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Chapter

Multilabel Classification Based on
Graph Neural Networks
Wei-Cheng Ye and Jia-Ching Wang

Abstract

Typical Laplacian embedding focuses on building Laplacian matrices prior to min-
imizing weights of connected graph components. However, for multilabel problems,
it is difficult to determine such Laplacian graphs owing to multiple relations between
vertices. Unlike typical approaches that require precomputed Laplacian matrices, this
chapter presents a new method for automatically constructing Laplacian graphs dur-
ing Laplacian embedding. By using trace minimization techniques, the topology of the
Laplacian graph can be learned from input data, subsequently creating robust
Laplacian embedding and influencing graph convolutional networks. Experiments on
different open datasets with clean data and Gaussian noise were carried out. The noise
level ranged from 6% to 12% of the maximum value of each dataset. Eleven different
multilabel classification algorithms were used as the baselines for comparison. To
verify the performance, three evaluation metrics specific to multilabel learning are
proposed because multilabel learning is much more complicated than traditional
single-label settings; each sample can be associated with multiple labels. The experi-
mental results show that the proposed method performed better than the baselines,
even when the data were contaminated by noise. The findings indicate that the
proposed method is reliably robust against noise.

Keywords: graph neural networks, multilabel classification, deep learning

1. Introduction

Traditional supervised learning deals with the analysis of single-label data, which
means that samples are associated with a single label. However, in many real-world
data mining applications, such as text classification [1, 2], scene classification [3, 4],
crowd sensing/mining [5–11], and gene functional classification [12, 13], the samples
are associated with more than one label. From this description, we understand that the
challenge of the multilabel classification task is its potential output.

Basically, multilabel learning algorithms can be categorized into two different
groups. 1) Problem transformation method. This method takes the multilabel problem
and converts it into a single-label problem that can easily be classified using any
classifier using the relationship between labels. 2) Adapted algorithm method. This
method directly performs multilabel classification rather than transforming the prob-
lem into different subsets of problems, and most of these methods use the Euclidean
distance between samples.
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The main idea of this paper is to aggregate similar samples to obtain better results.
To aggregate similar samples, we use the properties of graph neural networks (GNNs)
[14]. The main contributions of this study are as follows:

• We propose a method that constructs a multilabel-based Laplacian graph such
that each element in it represents the relationship between samples.

• We use similar samples with an aggregation approach that is not used in
traditional multilabel learning methods.

The rest of this paper is arranged as follows. Section 2 shows the taxonomy of
multilabel learning algorithms and describes their methods. Section 3 presents the
details of our proposed method. Section 4 describes the multilabel datasets, evaluation
metrics and experimental results, followed by the conclusions in Section 5.

2. Related work

2.1 Multilabel learning algorithms

In this section, we review multilabel learning algorithms. The algorithms that have
been applied to multilabel learning over the last decade are not just those mentioned in
this paper. Figure 1 summarizes the algorithms detailed in the next section.

2.1.1 Problem transformation

Binary relevance (BR) is used to address a multilabel problem with a binary
classifier, and its advantages are simplicity and efficiency, but correlation between
labels is not considered. Classifier chains (CCs) are configured in a chain of binary
classifiers where a classifier in the chain is based on the prediction of the previous
classifier; their advantage is that they consider the relationship between labels but

Figure 1.
Taxonomy of multilabel learning algorithms [15].
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hence cannot be parallelized. Calibrated label ranking (CAL) performs ranking via the
pairwise comparison of labels and has the advantage of considering the relationship
(but only the pairwise relationship) between labels. Label powersets (LP) treat the
situation when multiple labels belong to the same sample as a new label and have the
advantage of considering the relationship between labels, but the time complexity
grows exponentially with label sets. Random k-labelsets (RKL) are variants of LP
models where each classifier is trained with a small random set of labels; their advan-
tage is that they consider the relationship between labels, but they have a low accuracy
rate if a worse label set combination is randomly selected.

2.1.2 Adapted algorithm

The multilabel k-nearest neighbor (MLkNN) method is derived from the tradi-
tional k-nearest neighbor algorithm. Each sample is identified with k nearest neigh-
bors in the training set, and information is obtained from these identified neighbors.
Multilabel support vector machine (ML-SVM) classification determines an optimal
hyperplane that separates observations according to their labels. A multilabel decision
tree (ML-DT) is constructed by building a decision tree, where each node corresponds
to a set of samples in the data set.

