … , zkþmð Þ ¼ �Qk z; z0, … , zk�1ð ÞQm zk; zkþ1, … , zKþmð Þ,

and the relation (83) is also valid for n ¼ mþ 1
The Lemma is thus proved by induction. Now, following similar lines paralleling

those of the proof of Theorem 3.1.2, we need to establish a Lemma similar to that
used for Theorem 3.1.2.

Indeed, observing that h> 1 as in (39), the ∈ >0 of Theorem 4.1.2 can always be
picked less than h� 1. Also, from (39) it follows that, corresponding to the number
∈, there exists an integer m for which

m> log hð Þ= log 1þ
∈

2h

� �

, (84)

such that

h
1
m
m > h�

∈

2
: (85)

Also, from the definition (46) of hm, the points αið Þm1 lying in U can be chosen so
that

hm ¼ Rm αm, :… , α1ð Þj j: (86)

With this choice of the integer m and the points αið Þm1 , the Lemma to be
established is the following:

Lemma 5.1.2.
With the notation

u j z1, z2,… ,z j

� �

¼ R jþ1ð Þmþj αm, … , α1; z j; αm, … , α1; z j�1; … ; αm, … , α1; αm, … , α1
� �

,

(87)

we can choose a sequence ξ j

� �m

1
of points on zj j ¼ 1 such that

u j ξ1, ξ2, … , ξ j

� �















≥m jþ1; j≥ 1: (88)

Proof.
We first observe, from a repeated application of (30), that an analytic function

f zð Þ regular at the origin, can be expanded in a certain disk zj j≤ 1 in a series of the
form

f zð Þ ¼
X

∞

n¼0

zn

n½ �!
Dn

qf 0ð Þ:

Hence, by Cauchy’s inequality, we have

Μ f , rð Þ≥ r Dqf 0ð Þ










: (89)

Applying the usual induction process, we obtain, from (87) for the case j ¼ 1,
that

u1 z1ð Þ ¼ R2mþ1 αm, … … , α1; zi; αm, … … , α1ð Þ
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Hence the identity (83) yields

Dqu1 z1ð Þ ¼ Dq,z1Q2mþ1 0; αm, … … , α1; zi; αm, … … , α1ð Þ
¼ �Rm αm, … … , α1ð ÞQm zi, αm, … … , α1ð Þ:

Therefore, we obtain

Dqu1 0ð Þ ¼ R2
m αm, … … , α1ð Þ, (90)

where the Dq is operating with respect to z1.
Pick the number ξ1, with ξ1j j ¼ 1, such that

u1 ξ1ð Þj j ¼ sup u1 z1ð Þj j : z1j j ¼ 1f g;

hence, a combination of (86), (89) and (90) yields

u1 ξ1ð Þj j≥ h2m,

and the inequality (88) is satisfied for j ¼ 1. The similarity with the proof of
Lemma 3.2.1 shows that the proof of this Lemma can be completed in the same
manner as that for ealier Lemma.

We can now prove Theorem 5.1.4.
We note that the points akð Þ∞1 lying in U which define the required set pn zð Þ

� 	

of
polynomials (70), are chosen as follows:

a j mþ1ð Þ ¼ ξ j

a j mþ1ð Þþi ¼ αi ; 1≤ i≤m; j≥0

(

, (91)

where the points αið Þm1 are fixed as in (86) and the sequence ξ j

� �

∞

0
of points is

determined as in Lemma 5.1.2; and the integer m is chosen as in (84) and (85).
If zn admits the representation (86), then applying (79), (87) and (91) we

have that

π jþ1ð Þmþj,o ¼ jþ 1ð Þmþ i½ �!u j ξ1, ξ2, … , ξ j

� �

, j≥ 1, (92)

so that, for the Cannon sum of the set pn zð Þ
� 	

for zj j ¼ r, we obtain, from (85),

(88) and (92),

w jþ1ð Þmþj rð Þ> jþ 1ð Þmþ j½ �! h�
∈

2

� � jþ1ð Þm

; r>0:: (93)

Since q< 1, we have that

lim
n!∞

n½ �!ð Þ
1=n ¼

1

1� q
: (94)

Hence, (93) and (94) yield, for the Cannon function,
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λ rð Þ ¼ lim sup
n!∞

wn rð Þf g
1=n

≥ lim sup
j!∞

w jþ1ð Þmþj rð Þ
� 	1= jþ1ð Þmþj

≥
1

1� q
h�

∈

2

� �
m

mþ1

; r>0:

Noting that h� ∈

2 > 1, we conclude, from (84), as in the proof of Theorem (50),
that

λ rð Þ≥
h� ∈

1� q
; r>0,

and pn zð Þ
� 	

will not be effective in zj j≤ r for r< h�∈

1�q . This completes the proof.

