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Abstract

Raman spectroscopy is a widely used technique for organic and inorganic chemical  
material identification. Throughout the last century, major improvements in 
lasers, spectrometers, detectors, and holographic optical components have uplifted 
Raman spectroscopy as an effective device for a variety of different applications 
including fundamental chemical and material research, medical diagnostics, 
bio-science, in-situ process monitoring and planetary investigations. Undoubtedly, 
mathematical data analysis has been playing a vital role to speed up the migration 
of Raman spectroscopy to explore different applications. It supports researchers 
to customize spectral interpretation and overcome the limitations of the physical 
components in the Raman instrument. However, large, and complex datasets, 
interferences from instrumentation noise and sample properties which mask the 
true features of samples still make Raman spectroscopy as a challenging tool. Deep 
learning is a powerful machine learning strategy to build exploratory and predictive 
models from large raw datasets and has gained more attention in chemical research 
over recent years. This chapter demonstrates the application of deep learning 
techniques for Raman signal-extraction, feature-learning and modelling complex 
relationships as a support to researchers to overcome the challenges in Raman based 
chemical analysis.

Keywords: machine learning, deep learning, neural networks, fluorescence,  
data analysis

1. Introduction

Spectroscopy is an ubiquitous method in natural sciences and engineering 
for e.g. characterization of materials, molecules or mechanisms, kinetics and 
thermodynamics of chemical reactions. It is the study of the interaction between 
electromagnetic radiation and molecules/particles which involves either absorp-
tion, emission, or scattering. In Raman spectroscopy, it is the interaction of light 
with matter which is generating the Raman effect. This effect is the scattering 
of incoming radiation leading to a change of wavelength or frequency. A Raman 
spectrum is composed of peaks which show the intensity and wavelength of the 
Raman scattered light which is due to radiation interaction with individual chemi-
cal bond vibrations. These peaks are used to detect, identify, and quantify infor-
mation about atoms and molecules. Raman spectroscopy is a prominent choice 
among other spectroscopic techniques, particularly in chemical systems containing 
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water and/or polar solvents [1]. Weak Raman scattering of water enables in-situ 
analysis in aqueous chemical systems and in vitro and in vivo analysis in human 
and sensitive biological systems. While many analytical techniques require sample 
preparation (such as grinding, glass formation, or tablet pressing) before mea-
surement, Raman analysis can be made on ‘as received’ samples. A measurement 
can be made within few seconds in a non-destructive, non-contact manner and 
therefore samples can be retained for other analysis if necessary. Raman scattering 
of light by molecules was first predicted using classical quantum theory by Smekal 
in 1923 [2] and experimentally observed by Raman and Krishnan in 1928 [3, 4]. 
After a century of first ever discovery of Raman fundamentals, today, different 
types of Raman spectroscopies have been developed such as time-resolved Raman 
spectroscopy, high pressure Raman spectroscopy, matrix-isolation Raman spec-
troscopy, Surface-Enhanced Raman Spectroscopy, Raman microscopy and Raman 
Imaging spectrometry [5]. Throughout the last century, major improvements in 
lasers, spectrometers, detectors, and holographic optical components have yielded 
Raman spectroscopy as a dominant tool for molecular verification in a wide range 
of scientific disciplines.

A primary role of scientists is the extraction of new knowledge from experi-
mental data. Spectroscopic techniques produce profiles containing a high amount 
of data. It can take significant time and effort to read, interpret and model these 
data. Cozzolino [6] mentions that the three critical pillars that support the develop-
ment and implementation of vibrational spectroscopy including Raman, are as 
the sample (e.g., sampling, methodology), the spectra and the mathematics (e.g., 
spectral analysis, algorithms, pre-processing, data interpretation, etc.). Thus, 
data analysis becomes the only flexible option that can be adjusted to assess data 
extracted from a specific application (i.e. sample) using a given spectroscopic 
method. Spectroscopic techniques are only as powerful as the information that can 
be extracted from the resulting spectral data. Simultaneous development of spec-
troscopy hardware components and data analysis throughout the last five decades, 
made a radical change for the propagation of spectroscopic techniques in different 
fields. In case of Raman spectroscopy, instead of having a spectrometer whose 
volume fills up an entire room including a group of scientists manually reading the 
spectra, today we have miniature spectroscopic analyzers supported by a computer 
and software which automatically read, treat, interpret, and summarize measure-
ments within seconds (Figures 1 and 2).

The objective of this chapter is to show the role of data analysis to raise and 
expand the awareness of Raman spectroscopy. The chapter reviews key deep learn-
ing strategies under machine learning perspectives, that have been already applied 
in different Raman applications emphasizing how these strategies have contributed 
to solving Raman spectroscopic data challenges. The objective is to strengthen the 
role of data analysis to uplift the capability and standard of Raman spectroscopy. 

Figure 1. 
Raman spectroscopy combined with machine learning methods in different applications.
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“Deep learning” is a subset of machine learning in artificial intelligence. Many 
spectroscopists have a background in chemometrics and statistics for chemical 
analysis, but so far only a few are taking advantage of the potential provided by 
machine learning. There are many synergies and common concepts applied in 
between the areas of machine learning and spectroscopy which enhances produc-
tive inter-communication. The chapter provides comprehensions by showing how 
deep learning algorithms increase analytical insight into Raman spectra.

2. Deep learning

In a simplest way, deep learning can be introduced as a method which teaches 
computers to do a task. Very often this task is difficult to carry out by human brain 
due to limited brain capacities and limited time. It is a subset of Machine learning 
(ML) which is further a subset of artificial intelligence (AI).

Integrating data, information, machines, sensors, and software is a component 
of transforming conventional ways of human-oriented methods into more digi-
talized roots. It can level up efficiency and performance of an individual system 
and its related components by giving more deep insights. Artificial intelligence and 
machine learning persist to support this transformation.