2.2 Graph neural networks

GNNs were mentioned for the first time and further elaborated by [16]. The goal
of a GNN is to learn a node’s representation of the acquisition of its information by
propagation. Currently, there are many deep learning tasks that need to process data
with graph structures. Convolutional neural networks (CNNs) [17] have been suc-
cessfully developed in the field of computer vision [18, 19] but are unable to process
graph structured data [20]. The method used in this paper is called a graph
convolutional network (GCN). A GCN can aggregate similar samples by propagating
neighbor information, giving it the ability to infer, and there is no need to consider the
sequence. GCNs have appeared in many top machine learning conferences and many
applications across different tasks and domains, such as manifold learning [21, 22],
computer vision [23–25], text classification [26, 27], hashing [28, 29], and
hyperspectral image classification [30, 31].

3. The proposed method

This section presents the overall flow of our proposed method, as shown in
Figure 2. The multilabel data matrix is first converted into a similarity matrix gener-
ated from a Laplacian graph. We call this a multilabel-based Laplacian graph and use
this graph as inputs to the GCN model. Each node in the output layer predicts the
probability of class membership for the label.

3.1 Multilabel-based Laplacian graph

This section presents the proposed method. Before this, let us describe some
notational conventions. Matrices are written in boldface capital letters (e.g., X). The

transpose of a matrix is denoted as X⊤. Vectors are written in boldface lowercase
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letters (e.g., x). For a matrix X∈
n�m, the j-th column and the ij-th entry are denoted

by xj and xij, respectively. I denotes the identity matrix, �k k2 is the l2-norm, and 1
denotes a column vector with all elements equal to ones.

Based on [32], we formally present our multilabel-based Laplacian graph. For a
multilabel dataset, let X ¼ x1,⋯,xn½ �∈

n�m be the data matrix with n and m
representing the number of samples and the dimensions, respectively. S∈

n�n is the
multilabel-based Laplacian graph, and we use a sparse representation method to
construct this graph as follows:

min
S

X

n

i, j¼1

xi � xj

�

�

�

�

2

2
Sij þ β

X

n

i¼1

sik k22

s:t: ∀Sii ¼ 0, Sij ≥0, 1Τsi ¼ 1:

(1)

We normalize 1Τsi = 1 which represents a sparse constraint on S because sparse
representation is robust to noise [33], and β is an adjustable parameter. The second
term is added to regularize the loss function.

3.2 Graph convolutional network

Based on [34], we fit the GCN used for single-label classification to multilabel
classification. The GCN has been modified from a first-order Chebyshev approxima-
tion [35]. In order to create a multidimensional input, ChevNet convolution with an
input vector x and a filter gθ is formulated as follows:

x⋆gθ ¼ θ0x� θ1D
�1

2AD�1
2x, (2)

where ⋆ means the convolution operator, A is the adjacency matrix and D is the
degree matrix. By using the single parameter θ = θ0 = �θ1 to avoid overfitting, Eq. (2)
can be rewritten as:

Figure 2.
An illustration of the work flow of the proposed method. Fully green color represents the training model; fully blue
color represents the test model.
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x⋆gθ ¼ θ In þD�1
2AD�1

2

� �

x: (3)

Repeated use of this graph convolution operation may cause serious problems such

as vanishing gradients. Therefore, In þD�1
2AD�1

2 in Eq. (3) is modified to ~D
�1

2 ~A~D
�1

2

with ~A ¼ Aþ In and ~Dii ¼
P

j
~Aij, finally giving a layerwise propagation rule to

support multidimensional inputs as follows:

H lþ1ð Þ ¼ σ ~D
�1

2 ~A~D
�1

2H lð ÞW lð Þ
� �

: (4)

Here,H lð Þ is the output of an activation function in the l-th layer of the GCN.W lð Þ is a

trainable weight matrix corresponding to the l-th layer of GCN.H 0ð Þ is the data matrix.
σ �ð Þ denotes a specific activation function such as a sigmoid activation function.

