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Chapter

Microglia, TREM2, and 
Therapeutic Methods of 
Alzheimer’s Disease
Siwei Xu, Yaya Ji, Tianle Sha and Haoming Li

Abstract

Alzheimer’s disease (AD) is one of the most common causes of dementia all 
around the world. It is characterized by the deposition of amyloid-β protein (Aβ) 
and the formation of neurofibrillary tangles (NFTs), which contribute to neuro-
nal loss and cognitive decline. Microglia, as innate immune cells in brain, plays 
dual roles in the pathological process of AD. Expression in different subtypes of 
microglia is diverse in AD genes. Triggering receptor expressed on myeloid cells 2 
(TREM2) is a transmembrane glycoprotein mainly expressed on microglia in the 
central nervous system (CNS). Soluble TREM2 (sTREM2), a proteolytic product 
of TREM2, which is abundant in the cerebrospinal fluid, shows a dynamic change 
in different stages and ameliorates the pathological process of AD. The interplay 
between the different subtypes of apolipoprotein and TREM2 is closely related to 
the mechanism of AD and serves as important regulatory sites. Moreover, several 
therapeutic strategies targeting TREM2 have shown positive outcomes during clini-
cal trials and some novel therapies at different points are in progress. In this review, 
we mainly talk about the interrelationships among microglia, TREM2, and AD, and 
hope to give an overview of the strategies of AD.
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1. Introduction

Nowadays, Alzheimer’s disease (AD) is one of the most common causes of 
dementia in the United States [1]. Alois Alzheimer discovered AD in 1907 and 
characterized AD as amyloid plaques, brain atrophy, neurofibrillary tangles, loss of 
neurons and synapses, and dystrophic neurites in histopathology [2].

Microglia are the resident immune cells in the CNS. They derive from erythro-
myeloid progenitor cells and then migrate to the brain [3]. Developing and adult 
microglia demonstrate distinct morphological features as ramified or ameboid [4], 
which was proved by recent comprehensive transcriptomic analyses [5]. Relative 
analyses also demonstrate the heterogeneity, abundance, steady state in embry-
onic, postnatal, juvenile, and adult mouse models [6, 7]. They are also featured as 
self-renewing, which requires several factors such as colony-stimulating factor-1 
receptor (CSF1R) and transforming growth factor β (TGF-β) [8–10]. Moreover, 
the murine signature of microglia in AD was present in human microglial sub-
types, especially clusters 4, 5, 7, and 8. Among which, cluster 7 stands out in the 
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consequence of its high expression of AD gene decrease in the tissue sections in 
both AD dementia and pathological AD [11]. This can be a diagnostic standard for 
AD when the frequency of cluster 7 was diminished.

Hippocampus is an elongated structure that is part of the cerebral cortex [12]. It 
is one of the most severely affected structures in neurodegenerative diseases like AD 
[13]. Hippocampus, along with its accessory structure, was suggested to be related 
to space [14, 15], time [16, 17], and the creation of declarative memories (memories 
that can evoke conscious awareness and be verbalized) [18].

Hippocampus is vulnerable to the harmfulness of diseases such as epilepsy, 
hypoxia, ischemia, or encephalitis [18]. The entorhinal cortex is usually the 
first region that demonstrates tau pathology in AD patients [18]. Somatostatin-
positive interneurons are also found lost in the hippocampus of AD patients [19]. 
In AD patients, degenerative cholinergic neurons in the basal forebrain were 
proved to lead to dysfunctional cholinergic neurotransmission in regions like 
hippocampus [20].

2. Harmful and beneficial effects of microglia

Microglia play the role of phagocytes in the CNS, thus, maintaining the homeo-
stasis of the brain [21]. In aging brains, microglia will cause synaptic clearance 
leading to forgetting via complement pathway [22]. In AD pathology, microglia 
also prove to be phagocytose synapses [23, 24]. Nevertheless, with CSF1R blockade 
to remove microglia in Aβ models, increased Aβ is detected [25]. Despite negative 
outcomes of microglia, synapse loss and behavior deficits can be avoided [26, 27]. 
The production of neurotoxic inflammatory cytokines and reactive oxygen spe-
cies are found to be related to chronic activation of microglia [28]. However, it still 
remains unclear whether microglia play positive or negative roles in the process of 
neurodegenerative diseases.