Artificial intelligence (AI) compasses the science and engineering of making 
intelligent machines specially computer programs. Machine learning (ML) which 
is a subset of artificial intelligence, uses algorithms to optimize a certain task by 
using examples or experience and support AI to learn with explicit programming. 
Deep learning (DL) is a sub class of machine learning algorithms which consist 
of learning methods based on artificial neural networks (ANNs). Figure 3 shows 
the interconnection of AI, ML, DL and chemometrics. ML algorithms that are not 
deep learning are referred as shallow learning. A simple explanation to understand 
the difference between a shallow learning and deep learning algorithm is shown in 
Figure 4(a). It shows that in shallow learning, feature (useful patterns) extraction 
and classification are performed in two different stages. For instance, a general 
practice of a chemist who obtains a vibrational spectrum of an unknown chemi-
cal sample, starts with mapping individual peaks. Typically, this is performed by 
combining the knowledge of chemical vibrational modes and sample. There can be 
peaks that are not originated from sample chemical properties such as instrument 
noise or stray lights. The chemist will only utilize the peaks that reveal required 

Figure 2. 
Integration between sample, spectra, and data analysis to develop Raman applications.
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information about the sample. This process is called feature extraction in ML lan-
guage. Next, the chemist will proceed to the next step of analysis such as regression 
or classification. Conversely, in deep learning, feature extraction and subsequent 
analysis are performed automatically inside the single boundary of DL algorithm.

2.1 Chemometrics

For scientists utilizing spectroscopy, chemometrics is a very familiar term linked 
to data analysis. Chemometrics was established at the beginning of the 1970s by 
Svante Wold, Bruce L. Kowalski, and D.L. Massart [8, 9]. It is a chemical discipline 
that uses mathematical, statistical, and other methods employing formal logic to 
design or select optimal measurement procedures and experiments, and to pro-
vide maximum relevant chemical information by analyzing chemical data [10]. 
Throughout the past 50 years chemometrics revolutionized in the field of spectros-
copy through the applications of multivariate calibration, (re)activity modeling, 
pattern recognition, classification, discriminant analysis, and multivariate process 
modeling and monitoring [11]. Wold and Sjöström [11] point out two strong trends 
where the future success of chemometrics remains; 1). Ability of chemometrics to 
handle the number of ‘objects’ observations, cases, or samples which is fairly small, 
and tends to become even smaller with time and 2). Ability of chemometrics to han-
dle big data sets and those which continuously updated with more addition of data in 
the future. Data sets often remain smaller when experimentation is demanding more 
resources like time, personnel, laboratory space, instrumentation, chemicals, solvents 

Figure 3. 
Artificial intelligence, machine learning, deep learning and chemometrics.

Figure 4. 
(a) Comparison between machine learning and deep learning [7]; (b) performance vs. amount of data for 
traditional ML and DL algorithms.
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and hence is becoming more and more expensive. Big data sets are generated when 
more samples are measured or several experimental runs are propagated over time for 
examples in combinatorial chemistry and process monitoring. Vogt [8] explains that 
maintaining chemometrics as an active and widely recognized research field, requires 
opening new research areas for chemometricians and without the power of parallel 
computation, many new and exciting avenues will remain unfeasible. For instance, 
limiting chemometrics to linear methodologies imposes restrictions because many 
chemical systems are nonlinear. Chemometrics has its main territory is analytical and 
measurement science, however fundamentally it can also be considered as a subset 
of machine learning. The understanding of chemical systems, and the respective 
underlying behavior, mechanisms, and dynamics, can be facilitated by the develop-
ment of descriptive, interpretative, and predictive models. Common examples of 
chemometric techniques which develop such models are principal component analysis 
(PCA), partial least squares (PLS), linear discriminant analysis (LDA) and support 
vector machine (SVM). Studies showing the possibility of combining routine chemo-
metrics methods with machine learning algorithms influence to break the stagnancy 
of chemometrics tools in the chemical laboratory.

In spectral data analysis, the amount of data plays a decisive role. DL algorithms 
give better performance for big data sets and as more data are being added. On 
the other hand, performance of a system which is analyzed by human brain or 
conventional machine learning algorithms, is limited after a certain size and scale 
of data. Figure 4(b) shows the performance curve for traditional machine learn-
ing algorithms and deep learning algorithms. Performance curve for traditional 
algorithms is saturated after a certain number of data because they are based on 
handcrafted rules. Creating many rules manually is an erroneous task. For instance, 
linear regression and random forests (which are traditional ML), tend to plateau 
at large data volumes. On the contrary, deep learning uses more than one level of 
non-linear feature transformation and therefore the performance keeps increasing 
with added data.

Shallow machine learning methods, such as shallow neural networks [12], sup-
port vector machines [13, 14], or kernel methods [15], have been applied to Raman 
spectroscopy with higher success, for instance, for the prediction of the physical, 
chemical, or biological properties of systems. More complex models and deep 
machine learning methods become useful as more data becomes available and more 
complex problems are experienced. It allows users to make decisions as data are 
collected, without human-in-the-loop processing [16]. Different type of data can be 
input to a DL algorithm such as sound, text, images, time series and video. Raman 
spectroscopy generates time series data such as in resonance Raman and image data 
such as in Raman image microscope. DL can be applied for machine perception 
including classification, clustering, and predictions and also a preferred choice for 
unstructured data like images where manual feature extraction are difficult.

2.2 Neural networks

Neural networks (NN) make up the backbone of deep learning algorithms and 
therefore, it is important to understand common terms in a neural network such 
as layers, weights and activation functions. Figure 5(a) shows a representation of 
an artificial neuron. The first layers are called input layers which passes incoming 
data (x1, x2, x3,…..xn) into other layers. Output layer is the last layer of neurons that 
produces given outputs (y) for the program.

