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1. Introduction 

Recent developments in robotics have revealed a strong demand for autonomous out-door 
vehicles capable of some degree of self-sufficiency. These vehicles have many applications in 
a large variety of domains, from spatial exploration to handling material, and from military 
tasks to people transportation (Azouaoui &Chohra, 1998; Hong et al., 2002; Kujawski, 1995; 
Labakhua et al., 2006; Niegel, 1995; Schafer, 2005; Schilling & Jungius, 1995; Wagner, 2006). 
Most mobile robot missions include autonomous navigation. Thus, vehicle designers search 
to create dynamic systems able to navigate and achieve intelligent behaviors like human in 
real dynamic environments where conditions are laborious. 
In this context, these last few years small automated and non-pollutant vehicles are 
developed to perform a public urban transportation task. These vehicles must use advanced 
control techniques for navigation in dynamic environments especially urban ones. Indeed, 
several research works have recently emerged to treat this transportation task problem. For 
instance, the work developed in (Gu & Hu, 2002) presents a path-tracking scheme based on 
wavelet neural predictive control to model non-linear kinematics of the robot to adapt it to a 
large operating range. In (Mendes et al., 2003), a path-tracking controller with an anti-
collision behavior of a car-like robot is presented. It is based on navigation and anti-collision 
systems. The first system uses a Fuzzy Logic (FL) to implement the path-tracking while the 
second system consists of estimating the trajectories and behavior of surrounding objects. 
Another work developed in (Bento & Nunes, 2004) treats also the path following problem of 
a cybernetic car. The developed controller with magnetic markers guidance is based on FL 
and integrates an anti-collision behavior applied to a bi-steerable vehicle. Other works use a 
visual control to achieve a desired task such as the work proposed in (Avina Cervantes, 
2005). It consists to develop a visual-based navigation method for mobile robots using an 
on-board color camera. The objective is the use of vehicles in agriculture to navigate 
automatically on a network of roads (to go from a farm to a given field for example). 
Although several investigations on the robot navigation problem have been developed 
(Avina Cervantes, 2005; Azouaoui & Chohra, 2002; Chohra et al., 1998; Gu & Hu, 2002; 
Kujawski, 1995; Labakhua et al., 2006; Mendes et al., 2003; Niegel, 1995; Schilling & Jungius, 
1995; Sorouchyari, 1989), to date further efforts must be made to apprehend and understand 
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the navigation behavior of a vehicle evolving in partially structured and partially known 
environments such as urban ones. 
In this paper, an interesting neural-based navigation approach suggested in (Azouaoui & 
Chohra, 2002; Chohra et al., 1998) is applied with some modifications to a bi-steerable 
mobile robot Robucar. Indeed, this approach is based on basic behaviors which are fused 
under a neural paradigm using Gradient Back-Propagation (GBP) learning algorithm. This 
navigation is then implemented within a behavioral architecture because of its excellent 
real-time execution properties  (Murphy, 2001). 
The aim of this work is to implement a neural-based navigation approach able to provide 
the Robucar with more autonomy, intelligence, and real-time processing capabilities. In fact, 
the vehicle relies on its interaction with its environment to extract useful information. In this 
paper, the used neural navigation approach essentially based on pattern classification (or 
recognition) (Welstead, 1994) of target localization and obstacle avoidance behaviors is 
presented. This approach has been developed in (Chohra et al., 1998) for five (05) possible 
movements of vehicles, while in this paper this number is reduced to three (03) possible 
movements due to the Robucar structure. Second, simulation results of the neural-based 
navigation are presented. Finally, an implementation of the neural-based navigation on a 
real bi-steerable robot Robucar is given leading to a learning vehicle able to behave 
intelligently faced to unexpected situations. 