In recent research, microglia in patients with AD show specific characteristics 
such as aging and upregulation of apolipoprotein E (APOE) [29]. The fat droplets 
appearing in microglia of aged mice suggest that the main manifestations of aging 
are the accumulation of fat droplets and excessive secretion of pro-inflammatory 
factors [30], which may be a new biological hallmark of AD. Additionally, it is not 
difficult to find that the branching of microglia has been reduced in aged brains, 
thus cutting the size of microglia’s area for surveillance and leading to the harm of 
homeostatic functions [31–34]. One important function of microglia in AD is the 
phagocytosis of Aβ amyloid. For instance, microglia can mediate clearance of Aβ 
via receptors including β1 integrin in neurodegenerative diseases [35]. The acute 
inflammatory response can also promote phagocytosis of impaired neurons and 
neuronal toxic accumulation [36]. Despite the protection of microglia, prolonged 
inflammatory reaction will exacerbate neuronal degeneration [37]. The TAM 
receptor tyrosine kinases (RTKs) are a distinct family of three protein tyrosine 
kinases, namely Tyro3, Axl, and Mer3, which play an important role in phagocytosis 
and phagocytic clearance of apoptotic cells and cell membranes in the adult tis-
sues [38, 39]. Axl and Mer play pivotal roles in macrophages like phagocytosis of 
apoptotic cells and negative feedback inhibition of toll-like receptor and cytokine 
receptor signaling. In AD mice with double knockout of Axl or Mer, the ability of 
microglia to phagocytize the plaque is weakened, suggesting the inhibition of TAM 
signal promotes plaque formation [40]. A cluster of differentiation-22 (CD22), a 
canonical B-cell receptor and a negative regulator of phagocytosis, is found highly 
expressed in microglia of aged brains, and rarely in young brains [41]. The find-
ing suggests that the inhibition of CD22 can delay aging-related dysfunction and 
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neurodegenerative diseases. The pellino-1 (peli1) is a ubiquitin E3 ligase, expressed 
in many kinds of nerve cells in the mouse brain, and with the highest expression 
level of microglia [42]. Similarly, Peli1 negatively regulates the ability of phagocyto-
sis of microglia to Aβ, resulting in the inability of clearance of deposition, leading to 
the deterioration of AD [43].

Perineuronal nets (PNNs), with their structure remaining unknown in detail, 
surround the cell bodies and dendrites, and spare free space for synaptic contact 
[44]. In the AD mice model and human cortical tissue, PNNs are largely lost in pro-
portion to plaque burden and depletion of microglia. Loss is prevented regardless of 
plaque persistence and suggests that microglia can enhance the loss of PNNs in the 
AD brain [45]. Besides, CD163-positive amyloid-responsive microglia are depleted 
in TREM2 and APOE variants in AD like TREM2 R47H and APOE4 [46].

Microglia may be detrimental to neurons in the pathological process. Recently, 
interleukin 3 (IL-3) from astrocytes was found to re-encode microglia, thus 
improving the situation of Aβ pathology [47]. Injection of IL-3 enables microglia to 
focus on clearing amyloid deposition and neurofibrillary tangles instead of causing 
extensive neuroinflammation [47]. This signaling pathway is expected to provide 
ideas for new drug research and development in the future and bring new drugs 
for the treatment of AD. A study suggested that some damaging characteristics of 
microglia behavior may be reversible by short-term treatment with CSF1R inhibi-
tors [48–50]. In the mice model, removal of microglia did not improve the cognitive 
ability in a traumatic brain injury (TBI) [51]. Interestingly, repopulating microglia 
can reverse the decrease of nerve regeneration caused by brain injury and improve 
cognitive dysfunction in mice in an IL-6-dependant manner [51]. This study opens 
up a new understanding of the role of microglia in the brain injury. Remarkably, 
the ubiquitin ligase COP1 (also called RFWD2) is shown to dampen the neuroin-
flammation through inhibiting the expression of the transcription factor CCAAT/
enhancer-binding protein beta (c/EBPβ), which regulates the pro-inflammatory 
gene of microglia [52], marking a new target for suppressing neuroinflammation in 
AD patients.