5.2 Proof of Theorem 4.1.3

Let pn zð Þ
� 	

be the basic set in (70) with q> 1. We first justify the statement that

if the restriction (71) is not satisfied the corresponding set pn zð Þ
� 	

may be of
infinite order.

For this, we put

ak ¼ tk ; k≥ 1, (95)

and let t be such that

tj j ¼ β,
1

q
< β< q (96)

We claim that, in this case, the corresponding set pn zð Þ
� 	

will be of infinite
order and hence the effectiveness properties of the set will be violated.

Now, in the identity (37), we let

zk ¼ an�k ¼ tn�k; 0≤ k≤ n� 1,

to obtain

X

n

k¼0

tnk

k½ �!
Rn�k tn�k, … , t

� �

¼ 0; n>0: (97)

Put

R j t
j, … , t

� �

¼ t
1
2j j�1ð Þu j; j≥ 1, (98)

so that (97) yields

X

n

k¼0

t
1
2k kþ1ð Þ

k½ �!
un�k ¼ 0 ; n>0: (99)

Hence, if we put
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u zð Þ ¼
X

∞

n¼0

unz
n, (100)

then (97) implies that

u zð Þ ¼
1

φ zð Þ
, (101)

where

ϕ z, tð Þ ¼
X

∞

n¼0

t�
1
2n n�1ð Þ

n½ �!
zn:

Since tj j ¼ β< q, the function ϕ z, tð Þ is entire of zero order and hence it will have
zeros in the finite part of the plane.

Let

σ ¼ inf zj j;φ zð Þ ¼ 0f g<∞, (102)

then from (100) and (101), we have lim supn!∞ unj j
1
n ¼ 1

σ
>0:

Thus, for the Cannon sum of the set pn zð Þ
� 	

, we have, from (79), (96) and (98),
that

wn rð Þ> πn,0j j ¼ n½ �!β
1
2n n�1ð Þ unj j: (103)

Since q> 1 and β> 1
q then, in view of (102), we deduce from (103) that the set

pn zð Þ
� 	

is of infinite order; as claimed.

To prove Theorem 4.1.3 we first note, from (72), that if we put

c ¼
qγ

q� 1
, (104)

then

c>
1

q� 1
: (105)

We then multiply the matrix
n

k

� �

an�k
n

� �

with the inverse πn,kð Þ to get

πn,k ¼ �
X

n�1

j¼k

n

k

� �

an�j
n π j,k : n> k; πk,k ¼ 1: (106)

Now, imposing the restriction (71) on the points akð Þ∞1 , we have from (105) and
(106) that

πkþ1,kj j≤ c:

Thus, the inequality
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πmkj j≤ cm�k ;m≥ k, (107)

is true for m ¼ k, kþ 1.
To prove (107), in general, we observe that, since q> 1,

n

j

� �

≤ q j n�jð Þ q

q� 1

� �n�j

; 1≤ j≤ n: (108)

Assume that (107) is satisfied for m ¼ k, kþ 1, … , n� 1; then a combination of
(71), (72), (104), (106), (107) and (108) leads to the inequality.

πn,kj j≤ cn�k
X

∞

j¼1

q

c q� 1ð Þ

 � j

q� j2 ¼ cn�k:

Hence, it follows by induction, that the inequality (107) is true for m≥ k:
Noting that

k

j

� �

¼ q j k�jð Þ k

j

� �

q> 1,

where
k

j

� �

is the q–analogue of
k

j

 �

, q1 ¼ 1
q < 1, we then deduce from (70)

and (71), that

Μ pk; r
� �

≤ rk
X

k

j¼0

k

j

( )

q� j2r�j

≤ rk
X

k

j¼0

k

j

( )

q�
1
2j j�1ð Þ qrð Þ�j ; q> 1:

Appealing to a result of Al-Salam ([18]; formula 2.5), we deduce that

Μ pk; r
� �

≤ rk
Y

k

j¼1

1þ
1

q jr

 �

; k≥ 1, r>0: (109)

The Cannon sum of the set pn zð Þ
� 	

for zj j ¼ r can be evaluated from (107) and

(109) in the form

wn rð Þ≤
Y

n

j¼1

1þ
1

q jr

 �

( )

X

n

k¼0

cn�krk: (110)

Hence, when r≥ c we should have

wn rð Þ≤ nþ 1ð Þ
Y

n

j¼1

1þ
1

q jr

 �

( )

rn,

from which it follows that the set pn zð Þ
� 	

is effective in zj j≤ r and Theorem 4.1.3

is proved.