All layers in between are called hidden layers. Weights (w1, w2, w3,…..,wn) are the 
parameters within a neural network that transforms input data within the network’s 
hidden layers. A layer is the highest-level building block in deep learning and is a 
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container that usually receives weighted input, transforms it with a set of mostly non-
linear functions and then passes these values as output to the next layer. An activation 
function takes in weighted data (xjwj - matrix multiplication between input data and 
weights) and outputs a non-linear transformation of the data [17]. In generally, an 
activation function is a function that is added into an artificial neural network to help 
the network to learn complex patterns in the data. The most important feature in an 
activation function is its ability to add non-linearity into the network. Activation 
functions are applied after every layer in deep neural networks and they should be 
computationally inexpensive to be calculated. Sigmoid, Softmax, Tanh and ReLU 
are examples for activation function. Figure 5(b) shows a simple neural network 
which has a one hidden layer and Figure 5(c) shows a deep neural network which has 
at least two hidden layers. The neural network calculation is performed through the 
connections, which contain the input data, the pre-assigned weights, and the paths 
defined by the activation function. If the result is far from expected, the weights of 
the connections are recalibrated, and the analysis continues, until the outcome is 
as accurate as possible. Examples for neural networks are perceptron, feed forward 
neural network, multilayer perceptron, convolutional neural network, radial basis 
functional neural network, recurrent neural network, LSTM – long short-term 
memory, sequence to sequence models, modular neural network [18].

2.3 Deep learning algorithms

The objective of this chapter is to give an understanding about the possibili-
ties of deep learnings in the field of Raman spectroscopy. Not many publications 

Figure 5. 
Schematic representation of an artificial neuron (a), and a simple neural network displaying three basic 
elements: Input, hidden and output layers (b), and a deep neural network showing at least two hidden layers, 
or nodes (c).
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can be found since the connection between Raman data and machine learning is 
still under the development stage. Figure 6 shows some algorithms which have 
been applied for previous Raman data which the reader will find in the rest of the 
chapter. They are categorized under supervised, unsupervised and hybrid learning 
methods [19]. In supervised learning algorithms, we try to model relationships 
and dependencies between the target prediction output and the input features. 
The goal is to predict the output values for new data based on those relationships 
which it learned from the previous data sets. Therefore supervised algorithms are 
task driven. Supervised learning carries out tasks like regression and classification. 
A very common example for a supervised deep learning method is convolution 
neural network.

Unsupervised learning is a machine learning technique in which models are 
not supervised using training dataset. Instead, models itself find the hidden pat-
terns and insights from the given unlabeled data. It can be compared to learning 
which takes place in the human brain while learning new things. It allows users to 
perform more complex processing tasks compared to supervised learning and is 
called a data driven approach. Dimensionality reduction, clustering and associa-
tion are some tasks than an unsupervised machine learning platform can deliver. 
The ability to apply deep learning algorithms for unsupervised learning tasks is an 
important benefit because in big data sets unlabeled data are more abundant than 
the labeled data. Autoencoder, sum product network, recurrent neural network 
and Boltzmann machine can be considered as unsupervised deep learning algo-
rithms. Supervised learning algorithms seek to answer the questions like “Based on 
the Raman fingerprint of this new sample I have just collected, which class in my 
database does it (most likely) belong to?” and/or “What is the level of purity this 
substance has?”. Meanwhile unsupervised learning algorithms seek to answer the 
questions like “How similar to one another are these samples based on their Raman 
fingerprints?”

3.  Can deep learning contribute to the development of Raman 
spectroscopy?

Raman scattering use a technique to interrogate chemical samples in question in 
a fast and non-destructive way. However, it is a weak scattering and therefore not 
always give straightforward results. As highlighted in Section 1 three success pillars 

Figure 6. 
Unsupervised and supervised algorithms commonly used in deep learning applications for Raman spectra.
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of a spectral data analysis depends on “the type of sample to be measured”, “the 
quality of the spectra “and “the choice of data analysis method”. If any of these pil-
lars fails, the final result will be weak in sensitivity, repeatability and reproducibil-
ity. Since we are interested about deep learning methods in this chapter, lets focus 
on issues related to spectral analysis and merge the contribution of deep learning to 
overcome those issues. Given below are four challenges that researchers have been 
experiencing when they analyze Raman fingerprints.

i. Assigning correct vibrational modes

Multicomponent chemical samples can contain vibrational peaks which look 
similar in shape and distribution over the Raman wavelength region. For 
instance, biological samples are composed of biochemicals such as lipids, 
proteins, nucleic acids, and carbohydrates. All the vibrations from these 
biochemicals are manifested in the Raman spectra of a biological sample 
making them convoluted and complex. Specially, for a fresh researcher, these 
spectra may appear very similar if analyzed by an untrained eye. Researchers 
working with Raman spectra of cells, tissues and bacteria also encounter the 
same problem. There are also incidents that different Raman spectrometers 
exhibit a small magnitude of change of Raman shift for the same component. 
This change can also be a significant problem if the spectra is crowded with 
several closely packed peaks.

ii. Analyte is influenced by the background

Weak Raman-active samples can be only analyzed if there is high spectral 
resolution, low spectral background, and high sensitivity. The relative inten-
sities of the Raman bands of analytes change with solvents and are correlated 
with the absorption peak shift [20]. Occurrence of peaks from the matrix is 
true in many biomolecular Raman applications. For instance, paraffin fixed 
tissue may show a similar peak to a C–H stretch. Differentiating the actual 
spectra from the matrix therefore, becomes an equally important part before 
analysis.