Disease-associated microglia (DAM), which was identified in AD patients 
by single-cell RNA sequencing (RNA-seq) [53], has recently become a hot topic, 
characterized by molecules including Iba1, Cst3, and Hexb, typically expressed 
in microglia. DAM also experiences downregulation of physiologically expressed 
genes such as P2ry12, P2ry13, Cx3cr1, CD33, and Tmem119 [9]. It is remarkable to 
find that DAM is identified in areas that are affected by diseases such as cortical tis-
sue [53] and postmortem human AD brain [54]. The evidence suggests that DAM is 
specifically expressed in CNS pathological process, serving as an important patho-
logical diagnostic standard. However, in the late set of neurodegenerative diseases, 
its role still remains unclear, which needs further investigation.

3. Physiological function on microglia of TREM2

Recent years have witnessed the central role of TREM2 as a hub in diverse 
pathology. TREM2 is a receptor that interacts with a variety of ligands, many of 
which are markers of tissue damage. TREM2 is a single-pass transmembrane protein 
known to regulate immune responses in peripheral macrophages through lipopoly-
saccharide binding and bacterial phagocytosis [55–57]. RNA-seq data were analyzed 
across human tissues to investigate TREM2 expression, and it has been confirmed 
that TREM2 is expressed physiologically in a small group of macrophages that are 
tissue specific [58]. In CNS, TREM2 is mostly expressed on microglia. In addition to 
the expression on microglia, the analysis also showed its expression in macrophages 
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from the adrenal gland, placenta, and adipose tissue [59]. TREM2 was thought to 
bind a wide range of molecules [60], and the interaction with different ligands can 
regulate the signal intensity and direction of TREM2 in turn [61]. Downstream 
signals mainly consist of those arrangements; for example, DAP10 is the key to 
activate extracellular signal regulated-kinase (ERK) and serine/threonine protein 
kinase (AKT1), while in murine macrophages, DAP12 is necessary for calcium 
mobilization [61–63]. Functional loss of TREM2 is related to polycystic lipomem-
branous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) [64].

Mice lacking TREM2 had defects in survival and differentiation of myeloid cells 
[65], as well as osteopenia and loss of microglia in CNS [62, 66]. TREM2-lacking 
cells may undergo a similar differential process as normal cells do despite a reduced 
life cycle [67]. Microglia deprived of TREM2 or expressing T66M variant demon-
strated the impaired process of brain glucose metabolism and cerebral perfusion 
[68]. Mice TREM2 was involved in synaptic pruning through a microglia-depen-
dent way to shape neuronal circuitry [69]. In rodents, TREM2-positive macro-
phages are found to be important regulators related to hair follicle stem cells [70]. 
Additionally, in TREM2-deficient microglia, increased autophagic vesicles can be 
found with defective activation of mTOR pathways [63], which partially regulate 
autophagy [71].

Deletion or impairment of TREM2 was proved to be detrimental to phago-
cytosis of lipoproteins, cellular debris, bacteria, and Aβ [68, 72, 73]. Moreover, 
overexpression of TREM2 in cells that are not functionally phagocytic like Chinese 
hamster ovary (CHO) cells showed induced phagocytosis of apoptotic cells and 
bacteria [57, 72].

TREM2 was also found to ameliorate neuroinflammation and neuronal apopto-
sis via PI3K/AKT signaling pathway in 5xFAD mice [74, 75]. TREM2 overexpression 
can also rescue cognitive barriers by reducing neuroinflammation via JAK/STAT/
SOCS pathway [76] and the suppression of TREM2 demonstrated a defective ability 
to regulate the PI3K/Akt and NF-κB signaling pathways [77].

Recently, genome-wide association studies (GWAS) demonstrated a link 
between single-nucleotide polymorphisms (SNPs) and inflammation-related genes 
to increased AD risk, such as the R47H variant in TREM2 [78], which is one of the 
strongest genetic risk factors for AD [79]. TREM2 variant R47H, whose foundation 
was dysregulated peroxisome proliferator-activated receptor-γ (PPARγ)/p38MAPK 
signaling [80], was shown to decrease the expression of TREM2, thus deteriorating 
myeloid cell responses to Aβ pathology [81]. Furthermore, the R47H variants and 
R62H variants of TREM2 demonstrate a defective microglial transcriptional activa-
tion, implicating fully functional TREM2 seems to be the key for development of 
the human DAM [82].