2. Neural-based navigation approach applied to a bi-steerable mobile robot 
Robucar in partially structured environnments 

To navigate in partially structured environments, the Robucar must reach its target without 
collisions with possibly encountered obstacles. In other terms, it must have the capability to 
achieve the target localization, obstacle avoidance, and decision-making and action 
behaviors. These behaviors are acquired using multilayer feedforward Neural Networks 
(NN). 
This neural navigation is built of three (03) phases as shown in Figure 1. During the phase 1, 
from the temperature field vector XT, the robot learns to recognize target location situations 
Tj1 (j1 = 1, ..., 5) classifier while it learns to recognize obstacle avoidance situations Oj2 (j2 = 1, 
..., 6) classifier from the distance vector XO during the phase 2. The phase 3 decides an action 
Ai (i = 1, ..., 3) from two (02) association stages and their coordination carried out by 
reinforcement Trial and Error learning. 

 

Obstacle Avoidance
(NN2 Classifier) 

Target Localization 
(NN1 Classifier) 

PHASE2

PHASE3
PHASE1

O

T

XO 

XT 

A 

Decision-Making and Action (NN3) 

Coordination 

Association 

Association

 

Fig. 1.  Neural navigation system synopsis. 
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2.1 Vehicule and sensor 

a) Vehicle.  

The Robucar is a non-holonomic robot characterized by its bounded steering angle (-18°≤ φ≤ 
+18°) and velocity (0m/s ≤v ≤5m/s) (Figure 2(a)). Three movements of the Robucar are 
defined to ensure safety displacement in the environment. The possible movements are then 
in three (03) directions consequently three (03) possible actions are defined as action to move 
left (towards 18°), action to move forward (towards 0°), and action to move right (towards -
18°) as shown in Figure 2(b). They are expressed by the action vector A = [A1, A2, A3]. 

 

(a) Robucar. (b) Robot model. 

Fig. 2.  Robucar and its sensor. 
b) Sensor.  
The perception system is essentially based on a laser-range finder LMS200 ( SICK, 2001). It 
provides either 100° or 180° coverage with 0.25°, 0.5°, or 1.0° angular resolution. In this 
paper, the overall coverage area is divided into three sub-areas corresponding to the three 
possible actions as shown in Figure 2. Thus, to detect possibly encountered obstacles, three 
(03) areas are defined to get distances (vehicle-obstacle) from 45° to 81°, from 81° to 99°, and 
from 99° to 135° ( see Figure 2). These areas are deduced from the Robucar dimensions to 
ensure its security. 

2.2 Neural-based navigation system 

During the navigation, the vehicle must build an implicit internal map (i.e., target, obstacles, 
and free spaces) allowing recognition of both target location and obstacle avoidance 
situations. Then, it decides the appropriate action from two association stages and their 
coordination (Chohra et al., 1998; Sorouchyari, 1989). To achieve this, the neural-based 
navigation system is used where the only known data are initial and final (i.e., target) 
positions of the vehicle. 
a) Phase 1.  
Target Localization (NN1 Classifier). The target localization behavior is based on NN1 
classifier trained by the GBP algorithm which must recognize five (05) target location 
situations, after learning, from data obtained by computing distance and orientation of 
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A2 

A1 A3 

M 
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robot-target using a temperature field method (Sorouchyari, 1989). This method leads to 
model the vehicle environment in five (05) areas corresponding to all target locations as 
shown in Figure 3. These situations are defined with five (05) Classes T1, ..., Tj1, ..., T5 where 
(j1 = 1, ..., 5): 

If 45° ≤ γ < 81° (Class T1), 

If 81° ≤ γ < 99° (Class T2), 

If 99° ≤ γ < 135° (Class T3), 

If 135° ≤ γ < 270° (Class T4), 

                                                          If 270° ≤ γ < 405° (Class T5).                                                    (1) 

where γ is the angle of the target direction. 
 

 

Fig. 3.  Target location situations. 