iii. Fluorescence problem

One of the greatest challenge in Raman spectroscopy is that it is influenced 
by the turbidity, color, and fluorescence of the sample [21]. In spite of obvi-
ous advantages of Raman spectroscopy, the strong fluorescence background 
has so far restricted its use in many otherwise potential applications, for 
example, in the agricultural, food and oil industries, security control and 
crime investigations, for example. Marquardt [22] mentions that Raman 
biotech applications are currently is the most challenging because of the 
complex biological matrices and the associated fluorescence. Raman spectra 
are typically masked by a strong fluorescence background in most potential 
applications. This type of fluorescence intensity is normally several orders 
of magnitude larger than the Raman scattering signal, especially in biologi-
cal samples. This is due to the fact that the probability of Raman scattering 
(cross-section) is much lower than that of fluorescence [23]. A strong 
fluorescence background gives rise to two problems. Firstly, it becomes 
the dominant element in the photon shot noise and thus detracts from the 
SNR (signal-to-noise ratio), and secondly, even if the Raman bands are 
narrow and the fluorescence has quite a smooth, featureless spectrum, 
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errors in the mathematical estimation and removal (background subtrac-
tion) of the fluorescence increase with increasing fluorescence levels and 
result in increasing errors in both material identification and concentration 
measurement applications [23]. Fluorescence can be dealt with a variety of 
techniques such as the utilization of confocal configuration, photobleach-
ing and the deployment of laser excitation at longer wavelengths. These 
techniques could be generally grouped into time domain, frequency-domain, 
wavelength-domain, and computational methods [24]. Figure 7 shows three 
Raman spectra obtained from 514.5 nm laser, where the fluorescence effect 
of the original spectrum, a, could be reduced by increasing the irradiation 
effect as shown by spectra b and c. However, a key constraint to consider 
is the interaction between the laser wavelength and the sample, due to the 
effects of phototoxicity [25].
Computational methods can play a significant role for unmolding chemi-
cal Raman spectra from fluorescence spectra. Examples for such methods 
are polynomial fitting wavelet transform, and derivatives. Wei, Chen [24] 
describe pros and cons of polynomial fitting and derivative of Raman 
spectra. They mention that the optimal choice of order for polynomial fitting 
varies and the performance depends on the user’s experience. The derivative 
of a measured Raman spectrum will eliminate the background components 
irrespective of their magnitudes and thus enhance the sharp Raman signal. 
However, high-frequency noises are often amplified by this method as well 
and the spectrum can be distorted because of the derivative process.

iv. Selection of optimum data processing technique

Understanding the system under study and making an informed judg-
ment based on the experiments and correlating it with the available data 
is crucial for scientists. Selecting the correct signal processing method is a 
contributing factor towards understanding of the system. Improving the 
existing data analysis methods in Raman spectroscopy is a leading challenge. 
Preprocessing methods are very important to reduce inherent disturbances 
of a Raman spectrum such as baseline variation. Currently spectroscopists 
are limited to traditional chemometrics based preprocessing methods. 

Figure 7. 
Three Raman spectra of metallic paint showing the effect of fluorescence [7] (a) in normal measurement 
conditions (only fluorescence visible), (b) after irradiation for (b) 30 min and (c) 60 min at 50% laser power.
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Models are calibrated using a fewer number of datasets, even in the situations 
where it is possible to use fairly a large calibration dataset. When the models 
are used for future large data sets these methods are limited in accuracy wise. 
For example, the instrument gives poor results when unknown interferences 
come with larger datasets such as spikes, cosmic rays and often require for 
re-calibration of the models time to time.

4. Deep learning algorithms in Raman applications

In this section, four deep learning algorithms and their derivations for different 
applications of Raman spectroscopy are described to provide an understanding of 
deployment of these methods as a means of strengthening computational methods 
and data analysis methods for Raman spectra.

4.1 Autoencoder

An autoencoder (AE) is an unsupervised type of artificial neural network used 
to learn efficient data coding. It consists of an encoder-decoder architecture as 
shown in Figure 8. Encoder consists of input data x  while decorder includes output 
data x′ . h  usually referred to as code, latent variables, or latent representation and 
combines encoder and decorder. The aim of an autoencoder is to learn a representa-
tion (encoding) for a set of data, by training the network to ignore signal noise. 
Along with the reduction side of encoder, a reconstructing side is learned, where 
the autoencoder tries to generate from the reduced encoding a representation as 
close as possible to its original input x  . This is done by training the AE to minimize 
the squared reconstruction errors 2

x x− ′ . PCA is a linear transformation  
while auto-encoders are capable of modeling complex non linear functions  
(refer Figure 8(b)). PCA is faster and computationally cheaper than autoencoders. 
A single layered autoencoder with a linear activation function is very similar to 
PCA. The autoencoder weights are not equal to the principal components, and are 
generally not orthogonal, yet the principal components may be recovered from 
them using the singular value decomposition [26].

Advantages of autoencoder in Raman spectroscopy span in different areas such 
as dimensionality reduction, information retrieval, image processing and anomaly 
detection. Scientists have experimented several kinds of autoencoders such as con-
volution AE, denoising AE, sparse AE because they have different advantages. For 

Figure 8. 
Explanation of (a) autoencoder (AE) system and (b) simple demonstration of linear dimensionality reduction 
by PCA an non-linear dimensionality reduction by AE.
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instance, sparse AE prevents overfitting. Convolutional AE is generally applied in 
the task of image reconstruction. If the network is trained on corrupted versions of 
the inputs with the goal of improving the robustness to noise, it is called a denoising 
autoencoder [27].

4.1.1  Anomaly detection without actually testing samples using an autoencoder 
network

Anomaly (outlier) detection has been an important research topic in data 
mining and machine learning while it also provides practical benefits in many real-
world applications. Outlier detection has been used in spectroscopic data to detect 
and remove anomalous observations (if required). Most of the process analytical 
instruments implemented in industrial plants can also be converted to perform 
outlier detection in addition to their main task; for instance to detect a fault on a 
factory production line by constantly monitoring specific features of the products 
and comparing the real-time data with either the features of normal products or 
those for faults. Outliers arise due to mechanical faults, changes in system behavior, 
fraudulent behavior, human error, instrument error or simply through natural 
deviations in populations [28]. Modeling anomalies are not easy in real datasets as 
they appear irregularly and not often. Since abnormal data points appear rarely it is 
very costly to collect those data from real world [29]. Hodge and Austin [28] shows a 
survey on different techniques for outlier detection in machine learning. They high-
lighted that correct distribution model, correct attribute types, scalability, speed, 
any incremental capabilities to allow new exemplars to be stored and the modeling 
accuracy must be considered when selecting a suitable algorithm for outlier detec-
tion. In machine learning, multiclass or multinomial classification is the problem of 
classifying instances into one of three or more classes (classifying instances into one 
of two classes is called binary classification). In one-class classification which is also 
referred as class-modeling, whether a sample is compatible or not with the charac-
teristics of a single class of interest is considered. The study by Hofer-Schmitz [30], 
presents an one-class anomaly detector based on autoencoder for Raman spectra for 
a biological application, where it’s very costly to collect spectra of the outlier class. 
They use two chemical data sets with 10,000 samples and over 2000 samples for 
their evaluation. Bio-chemical approach to identify and characterize outliers takes 
months and therefore they measured normal class and trained one-class model 
using Autoencoder network to learn the normal classes’ characteristics by minimiz-
ing the reconstruction error (score) with respect to the given loss function, similar 
to the learnt components of PCA. When using the learnt encodings to reconstruct 
irregular spectra, a sample’s reconstruction was considered as anomaly if it exceeds 
a standard deviation threshold.