4. TREM2 and AD

TREM2 gives protection against neurodegenerative disease. Depletion of TREM2 
can induce impaired phagocytosis of the critical substrates such as APOE [83] and 
exacerbates tau pathology in AD [84].

4.1 TREM2 gets involved in AD pathogenesis via microglia

TREM2 is found to reduce tau seeding in neuritic plaques [85], which is essential 
for synapse clearance in the early stage of brain development, and TREM2-KO mice 
demonstrate altered sociability [69]. Moreover, TREM2 can induce microglia to 
gather around Aβ and restrict plaque expansion found in murine models of AD [86]. 
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Similar conditions can also lead to exacerbation of axonal dystrophy and dendritic 
spine loss [87]. Another research shows that a dosage of TREM2 can reprogram the 
microglial response in downregulating the expression of DAM genes and amelio-
rating the pathological phenotype in AD mice [88]. In the absence of functional 
TREM2, amyloid plaque seeding increased, and microglial aggregation decreased 
[88]. A similar study shows that in human pluripotent stem cell (PSC), monocytes 
and transdifferentiated microglia-like cells, TREM2 R47H variant and loss of TREM2 
on heterozygous or homozygous, display a significant decreased in phagocytosis 
[89]. On a recent finding, IL-4 and IL-10 enhance the phagocytosis of microglia via 
upregulation of TREM2 [90]. These findings support the hypothesis that reactive 
microglia and TREM2 are functionally necessary to alleviate neuronal damage. 
However, other studies give opposite outcomes that loss of TREM2 may be protective 
in AD mice [91].

Genetically, the immune cell-specific phospholipase C isoform γ2 (PLCG2), 
a rare coding variant, is identified [92]. Recent research has demonstrated that 
TREM2 can mediate phagocytosis, cell survival, lipid metabolism, and process 
neuronal debris through PLCG2 of microglia derived from human-induced pluripo-
tent stem cell (iPSC) [93]. PLCG2 P552R variant has protective functions including 
weak-enhancing enzyme functions [94] and promoting survival functions of 
microglia in Plcγ2-P522R knock in mice [95]. These studies highlighted the critical 
role of the TREM2 pathway in AD and provided genetic evidence for the increase of 
TREM2 in the pathologic process of AD.

In recent years, different TREM2 ligands have been found and proposed, such 
as β-amyloid peptide [96] and APOE [97]. APOE-dependent molecular signature 
in microglia is identified in AD patients, mediating a switch from homeostatic to 
neurodegenerative status [98]. This can be a target in treating AD patients through 
restoring the homeostatic microglia.

4.2 TREM2 regulates APOE mediating AD risk

Although there is no difference in the quantity of activated microglia and reac-
tive astrocytes between APOE4 carriers and noncarriers in the postmortem neocor-
tex [99], relative transcriptomic studies have shown the connection between APOE 
and glia. Human APOE is expressed in three allelic variants, APOE2, APOE3, and 
APOE4, which exhibit different receptor binding properties [100]. APOE upregula-
tion has been proved to be TREM2-dependent [101]. To some extent, TREM2 and 
APOE may have some special links [102], and the lack of TREM2 leads to a decrease 
of APOE4, while APOE3 remains unchanged [103]. Microglial plaque coverage and 
TREM2 are the highest in APOE3 male mice while significantly low in both APOE4 
genotype and female sex [104], implicating a possible mechanism of AD between 
sex and APOE genotype. A reduction in plaque-associated APOE is also found in 
the brains of AD patients [105]. In another research, APOE3 is shown to promote 
the proliferation of microglia to injected Aβ, contribute to the uptake of Aβ, and 
improve cognition related to Aβ in preclinical models of AD [106]. Moreover, APOE 
was proven to stimulate different signal transduction cascades, ApoE4 > ApoE3 > 
ApoE2, in proportion to their AD risk [107]. This suggests that neuronal pathways 
may be related to the pathogenesis of AD. Human TREM2 (hTREM2) was bind 
to APOJ and APOE that are ligands of TREM2 under normal circumstances [73]. 
However, this binding is reduced in diseases or TREM2 KO mice microglia, lead-
ing to the impaired uptake of Aβ [73]. TREM2 is also an attractive target for drug 
regulation, but needs to be cautious because it is an important upstream mediator 
of microglia activation and phenotypic changes [53, 98]. In addition, single-cell 
transcriptomic studies pointing at microglia have shown a fascinating TREM2 



Hippocampus - Cytoarchitecture and Diseases

6

ligand gal-3 that is related to neurodegenerative diseases [108]. Increased gal-3 is 
found in AD patients and 5xFAD mice, while decreased gal-3 shows improved cog-
nitive ability and attenuates immune responses related to the TREM2-DAP pathway 
[109]. Therefore, suppressing gal-3 in the AD process may be a potential target in 
treatment.