Temperatures in the neighborhood of the vehicle are defined by: tL in direction 18°, tF in 
direction 0°, and tR in direction -18°. These temperatures are computed using sine and cosine 
functions as follows: 
 

If 45°< γ≤80° (Class T1),  

   Then  TR = 12sin (γ), TF = 6cos (γ), TL = 6cos (γ), 
If 80°< γ≤99° (Class T2),  

   Then TR = 6|cos (γ)|,TF = 12sin (γ),TL = 6|cos (γ)|, 

If 99°< γ≤135° (Class T3),  

   Then TR =  6|cos (γ)|,TF =  6|sin (γ)|,TL =  12sin(γ), 
If 135°< γ≤270° (Class T4),  

   Then TR = 12|sin (γ)|,TF = 6|sin (γ)|,TL = 12|sin(γ)|,  

If 270°< γ≤315° (Class T5),  

   Then TR = 12|sin (γ)|,TF =  6|sin (γ)|,TL = 6cos(γ),  

If 315°< γ≤360° (Class T5),  

   Then TR =  12cos (γ),TF =  6cos (γ),TL =  6|sin(γ)|, 

If 360°< γ≤405° (Class T5),  

   Then TR = 12cos (γ),TF = 6cos (γ), TL = 6sin(γ).                       (2) 
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These components are pre-processed to constitute the input vector XT  of NN1 (Azouaoui & 

Chohra, 2003; Azouaoui & Chohra, 2002; Chohra et al., 1998) built of input layer, hidden 

layer, and output layer as shown in Figure 4: architecture of NN1 where Xi = XTi (i = 1, ..., 3), 

Yk (k = 1, ..., 5), Cj = Tj1 (j = j1 = 1, ..., 5). 

 
 

i k j 

Yk

Xi 

W2ki W1jk

Output Layer Hidden Layer Input Layer 

 

 
 

 
 
 
 
 
 
 

Desired 
Cj 

 
 
 
 
 
 
 

 
 

Cj 

 
 

Fig. 4.  Architecture of both NN1 and NN2. 

After learning, for each input vector XT, NN1 provides the vehicle with capability to decide 

its target localization, recognizing target location situation expressed by the highly activated 

output Tj1. 

b) Phase 2.  
Obstacle Avoidance (NN2 Classifier). The obstacle avoidance behavior is based on NN2 

classifier trained by GBP which must recognize obstacle avoidance situations, after learning, 

from laser sensor data giving robot-obstacle distances. These obstacle avoidance situations 

are modeled as the human perceives them, that is, as topological situations: corridors, 

rooms, right turns, etc. ( Anderson, 1995; Azouaoui & Chohra, 2003). 

The possible movements of the Robucar lead us to structure possibly encountered obstacles 

in six (06) topological situations as shown in Figure 5. These situations are defined with six 

(06) Classes O1, ..., Oj2, ..., O6 where (j2 = 1, ..., 6). 

The robot-obstacle minimal distances are defined in the vehicle neighborhood by: dL in 

direction 18°, dF in direction 0°, and dR in direction -18° as shown in Figure 6. These 

components are pre-processed to constitute the input vector XO of NN2 built of input layer, 

hidden layer, and output layer as shown in Figure 4: architecture of NN2 where Xi = XOi (i = 

1, ..., 3), Yk (k = 1, ..., 6), Cj = Oj2 (j = j2 = 1, ..., 6). 
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Fig. 5.  Obstacle avoidance situations. 

After learning, for each input vector XO, NN2 provides the vehicle with capability to decide 
its obstacle avoidance, recognizing obstacle avoidance situation expressed by the highly 
activated output Oj2. 
 