20

Recent Advances in Polynomials



6. Other related results

The Goncarov polynomials belonging to the Dq–derivative operator have other
properties of interest and worth recording. Hence, we present, in this section, more
results regarding the Goncarov polynomials Qn zð Þ; z0, … , zn�1f g as defined in (84)
which belong to the derivative operator Dq and whose points znð Þ∞0 lie in the unit
disk U for which q< 1 or q> 1.

When q< 1, the result of Buckoltz and Frank ([3]; Theorem 1.2) applied to the
derivative operator Dq leads, in the language of basic sets, to the following theorem:

Theorem 6.1 ([19], Theorem 1).
The set of Gancarov polynomials Qn zð Þ; z0, … , zn�1f g belonging to the Dq oper-

ator, with q< 1 and associated with the sequence of points znð Þ∞0 in U, is effective in

zj j≤ r for r≥ h
1�q.

Theorem 1.5 of Buckholtz and Frank [3] shows that the result of Theorem 6.1
above is best possible. They also showed that when q> 1 the Goncarov polynomials
fail to be effective and also, that if zj j≤ q�n, no favorable effectiveness results will
occur, thus justifying the restriction zj j≤ q�n on the points znð Þ∞0 .

We also state and prove the following theorem.
Theorem 6.2 ([19], Theorem 2).
Suppose that q> 1 and that the points znð Þ∞0 satisfy the restriction (111). Then the

Goncarov set Qn z; z0, … , zn�1ð Þf g belonging to the Dq–derivative operator, will be

effective in zj j≤ r for r≥ hq
q�1 and this result is best possible.

To prove this theorem we put, as in the proof of Theorem (72),

q1 ¼
1

q
, (111)

so that q1 < 1 and we differentiate between the Goncarov polynomials belonging

to the operations Dq and Dq1 by adopting the notation.

Qn z; z0, … , zn�1ð Þ and pn z; z0, … , zn�1ð Þ,

for these respective polynomials. Thus, the constructive formulae (33) for these
polynomials will be

Qn z; z0, … , zn�1ð Þ ¼
zn

n½ �!
�
X

n�1

k¼0

zn�k
k

n� k½ �!
Qk z; z0, … , zk�1ð Þ, (112)

and

Pn z; z0, … , zn�1ð Þ ¼
zn

nf g!
�
X

n�1

k¼0

zn�k
k

n� kf g!
Pk z; z0, … , zk�1ð Þ, (113)

where k½ �! and kf g! are the respective q and q1 analogues of the factorial k . With
this notation, the following Lemma is to be proved.

Lemma 6.1.
The following identity is true for n≥ 1 and q> 1 :

q�
1
2n nþ1ð ÞQn qnz; qnz0, ::… , qzn�1

� �

¼ pn z; z0, :… , zn�1ð Þ: (114)
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Proof.
We finish note, from the definition of the analogue k½ �! and kf g!, that

qn
2

nf g!
¼

q
1
2n nþ1ð Þ

nf g!
; n≥ 1, (115)

and

q n�kð Þ2þ n�kð Þk

n� kf g!
¼

1

n� kf g!
q

1
2n nþ1ð Þ�1

2k kþ1ð Þ ; 0≤ k≤ n: (116)

Hence, applying the relations (37) and (112) to QN qnz; qnz0,…, qzn
� �� 	

, we get

Qn qz, qnz0, … , qzn�1

� �

¼
qn

2

nf g!
zn �

X

n�1

k¼0

q n�kð Þ2þ n�kð Þk

n� kf g!
zn�1
k Qk qkz, qkz0, … , qzk�1

� �

:

Hence, the relations (115) and (116) can be introduced to yield

q�
1
2n nþ1ð ÞQn qnz, qnz0, … , qzn�1

� �

¼
zn

nf g!

�
X

n�1

k¼0

zn�k
k

n� kf g!
q�

1
2k kþ1ð ÞQk qkz, qkz0, … , qzk�1

� �

:

(117)

Now, since

q�1Q1 qz; qz0
� �

¼ z� z0 ¼ p1 z; z0ð Þ,

the identity (114) is satisfied for n ¼ 1.
Moreover, if (114) is valid for k ¼ 1, 2, … , n� 1, the relations (113) and (117)

will give

q�
1
2n nþ1ð ÞQn qnz, qnz0, … , qzn�1

� �

¼
zn

nf g!
�
X

n�1

k¼0

zn�k
k

n� kf g!
Pk z; z0, … , zk�1ð Þ

¼ Pn z; z0, … , zn�1ð Þ,

and hence the Lemma is established.
Proof of Theorem 6.2.
Write

zk ¼ q�kak; k≥0, (118)

so that the restriction (111) implies that

akj j≤ 1 ; k≥0 (119)