This paper considers only a two-layer GCNmodel as the proposed method, and we
modify Eq. (4) by placing the adjacent matrix into a multilabel-based Laplacian graph to
obtain the formula of the two-layer GCNmethod proposed in this paper as follows:

H 1ð Þ ¼ σ D̂
�1

2ŜD̂
�1

2H 0ð ÞW 0ð Þ
� �

H 2ð Þ ¼ σ D̂
�1

2ŜD̂
�1

2H 1ð ÞW 1ð Þ
� �

,
(5)

where Ŝ ¼ Sþ In and D̂ii ¼
P

jŜij. For semi-supervised multilabel classification, we

evaluate the mean square error over all labeled samples:

Mean Square Error ¼
1

t

X

t

i¼1

H
2ð Þ
i � Yi

� �2
, (6)

where Y∈ 0, 1½ �n�c is the ground truth label matrix with c labelsets, and t is the
number of labeled samples.

4. Experiments

4.1 Datasets

The multilabel datasets used in this paper and their associated statistics are shown
in Table 1.

4.2 Experimental setup

In this study, we have added probabilistic classifier chains [36], CSMLC [37] and
RethinkNet [38] as baselines for comparison. The experimental settings are as follows:
First, multilabel datasets are preprocessed to [0,1] as inputs, 80% of the samples are
used for model (both multilabel learning and proposed method) training, and the last
20% of the samples are used as test sets. We also add Gaussian noise ranging from 6%
to 12% of each test sample to test the robustness of the model. The overall framework
is shown in Figure 2.

5

Multilabel Classification Based on Graph Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.99681



For deep learning, we train all models for 200 epochs using Adam [39] with a
learning rate of 0.01 and the mean square error as the loss function.

4.3 Evaluation metrics

In multilabel learning, the evaluation metrics must be more rigorous than tradi-
tional single-label learning because one sample may be associated with multiple labels.
These evaluation metrics [15] are divided into three groups, as shown in Figure 3. The
higher the values of the F1 score, precision, mean average precision and recall, the
better the performance is. The lower the values of the Hamming loss, one-error,
coverage and ranking loss, the better the performance is. We consider the Hamming
loss, one-error and mean average precision as three major metrics.

4.4 Experimental results

All experiments use different combinations of training and test data to verify the
trained model and average the results after repeating the training ten times. According
to the observations in Figures 4–6, the following conclusions are reached:

Figure 3.
Taxonomy of evaluation metrics.

Datasets Domain # of

features

# of

samples

# of training

data

# of test

data

# of

classes

Emotions* Audio 72 593 474 119 6

Water Quality* Chemistry 16 1060 848 212 14

CIE Image* Image 294 2000 1600 400 5

Natural Scenes* Image 294 2407 1925 482 6

Yeast* Biology 103 2417 1933 484 14

AR Face** Image 1024 30303 24242 6061 6

*Multilabel datasets are available at http://mulan.sourceforge.net/datasets-mlc.html
**AR Face dataset is available at http://www2.ece.ohio-state.edu/_aleix/ARdatabase.html

Table 1.
Statistics of the multilabel datasets.
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Figure 4.
Results of the proposed method compared with multilabel learning algorithms on the used multilabel datasets.
(a)–(c) show the results without adding Gaussian noise.
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Figure 5.
Results of the proposed method compared with multilabel learning algorithms on the used multilabel datasets.
(a)–(c) show the results of adding 6% Gaussian noise.
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Figure 6.
Results of the proposed method compared with multilabel learning algorithms on the used multilabel datasets.
(a)–(c) show the results of adding 12% Gaussian noise.
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• Regardless of whether the Gaussian noise is added to the data set, the classification
results of the problem transformation methods (BR, CCs, CAL, LP and RKL) are
almost worse than the adaptive algorithms (MLkNN, ML-SVM and ML-DT)

• Deep learning may not obtain the best performance.

• We found that our method was raised on average by 1.8% and 8% higher in
Hamming loss and mean average precision, respectively. And also has excellent
performance even if the dataset were contaminated by noise.

• Regardless of whether noise is added to the data, our method in one-error
evaluation is not as good as other baselines.

5. Conclusions

In this paper, we proposed a method of constructing a relation matrix by considering
the correlation and sparsity of paired samples. We then added the characteristics of a
GCN, which aggregates similar samples, to finally obtain the probability of occurrence
of each label. Experimental results on six datasets showed that our proposedmethod can
deliver superior performance in comparison with eleven baselines. Our future work will
include designing a general framework that can reduce the use of memory and increase
the efficiency of a GCN and extending this framework to unsupervised learning.
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