 
Fig. 6.  Laser range areas for obstacle detection. 
c) Phase 3.   
Decision-Making and Action (NN3). Two (02) association stages between each behavior 
(target localization and obstacle avoidance) and the favorable actions (among possible 
actions), and the coordination of these association stages are carried out by NN3. Thus, both 
situations Tj1 and Oj2 are associated by the reinforcement trial and error learning with the 
favorable actions separately as suggested in (Sorouchyari, 1989). Afterwards, the 
coordination of the two (02) associated stages allows the decision-making of the appropriate 
action. 
NN3 is built of two layers (input layer and output layer) illustrated in Figure 7. 
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1) Input Layer.  
This layer is the input layer with eleven (11) input nodes receiving the components of Tj1 
and Oj2 vectors. This layer transmits these inputs to all nodes of the next layer. Each node Tj1 
is connected to all nodes Ai with the connection weights Uij1 and each node Oj2 is connected 
to all nodes Ai with the connection weights Vij2 as shown in Figure 7. 
2) Output Layer.  
This layer is the output layer with three (03) output nodes which are obtained by adding the 
contribution of each behavior. The Robucar learns through trial and error interactions with 
the environment. It learns a given behavior by being told how well or how badly it is 
performing as it acts in each given situation. As feedback, it receives a single information 
item from the environment. The feedback is interpreted as positive or negative scalar 
reinforcement. The goal of the learning system is to maximize positive reinforcement 
(reward) and/or minimize negative reinforcement (punishment) over time (Sorouchyari, 
1989; Sutton & Barto, 1998). By successive trials and/or errors, the Robucar determines a 
mapping function (see figure 8) which is used for its navigation. The two association stages 
are obtained as developed in (Chohra et al., 1998). 
After learning, NN3 provides the vehicle with capability to decide the appropriate action 
expressed by the highly activated output Ai. 

3. Simulation results 

In this section, at first the training processes of NN1, NN2, and NN3 are described. Second, 
the simulated neural-based navigation is described and simulation results are presented. 
 

 

j1 Output Layer
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Fig. 7.  Architecture of NN3. 
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3.1 Training of NN1, NN2, and NN3 
a) Training of NN1. The used training set is composed of one hundred and nine (109) 
patterns corresponding to the five (05) target location situations. NN1 classifier yields 
convergence to the tolerance Ea1 = 0.06 in well with the learning rate η1 = 0.1. 
b) Training of NN2. The used training set is composed of one hundred and fourteen (115) 
patterns corresponding to the six (06) obstacle avoidance situations. NN2 classifier yields 
convergence to the tolerance Ea2 = 0.16 in well with the learning rate η2= 0.4. 
c) Training of NN3. This training is achieved with the training of two association stages and 
their coordination. 
1) Association.  
In this stage, the training to obtain the weights Uij1 and Vij2, constituting the training of NN3, 
is achieved respectively in an obstacle-free environment (i.e., O = 0) for the target 
localization behavior and without considering the temperature field (i.e., T = 0) for the 
obstacle avoidance behavior. 
The training results are illustrated in Figure 8 where the weights Uij1 and Vij2 are adjusted to 
obtain the reinforced actions among favorable actions. Matrices of the two behaviors are 
 

 
(a) Target localization matrix. 

(b) Obstacle avoidance matrix. 
 

Fig. 8.  Association matrices. 
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represented in this figure: solid circles correspond to positive weights which represent 
favorable actions, indicating reinforced association, where values are proportional to the 
area of circles and the most reinforced action is the one having the great positive weight. 
Hollow circles correspond to negative weights which represent dissociated actions. 
The choice of the most reinforced action is guided by the principle that the vehicle must 
avoid obstacles just to avoid collisions for the obstacle avoidance behavior and it must take 
the straighter action towards its target for the target localization behavior. 
2) Coordination.  
The coordination of the two association stages is conducted by the fact that actions 
generated by obstacle avoidance have precedence over those generated by target 
localization. In fact, the detection of the maximum temperature is interpreted as the goal of 
the vehicle while the generated actions by the presence of obstacles are interpreted as the 
reflex of the vehicle. 