Therefore, a combination of (37), (114), (118) yields

Qn z; z0, … , zk�1ð Þ ¼ q�
1
2k kþ1ð ÞPk z, z0, … , zk�1ð Þ: (120)

Also, by actual calculation we have that
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n½ �!

n� k½ �!
q�k n�kð Þ�1

2k kþ1ð Þ ¼
nf g!

n� kf g!
; 0≤ k≤ n (121)

Inserting (118), (120) and (121) into (33), we obtain

zn ¼
X

n

k¼0

n½ �!

n� k½ �!
zn�k
k Qk z; z0, … , zk�1ð Þ

¼
X

n

k¼0

nf g!

n� kf g!
an�k
k Pk z, a0, … , ak�1ð Þ,

in the sense that each term in the sum on the left hand side of this relation is
equal to the corresponding term in the sum on the right hand side.

Hence, if

Μk rð Þ ¼ sup
zj j¼r

Qk z; 0, … , k�1ð Þj j

mk rð Þ ¼ sup
zj j¼r

Pk z; a0, … , ak�1ð Þj j

and Ωn rð Þ and wn rð Þ are the respective Cannon sums of the sets
Qn z; z0, … , zn�1ð Þf g and Pn z; a0, … , an�1ð Þf g, it follows that

Ωn rð Þ ¼
X

n

k¼0

n½ �!

n� k½ �!
zkj jn�k

Μk rð Þ (122)

¼
X

n

k¼0

nf g!

n� kf g!
akj jn�kmk rð Þ ¼ wn rð Þ:

Since the points akð Þ∞0 lie in U, from (119), then applying Theorem 6.1 we
deduce from (122) that the set Qn z; z0, … , znð Þf g will be effective in zj j≤ r for

r≥ h
1�q ¼

qh
q�1 as to be proved.

To show that the result of the Theorem is best possible we appeal to Theorem 1.5
of Buckholtz and Frank [3] to deduce that the set Pn z; a0, … , an�1ð Þf g may not be

effective in zj j≤ r for r< qh
q�1.

In view of the relation (122), we may conclude that the set Qn z; z0, … , znð Þf g

will not be effective in zj j≤ r for r< qh
q�1 and Theorem 6.2 is fully established.

6.1 The case of Goncarov polynomials with Zk ¼ atk, k≥0

Nassif [14] studied the convergence properties of the class of Goncarov poly-
nomials Qn z; z0, … , zn�1ð Þf g generated through the qth derivative described in (33)

where now, zk ¼ atk, k≥0 and a and t are any complex numbers. By considering
possible variations of t and q, it was shown that except for the cases tj j≥ 1, q< 1 and

tj j> 1
q ; q> 1, all other cases lead to the effectiveness of the set Qn z; a, at, … atn�1ð Þ in

finite circles ([14]; Theorems 1.1, 1.2, 1.3, 3.2, 3.3).
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6.2 Quasipower basis (QP-basis)

Kazmin [20] announced results on some systems of polynomials that form a
quasipower basis, (QP-basis), in specified spaces. These include the systems of
Goncarov polynomials and of polynomials of the form:

zþ αnð Þnf g, n ¼ 0, i, 2… ; αn ∈ �1, 1½ �: (123)

For full details of QP-basis and some of the results announced, cf. ([20];
Corollaries 3, 4).

Of interest is his results that the system in (123), for arbitrary sequence af g∞0 of
complex numbers with anj j≤ 1, forms a QP- basis in the space 1, σ½ �, for 0< σ <W
and in the space 1, σ½ Þ, for 0< σ ≤W, where W = 0.7377 is the Whittaker constant.
This value of W = 0.7377 is attributed to Varga [21]. He also added that Corollaries 3
and 4 contain known results in [5, 9, 15, 22, 23].

7. Conclusions

The chapter presents a compendium of diverse but related results on the con-
vergence properties of the Goncarov and Related polynomials of a single complex
variable. Most of the results of the author (or joint), have appeared in print but are
here presented in considerable details in the proofs and in their development, for
easy reading and assimilation. The results of other authors are summarized with
related and relevant ones mentioned to complement the thesis of the chapter. Some
recent works related to the Goncarov and related polynomials, cf. [24–29], which
provides further applications are included in the references.

The comprehensiveness of the presentation is for the needs of those who may be
interested in the subject of the Goncarov polynomials in general and also in their
application to the problem of the determination of the exact value of the Whittaker
constant, a problem that is still topical and challenging.
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