4.1.2 Sample classification using an autoencoder network

Houston [31] used six classification algorithms to identify whether a set of 
chemical samples contain chlorinated solvents or not, based on their Raman 
spectra. Dataset included 230 Raman spectra of solvents and solvent mixtures. An 
additional dataset comprising 24 Raman spectra of carbohydrates was compiled 
for use as examples of possible outlier data. k-Nearest Neighbors (kNN), Support 
Vector Machine, Decision Tree, Fully Connected Neural Network (FCNN), 
Gaussian Naïve Bayes, Locally Connected Neural Network (LCNN) were the algo-
rithms used. The ability of the autoencoder models to correctly identify negative 
outliers were further demonstrated. Their results showed that a two-step process, 
combining an outlier detector and LCNN binary classifier, have better performance. 
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LCNN is quite the same as the Convolutional layer explained in Section 4.2. But 
has one (important) difference. In LCNN, there is a locally connected layer going 
from the inputs to the first hidden layer. In the Convolutional layer the filter is 
common among all output neurons. In Locally-Connected Layer, each neuron has 
its own filter. This type of layer let the network to learn different types of feature for 
different regions of the input, but if there is less number of data, it can also generate 
over-fitting.

4.1.3  Increasing signal-to-noise ratio (SNR) by convolutional denoising 
autoencoder (CDAE)

Obtaining the highest possible SNR and a good enough spectral resolution for a 
specific analysis are important factors while using Raman spectroscopy. The light 
of the Raman signal is refocused on a charge-coupled device (CCD) after dispersion 
by a diffraction grating which inevitably lower the signal. To obtain better Raman 
signals, generally, the excitation intensity is increased. However, this is not always 
practicable if the sample is sensitive to higher laser power. Physical and chemical 
properties of sensitive samples can be degraded by exposing to higher laser power. 
Therefore, in experimenting such, laser exposure times are extended while keeping 
a lower excitation intensity. As a result, stray light, environmental light, and the 
inherent interior noise of electronic or optical devices [13] result in noise adding up 
over longer integration time. These factors influence signal-to-noise ratio (SNR), 
thus further affecting the feature extraction of the valid signal. Fan, et al. [32] pro-
poses a relevant automatic denoising method of convolutional denoising autoen-
coder (CDAE) to advance the SNR in Raman spectra without manual intervention. 
Figure 9 shows the CDAE model which includes three layers of convolution and 
max-pooling (the encoder) and three layers of upsampling and convolution (the 
decoder) proposed by the authors Fan, Zeng [32]. The proposed CDAE model was 
implemented using Keras and Tensorflow. The authors show that the CDAE method 
outperforms other classical denoising methods such as Savitzky–Golay filter and 
wavelet transform.

4.1.4  Stacked sparse autoencoder (SSAE) to extract features from the unlabeled 
Raman data

Sparse autoencoder (SAE) may include more (rather than fewer) hidden 
units than inputs, but only a small number of the hidden units are allowed to 
be active at the same time. This sparsity constraint forces the model to respond 
to the unique statistical features of the training data. Sparse feature learning 

Figure 9. 
The architecture of CDAE used to increase SNR in Raman spectra by fan, Zeng [32].
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algorithms range from sparse coding approaches [33] to training neural networks 
with sparsity penalties. In the SAE, once the training process is performed, the 
decoder and reconstruction layer will be removed, and the features learned from 
the original data are preserved in the hidden layer. To extract high-level  
features, a stacked SAE (SSAE) is utilized. The SSAE consists of several SAEs, 
with the output of the previous SAE used as the input of a subsequent SAE 
(Figure 10) [34].

Feature extraction using a stacked sparse autoencoder integrated with a Softmax 
classifer (SMC) to extract the discriminative features from unlabeled Raman data 
of breath samples is proposed by Aslam [35]. They were successful to identify fifty 
peaks in each spectrum to distinguish the patients with gastric cancer and healthy 
persons. The architecture of this neural network comprises of two sparse auto-
encoder layers and the output of the stacked sparse autoencoder was wired into a 
Softmax layer as shown in Figure 11. This system reduces the distance between the 
input and output by learning the features and preserve the structure of the input 
data set of breath samples. The proposed deep stacked sparse autoencoder neural 
network architecture exhibits excellent results, with an overall accuracy of 98.7% 
for advanced gastric cancer classification and 97.3% for early gastric cancer detec-
tion using breath analysis.

Figure 10. 
Representation of (a) stacked autoencoder and (b) sparse autoencoder.

Figure 11. 
Architecture of the stacked sparse autoencoder with a Softmax classifier [35].
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4.2 Convolution neural network (CNN)

Several studies show that the convolution neural network (CNN) modeling 
method is potential to be used for spectral analysis. With the development of deep 
learning, CNN has become a major tool specially for image analysis. Independency 
from prior knowledge and human extraction is a feature of machine learning and 
CNN is one of best examples for that. In traditional algorithms, hand-engineered 
filters are used in preprocessing to understand the learning process, whereas in 
CNN, filters (or usually known as kernels) automatically learn the optimization 
without human intervention.

A typical CNN includes convolutional, pooling and fully connected layers as shown 
in Figure 12. Convolution is the process involving combination of two functions 
that produces the other function as a result. The convolution layers improve the 
performance of the network by shared weights and sparse connection. Pooling 
layer operates on each feature map independently. This reduces resolution of the 
feature map by reducing height and width of features maps, but retains features 
of the map required for classification. This is called Down-sampling. The output 
feature map(matrix) from pooling layer is converted into vector (one dimensional 
array) which is called flatten layer. Fully connected layer looks like a regular  
neural network. Soft-max is an activation layer normally applied to the last layer of 
network that acts as a classifier and it is used to map the non-normalized output of 
a network to a probability distribution.