3.2 Simulation of the neural-based navigation on the Robucar 
To reflect the vehicle behaviors acquired by learning, the Robucar navigation is simulated in 
different static and dynamic partially structured environments. The simulated vehicle has 
only two known data: its initial and final (target) positions. From these data, it must reach 
its target while avoiding possibly encountered obstacles using the neural-based navigation 
approach. 
Tested in the environment of Figure 9 corresponding to a corridor of our centre CDTA 
(Centre de Développement des Technologies Avancées), the vehicle succeeds to avoid walls 
and obstacles by choosing the appropriate action by steering right or left according to the 
given situation as shown in Figure 10 where the evolution of v and φ is given. At point A, it 
stops because it finds itself in a blocked situation (walls at both sides and obstacle in front). 
 

 

Fig. 9.  Corridor environment1 with a blocked way. 

The robot at point O in Figure 11 could not reach its target directly because of the wall at its 
right, so it goes strait until it finds a way to turn right (Figure 11 at point A and Figure 12 at 
time 1s). Afterwards, it goes strait ahead until point B where it steers to reach its target. 

Robucar initial 
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Steering angle (°) Velocity (m/s) 

  
                                                                  Time (s)                                                                    Time (s) 

(a) steering angle evolution (b) velocity evolution 

Fig. 10.  Evolution of steering angle and velocity of corridor environment1. 
 

 

 
 

Fig. 11.  Corridor environment2. 

Steering angle (°) Velocity (m/s) 

  
                                                                 Time (s)                                                                   Time (s) 

(a) steering angle evolution (b) velocity evolution 

Fig. 12.  Evolution of steering angle and velocity of corridor environment2. 
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The oscillations in Figure 12(a) are due to the fact that the robot tries to point to its target 

each time it doesn’t detect obstacles but the wall pushes it away until point B. 

4. Experiments of the neural-based navigation on the Robucar 

In this section, experimental results are given for different environments. 

Figure 13 corresponds to the confined corridor of CDTA. Obstacle A is put to force the robot 

to steer right and obstacle B to block a way.  

The experiments show that the Robucar behaves intelligently since it moves avoiding 

collisions with walls (wall1 and wall2) and obstacle A. At this point, it turns right and goes 

forwards until it detects obstacle B and stops because it finds itself in a dead zone. Note that 

the same behavior has been observed in the simulation of Figure 9. 

Figure 14 (a) gives the trajectory of the Robucar which corresponds to the corridor 

configuration. The evolution of the steering angle and velocity is illustrated in Figure 14 (b) 

and (c). 

The example of Figure 15 shows a Robucar moving in a dynamic partially structured 

environment. It avoids the obstacles and reaches its target as shown in Figure 16. At point 

(c), suddenly an obstacle is put in the robot’s trajectory to cause a dead zone and moved 

after a while (see Figure 16(c) where the velocity between 14s and 19s is equal to zero). The 

robot stops when it detects the obstacle and restarts when the obstacle is taken out and 

reaches its target at location (5m, -5m). 

 
 

 
         

 Fig. 13.  Internal environment. 
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Fig. 14. Robucar trajectory and evolution of steering angle and velocity (internal 
environment). 
 

 

Fig. 15.  External environment.  
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Fig. 16. Robucar trajectory and evolution of steering angle and velocity (external 
environment). 

5. Conclusion 

In the implemented neural-based navigation, the two intelligent behaviors necessary to the 
navigation, are acquired by learning using GBP algorithm. They enable Robucar to be more 
autonomous and intelligent in partially structured environments. Nevertheless, there are a 
number of issues that need to be further investigated. At first, the Robucar must be 
endowed with one or several actions to come back to eliminate a stop in a dead zone 
situation. Another interesting alternative is the use of a better localization not only based on 
odometry but by fusing data of other sensors such as laser scanner. 
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the ideas and concepts presented in this book are useful for your own work and could contribute to problem

solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can

only be highlighted at several spots but not completely covered by a single book.
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