5. sTREM2

sTREM2, a soluble form of TREM2, is derived from the non-proteolytic-
mediated secretion of some TREM2 isoforms or due to extracellular domain of 
TREM2 being cleaved by different sheddases [110]. Years before the onset of 
dementia symptoms, sTREM2 increased in cerebrospinal fluid (CSF) of people 
with AD biomarker characteristics [111–114]. Recently, it is found that in preclini-
cal AD, CSF sTREM2 changes are dynamic. In the absence of tau deposition and 
neurodegeneration, sTREM2 is decreased with Aβ pathology [115]. Different 
mutants of sTREM2 showed differences in concentration in CSF [114]. sTREM2 
has a protective effect on Aβ and AD, such as reducing amyloid plaque load and 
restoring spatial memory [116]. Similarly, in the absence of TREM2 [105], sTREM2 
enhances microglial proliferation, migration, clustering around Aβ, and contribut-
ing to the uptake and degradation of Aβ [116]. sTREM2 administration can also 
stimulate the expression of inflammatory cytokines and induce morphological 
changes of microglia such as decreased cell process and increased cell body size, 
thus enhancing microglial survival [117]. In TREM2 KO mice, administration 
of sTREM2 also showed positive feedback, like rescuing apoptosis upon colony-
stimulating factor (GM-CSF) withdrawal, inducing the proliferation and cell 
viability of the primary microglia [118, 119], compared with WT mice [117]. These 
results indicate the tremendous therapeutic potential of sTREM2, but warn that 
pro-inflammatory activation in the brain may lead to negative functional out-
comes. Under stress, sTREM2 can promote myeloid cell survival too in a manner 
dependent on PI3K/AKT [117, 120]. Consequently, sTREM2 can be a target for AD 
therapy. But it is shown less potent for sTREM2-R47H and sTREM2-R62H variants 
to suppress apoptosis in AD context [117]. Among the three polymorphic forms 
(APOE2, APOE3, and APOE4), APOE4 proved to be more related to AD [121] and 
high levels of sTREM2 are associated with the decrease of APOE4 [122] and slower 
rates of Aβ accumulation [123]. In conclusion, the changes of sTREM2 can also be a 
biological hallmark for AD.

6. The prospect of treatment of AD

For a long time, it is considered that Aβ accumulation is the central and initial 
event in the pathological process of AD. The famous amyloid cascade hypothesis 
thinks that the increase of Aβ levels leads to the pathological events of AD [124, 125]. 
Extensive clinical medicine trials of Aβ finally come to an end, and results showed that 
reduced Aβ load does not affect the cognitive ability of patients with AD [126, 127]. 
So, finding a new target rather than Aβ may be our priority. Microglia play pivotal 
roles in the pathological process, and interfering with their detrimental process in AD 
can become our next focus.

Microglia are shown to maintain the function of neurons by clearing toxic 
damage in the early stage of AD [128]. Consequently, interfering with the activation 
of microglia to lengthen the period of anti-inflammatory seems to be a therapy for 
AD [129]. Other anti-inflammatory cytokines such as IL-2, IL-4, and IL-33 have 
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the potential to ameliorate AD pathology by regulating microglial activation [128], 
despite its results are not decisive [130].

Moreover, TREM2 is shown to be a positive target for treating AD. Recently, 
AL002c, an anti-human TREM2 agonistic monoclonal antibody (mAb), gives a 
positive outcome in 5xFAD mice expressing both the R47H variant and the com-
mon variant (CV). Prolonged administration of AL002c ameliorates filamentous 
plaques, causes neurodystrophy, and regulates microglial inflammation. AL002 
is a derivative product of AL002c, which is modified for clinical use. AL002 is 
proven safe and well-tolerated in a first-in-human phase I clinical trial [131]. 
Overexpression of TREM2 can attenuate the pro-inflammatory effect caused by 
LPS, which can contribute to the increase of NO, LDH, TNF-α, IL-1b, and the 
activation of AKT [132]. Thus, relative experiments can be conducted in CNS.