4.2.1  CNN for predicting material properties and understanding composition-
structure-property relationships

A CNN model was constructed by Umehara, et al. [37] in python using Keras 
package with Tensorflow backend to identify composition-property and composi-
tion-structure–property relationships that lead to fundamental materials insights 
through Raman spectra. They developed a model that could predict photoelectro-
chemical power density (P) of a solar fuels photoanode from materials parameters 
which were their composition and Raman signals of 1379 samples. Figure 13 shows 
the CNN model structure used for this study where they used 10 different layers 
to derive model predictions. In addition to the prediction of material property, 
they also analyzed gradients in the trained model which was useful to reveal key 
data relationships that were not readily identified by human inspection or tradi-
tional statistical analyses. For instance, what is the impact of performance of the 

Figure 12. 
Example showing how CNN works [36].
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photoanode by changing the concentrations of alloying elements? Authors have 
also highlighted that the human interpretation of these key relationships produces 
the desired fundamental understanding, demonstrating a framework in which 
machine learning accelerates data interpretation by leveraging the expertise of the 
human scientist.

4.2.2 Identification of chemical species by CNN without preprocessing

Liu, et al. [38] describes an unified solution for the identification of chemical 
species. They used a trained convolutional neural network to automatically identify 
substances according to their Raman spectrum without preprocessing. Most of the 
Raman based regression procedures demand for preprocessing such as cosmic ray 
removal, smoothing and baseline correction. CNN combines preprocessing, feature 
extraction and classification in a single architecture which can be trained end-to-
end with no manual tuning [38].

They evaluated their approach using the RRUFF spectral database [39], 
comprising mineral sample data and a superior classification performance was 
demonstrated compared with other frequently used machine learning algorithms 
including SVM, kNN, gradient boosting, CNN and random forest. In addition, 
512 raw minerals spectra from the RRUFF database were used together with six 
widely-used baseline correction methods: modified polynomial fitting, rubber 
band, robust local regression estimation, iterative restricted least squares, asym-
metric least squares smoothing and rolling ball. Results are shown in Table 1 
which indicates that the raw spectra on CNN achieved an accuracy of 93.3% and 
the second best method, kNN with rubber band baseline correction, achieved an 
accuracy of 82.5%.

Figure 13. 
Schematic of CNN model structure used by Umehara, stein [37]. The model takes the Raman spectrum and 
the composition –(Bi, V and Dy) as input to predict P = power density. Each of the 10 layers of the CNN 
model are labeled a to j. red: Dense layers acting on composition, green: Convolutional 1D layers acting on 
spectra, yellow: Flattening and concatenation layers, blue: Dense layers acting on both the composition and 
spectral data.
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Method kNN (k = 1) Gradient boosting Random forest SVM (linear) SVM (Radial basis function) CNN

Raw 0.429 ± 0.011 0.373 ± 0.019 0.394 ± 0.016 0.522 ± 0.011 0.434 ± 0.012 0.933 ± 0.007

Assymmetric least squares 0.817 ± 0.010 0.773 ± 0.009 0.731 ± 0.019 0.821 ± 0.012 0.629 ± 0.016 0.927 ± 0.008

Modified polynomial 0.778 ± 0.007 0.740 ± 0.016 0.650 ± 0.016 0.785 ± 0.014 0.629 ± 0.016 0.920 ± 0.008

Rolling ball 0.775 ± 0.009 0.737 ± 0.008 0.689 ± 0.018 0.795 ± 0.011 0.624 ± 0.013 0.918 ± 0.008

Rubber band 0.825 ± 0.007 0.792 ± 0.015 0.741 ± 0.009 0.806 ± 0.015 0.620 ± 0.010 0.911 ± 0.008

IRLS 0.772 ± 0.010 0.710 ± 0.008 0.675 ± 0.007 0.781 ± 0.011 0.614 ± 0.010 0.911 ± 0.008

Robust local regression 0.741 ± 0.009 0.694 ± 0.008 0.667 ± 0.0012 0.759 ± 0.013 0.600 ± 0.013 0.909 ± 0.007

Table 1. 
Performance of different ML algorithms with and without baseline correction methods after applied on RRUFF Raman spectral data (of 512 minerals).
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4.2.3  Tuning preprocessing of Raman spectra in one step by training a CNN model 
using simulated data

Wahl, et al. [40] show that a convolutional neural network can be trained using 
simulated data to handle several preprocessing steps automatically in a single step. 
These preprocessing methods include cosmic ray removal, signal smoothing, and 
baseline subtraction. Synthetic spectra were created by randomly adding peaks, 
baseline, mixing of peaks and baseline with background noise, and cosmic rays. 
Secondly, a CNN was trained on synthetic spectra and known peaks. Finally, a 
test set data which consisted of real Raman spectra of polyethylene, paraffin, and 
ethanol were used to evaluate the trained CNN model. The samples were placed 
on a polystyrene petri dish and their Raman measurements were taken so that the 
signals from the samples were mixed with signal from polystyrene. Measurements 
which only contained one cosmic ray were saved for the analysis. The performance 
of the CNN model was estimated by calculating the root mean squared error 
(RMSE). From 105 simulated observations, 91.4% predictions had smaller absolute 
error (RMSE). Authors also recommend that the similar simulation scheme for 
adaptations to problems with similar preprocessing challenges such as NIR, FT-IR, 
mass spectroscopy, and chromatograph and also take the benefit of the reduced 
computational time and time spent by an analyst in preparing data for the analy-
sis. CNN preprocessing generated reliable results on measured Raman spectra 
from polyethylene, paraffin, and ethanol with background contamination from 
polystyrene.