Another way to increase TREM2 expression in microglia is by preventing 
ADAM10/17 family proteases from shedding extracellular domain [133, 134]. To 
stabilize TREM2 on the cell surface and enhance its activity, a specific mAb against 
TREM2 called 4D9 was screened to selectively compete for α-secretase-mediated 
shedding [133]. Shedding is considered to end cell-autonomous TREM2 signaling, 
and data show an increased phagocytic capacity of cells that express TREM2 by 
inhibiting ADAM proteases [135]. Combined with another research, Aβ clearance 
is TREM2-dependant [136], and future treatments can combine anti-Aβ antibodies 
with microglia-stimulating antibodies (4D9). This view opens a new door to the 
treatment of AD. Another study evaluated aducanumab as another antibody that 
may treat AD, but clinical trial results are still unsatisfactory [137]. In addition to 
cross-linking and activating the TREM2-DAP12 signal, 4D9 also inhibits the shed-
ding of TREM2, resulting in the decrease of soluble TREM2 in vitro and the increase 
of total TREM2 in the brain [133]. This research may consider the role of sTREM2 in 
AD [91]. Since TREM2 is expressed in peripheral myeloid cells, any effects of treat-
ment for TREM2 should be evaluated for peripheral adipose tissue in liver, lung, 
bone, and spleen. However, this has not been thoroughly investigated [91].

A novel property, cyclocreatine, the creatine analog, which can generate a 
supply chain for ATP demand regardless of the TREM2-mTOR pathway [138], is 
found to ameliorate autophagy, induce microglia around Aβ, and decrease neuronal 
dystrophy during dietary administration in 5xFAD mice [63]. Based on metabolism, 
this is a new era for treating AD.

Another research provides a creative angle in treating AD. It is known that men-
ingeal lymphatic vessels drain macromolecular substances from the brain into the 
deep cervical lymph nodes [139], in which meningeal lymphatic serves as a channel 
to transport substances such as an antibody. But ablation of meningeal lymphatic 
vessels in 5xFAD mice can lead to a switch of microglia from homeostasis to DAM 
[140] and inhibit the transportation of antibodies to specific locations, thus exacer-
bating the cognitive ability of AD patients. It may bring unexpected clinical effects 
to patients with AD, if the treatment is placed in the early stage, thus enhancing the 
meningeal lymphatic function and combined with immunotherapy, to better play 
the role of meningeal lymphatic vessels.

Recently, tau pathology is the study focus. Tau hyperphosphorylation causes 
abnormal aggregation and neurodegeneration in AD brains [141], and protein 
phosphatase 2A (PP2A) has the most robust dephosphorylation activity to tau 
protein in vitro and in vivo [142]. A novel DEPho-sphorylation Targeting Chimaera 
(DEPTAC) was designed to enhance the combination of tau and PP2A-Bα, which 
shows high efficiency in preventing tau accumulation in vitro and in vivo [143]. 
Further studies showed that DEPAC significantly improved the microtubule 
assembly, neurite plasticity, and hippocampus-dependent learning and memory in 
transgenic mice [143].
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7. Conclusion

Microglia play important roles in the pathological process of AD. The dual role 
it plays (positive or negative outcomes), its distinctive phenotype, DAM, which is 
specifically expressed in certain regions in AD, still needs further investigation. In 
most findings, TREM2 exhibits positive feedback in inhibiting detrimental factors. 
sTREM2, a soluble form of TREM2 in CSF, and its soluble form in CSF and sTREM2 
can be biological hallmarks for diagnosis. Moreover, a close relationship between 
the TREM2-APOE pathway and AD demonstrates an important pathological 
feature. A new therapeutic method based on TREM2 to manipulate the function 
of microglia is currently being tested. Although there are still numerous obstacles 
ahead to treating AD, it is expected that this field will move closer to understand-
ing the influence of microglia regulation in AD, which is a breakthrough result for 
patients. Most therapeutic treatments targeting Aβ do not get expected feedback. 
Thus, genetic evidence and metabolic mechanism related to AD should be more 
explored in future studies.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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