4.2.4  CNN for bacterial detection, identification, and antibiotic susceptibility 
testing in a single step

Different bacterial phenotypes are characterized by unique molecular composi-
tions. However they only lead to subtle differences in their corresponding Raman 
spectra. And due to the weak Raman scattering these subtle spectral differences are 
easily masked by background noise. Maintaining a higher signal-to-noise ratio by 
increasing the measurement time are often restricted in these types of samples. This 
challenge has been addressed by [41] using a trained convolutional neural network 
which can classify noisy bacterial spectra by using a very low measurement time of 
1 second. The reference samples including bacterial and yeast isolates which gener-
ated 2000 spectra from a Raman microscope. Spectra were background corrected 
using a polynomial fit of order 5.

Figure 14 shows (a) spectral variation of Raman bacterial spectra and (b) the 
CNN architecture. CNN architecture used by these researchers consisted of an 
initial convolution layer followed by 6 residual layers and a final fully connected 
classification layer. Each residual layer contains 4 convolutional layers, and there-
fore the total depth of the network was 26 layers. The initial convolution layer has 
64 convolutional filters, while each of the hidden layers has 100 filters. An identifi-
cation accuracies of 99.7% was achieved by the researchers in this study when they 
validated the method using clinical samples.

4.3 PCANet

The principal component analysis network (PCANet), which is one of the 
recently proposed deep learning architectures, achieves the state-of-the-art clas-
sification accuracy in various databases [42]. It is also known as one of the simplest 
deep learning algorithms and can be adapted to small-scale data [43]. In the section 
below, application of PCANet deep learning for Raman spectroscopy is reviewed 
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using some of prominent research studies. Architecture of the PCANet is shown in 
Figure 15. It typically consists with only two convolutional layers.

The main algorithm used to learn the convolutional filters in PCANet is princi-
pal component analysis (PCA) algorithm. PCA is a linear transformation method 
which transforms original data to a new orthogonal coordinate system with less 
dimensionality. Eigenvalues and eigenvectors are calculated from the covariance 
matrix of the original dataset. Eigenvectors which have the highest eigenvalues are 
always selected while discarding that of small values. In the convolutional layer of 
PCANet, all local patches are convolved with the selected eigenvectors to create a 
new set of data which focus on the most important features of the input data. The 
main flow of PCANet can be divided into three stages. The function of the first two 
stages is similar, and the principal eigenvector of input matrix is obtained through 
the cascaded multiple-PCA filter in these two stages. In the last stage, the principal 
eigenvectors are performed by binary hash encoding and then processed to the 
composed block-wise histogram. Afterward, the histogram is combined with the 
classification algorithms to obtain the predicted data.

Figure 14. 
(a) Averages of 2000 spectra from 30 isolates in bold and overlaid on representative examples of noisy single 
spectra for each isolate. Raman spectra of bacterial species can be difficult to distinguish, and short integration 
times (1 s) lead to noisy spectra (SNR = 4.1). Spectra are color-grouped according to antibiotic treatment (b) 
low-signal Raman spectra are classified as one of 30 isolates, which are then grouped by empiric antibiotic 
treatment and one-dimensional residual network with 25 total convolutional layers [41].
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4.3.1 Recognition and quantitation of drugs in human urine by PCANet

Weng, et al. [45] shows that deep learning networks perform better than the 
common machine learning methods (including kNN, SVM, RF, LR, and PLS) and 
provide feasible alternatives for the recognition and quantitation of SERS. In their 
study, deep learning networks were used as fully connected networks, convolutional 
neural networks (CNN), fully convolutional networks (FCN), and principal com-
ponent analysis networks (PCANet) to determine their abilities to recognize drugs 
in human urine and measure pirimiphos-methyl in wheat extract in the two input 
forms of a one-dimensional vector or a two-dimensional matrix.

4.3.2 Rapid detection of impurities using PCANet

Surface-enhanced Raman spectroscopy (SERS) has affected many areas in 
analytical detection, surface property investigation, biological event and marker 
sensing and imaging, and environment monitoring and its application in analyti-
cal science, food science, environmental sciences and biomedical sciences is 
enormous [46]. The study by Weng, et al. [47] proposes the suitability of SERS 
over NIR and FTIR for the automatic analysis of hazardous pesticide residues 
(acephate) in rice due to the significant interference from the aqueous phase. 
They used 82 contaminated rice samples for the model development and 14 
contaminated rice samples were randomly selected as the prediction set. Finally, 
they combined the modeling methods in PCANet with the regression algorithms 
as PLSR, SVM, or RF (PCANetPLSR, PCANetRF, and PCANetSVM) to obtain the 
residue level.

4.4 Recurrent neural network (RNN)

Recurrent Neural Network (RNN) is a tool in deep learning for problems that 
deal with sequential data [48]. Although, RNN was firstly designed to deal with 
sequential information, today it shows applications in time series data, natural 
language and converting non-sequencing data like images to sequences. The most 
used recurrent units are long short-term memory (LSTM) and gated recurrent unit 
(GRU). LSTM is a deep learning system that avoids the vanishing gradient problems 
in RNN [49]. The GRU is like a LSTM but it has fewer parameters than an LSTM 
[50]. Some results indicate that GRUs can outperform LSTMs while others show 

Figure 15. 
PCANet architecture [44].
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the opposite results. The RNN models are trained with back propagation through 
time (BPTT) method. There are variants of RNN such as bidirectional RNN and 
deep RNN.

Possibility of processing input of any length, model size which is not affected 
with size of input, computational ability which takes into account historical 
information and weights which are shared across time which makes an efficient 
data handling are the advantages of RNN. On the other hand, it also has the 
drawback of having a slower computation, difficulty of accessing information 
from a long time ago and inability to consider any future input for the current 
state (Figure 16).

4.4.1 Species identification and model transfer using RNN

Species identification of human and animal blood is of critical importance in 
the areas of custom inspection, forensic science, wildlife preservation, and vet-
erinary purpose. High-performance liquid chromatography (HPLC), mass spec-
troscopy (MS), nuclear magnetic resonance (NMR), polymerase chain reaction 
(PCR) are DNA profiling suitable methods, but they require experienced experts 
and professional laboratory. FTIR is also a promising candidate for this purpose 
but the presence in water makes the spectral analysis is challenging. Considering 
the interference of water and the risk of contact of pathogen, Wang, et al. [52], 
used Renishaw inVia confocal Raman spectrometer and a laboratory-built Raman 
spectrometer to find a method to discriminate of 20 kinds of blood species includ-
ing human, poultry, wildlife, and experimental animals. The Raman spectra 
pre-processing methods included cosmic ray removal, Savitzky–Golay filter, 
baseline removal, normalization and standardization. The processed spectra were 
randomly grouped into training dataset (80%), validation dataset (10%) and test-
ing dataset (10%). Data was input to different deep learning models such as RNN, 
GRU, LSTM and CNN and performance was compared. This study also proposes a 
solution for the wavenumber drift during long term use of instruments. Analyzing 
the blood samples are affected by the wavenumber drift and therefore instru-
ments are required for immediate calibration. The usual RNN model could not 
function well for these unexpected drifts and therefore augmented Raman spectra 
with certain wavenumber drift were included intentionally in this study. Another 
speciality of this study is the migration learning of model transfer between Raman 
spectrometers with different performance. This was achieved by training a cross-
instrument RNN model with spectra from 2 Raman spectrometers (1463 spectra 
from Renishaw Raman spectrometer and 1621 spectra from laboratory-built 
Raman spectrometer), which could be used for identification of blood species. 
This combined model showed accuracy is 98.2%.

Figure 16. 
Architecture of RNN; x: The input, O: The output, h: The main block of the RNN. It contains the weights and 
the activation functions of the network, V: Represents the communication from one time-step to the other [51].
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4.4.2 Gated recurrent unit coupled with MCNN

The study [53] proposes the use of a gated recurrent unit (GRU) and multiscale 
fusion convolutional neural network (GRU-MCNN) to analyze Raman spectra of 
patients infected with hepatitis B virus (HBV). Current commonly used method 
for the detection of HBV is polymerase chain reaction, but the shortcomings of 
this method such as the possibility of cross-contamination of samples during the 
analysis which can generate false results and using a carcinogenic dying agent for 
the sample preparation can be eliminated using Raman spectroscopy non-invasive 
analysis. Unlike traditional methods for extracting spatial features, the MCNN first 
transforms the original data sets into a pyramid structure containing spatial infor-
mation at multiple scales, and then automatically extracts high-level spatial features 
using multiscale training data sets [54]. GRU-MCNN model developed by [53] 
showed accuracy, precision, sensitivity and specificity over 0.97 for unprocessed 
data and it is even a higher value that was recorded for processed data.

4.5 Performing a deep learning analysis for data

Various deep learning tools are available in the market today, such as Neural 
Designer, H2O.ai, DeepLearningKit, Microsoft Cognitive Toolkit, Keras, 
ConvNetJS, Torch, Gensim, Deeplearning4j, Apache SINGA, Caffe, Theano, ND4J, 
and MXNet. Which one is the best, depends on the user and application. Many of 
these machine learning algorithms are available as free software modules and/or 
libraries for programming environments like Python, R, C++ and C# [55–58] to 
mention some. In the python programming environment, Keras and TensorFlow 
modules are popular for deep learning. Microsoft has the free ML.NET machine 
learning environment that is supported using the Visual Studio tools. Matlab and 
Python are widely used in academics and use a GUI interface enabling ML without 
writing the code by the user, however, some programming skills are needed. If 
the user wants to explore ML in depth and write his own code from scratch, R is 
often preferred, but there is really no agreed consensus on this matter. Python is 
a programming language which consists of a large standard library. One major 
advantage with Python is that it is free. Matlab is most highly regarded as not only a 
commercial numerical computing environment, but also as a programming lan-
guage. Matlab has many functions for data processing and plotting. It also contains 
toolboxes such as Deep Learning toolbox. Toolboxes in Matlab usually comes with 
added cost. R is free, open-source software designed to run statistical analyses and 
output graphics.

5. Conclusion

Most common procedure employed in spectroscopic data analysis is selecting 
proper tools, validating them, and highlighting their use in real-world applications 
by a series of examples. Getting inspiration by the field of computer vision will 
surely accelerate the development of more robust methods in this process. The 
next generation of Raman data analysis will be using more advanced algorithms to 
further improve the analytical performance of spectral classification, regression, 
clustering, and rule mining. In supplementary, it will also be the key factor to break 
the limitations of Raman spectroscopic applications.

For instance, literature shows that molecular spectra predictions can be made 
instantly using deep learning at no further cost for the end user. Spectra with 
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outliers are synthetically implemented and solved using autoencoders when such 
irregular spectra are costly or time consuming to obtain in reality. Scientists show 
that several Raman preprocessing steps can be performed using a single step by 
convolutional neural networks while in traditionally, combinations of preprocess-
ing methods are performed as iterations to select the optimum preprocessing which 
demand time. Some DL algorithms show promising results by using raw spectra in 
entire wavelength as input for regression models region replacing monotonous vari-
able selection methods. Classification problems in SERS and Raman spectra, have 
received the advantages of general image recognition deep learning methods which 
significantly improve selectivity and specificity over conventional classification 
methods. Unlabeled large Raman datasets which have been collected over years in 
clinical applications have been using to diagnose other diseases in addition for their 
main purpose where accuracy of the data interpretation are improved as dataset is 
being updated and heavier.

The classical linear methods of processing the extracted information from chal-
lenging Raman and SERS experiments no longer suffice. Deep learning is shaping up 
machine learning algorithms in many ways through carefully analyzing patterns and 
aberrations in those patterns. In analytical sciences, machine learning provides an 
unprecedented opportunity to extract information from complex datasets. Very often, 
the unfamiliarity of machine learning algorithms and definitions which is normally 
in the computer science domain, dictates the unpopularity of using them as tools in 
chemistry and analytical science. This chapter is aimed to elaborate the potential of 
deep learning methods with respect to its suitability in Raman spectral analysis. As 
these methods are applicable to other types of spectroscopies deep learning and artifi-
cial intelligence data processing in spectroscopy is bound to grow in the near future.
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