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Chapter

Recent Developments in Path
Planning for Unmanned Aerial
Vehicles
Abdul Majeed and Seong Oun Hwang

Abstract

Unmanned aerial vehicles (UAVs) have demonstrated their effectiveness in
performing diverse missions at significantly lower costs compared to the human
beings. UAVs have the capabilities to reach and execute mission in those areas that
are very difficult for humans to even reach such as forest, deserts, and mines.
Integration of the latest technologies including reactive controls, sense and avoid,
and onboard computations have strengthened their dominance further in various
practical missions. Besides the innovative applications, the use of UAVs imposes
several challenges, and one of those challenges is computing a low-cost path for
aerial mission by avoiding obstacles as well as satisfying certain performance
objectives (a.k.a path planning (PP)). To this end, this chapter provides a concise
overview of various aspects concerning to PP including basics introduction of the
subject matter, categorization of the PP approaches and problems, taxonomy of the
essential components of the PP, performance objectives of the PP approaches,
recent algorithms that have been proposed for PP in known and unknown
environments, and future prospects of research in this area considering the emerg-
ing technologies. With this chapter, we aim to provide sufficient knowledge about
one of the essential components of robotics technology (i.e., navigation) for
researchers.

Keywords: unmanned aerial vehicle, path planning, low-cost path, algorithms,
aerial missions, urban environments, time complexity, coverage path planning

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have become a powerful tool
for diverse missions including polymerase chain reaction (PCR) samples transpor-
tation between hospital and laboratories [1], UAV-based healthcare system to con-
trol COVID-19 pandemic [2], infectious diseases containment and mitigation [3],
traffic condition analysis in co-operation with deep learning approaches [4], and
human behavior understanding via multimedia data analytics in a real-time [5], to
name a few. Currently, UAVs integration with the emerging technologies such as
block chain, internet of things, cloud computing, and artificial intelligence can pave
the way to serve mankind effectively compared to the recent past [6]. Further, the
peculiarity of UAVs in terms of performing operations in 3D (dull, dirty, and
dangerous) environments, they can play a vital role in realization of the smart cities.
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Furthermore, UAVs are inevitable tool during emergency planning and disaster
management due to their abilities to perform missions aerially. Besides the UAVs
applications and use cited above, they can be highly beneficial for military purposes
including information collection and analysis, border surveillance, and transporting
warfare items. The role of UAVs in agriculture from multiple perspectives have
already been recognized across the globe. Recently, world’s leading commerce
company (i.e., Amazon) has started using UAVs for delivering their products to
customers. Generally, the use of UAVs is expected to rise in many emerging sectors
in the near future. We present actual and innovative use of the UAVs during the
ongoing pandemic in Figure 1. Majority of the applications given in Figure 1
employed multiple UAVs in order to accomplish the desired tasks.

Although UAVs are highly beneficial for mankind through their innovative
applications, but there exist plenty of challenges that can hinder their use at a wider
scale. For example, payload constraints and power issues can limit their carrier
abilities. Similarly, decision making during flight to ensure UAVs safety by avoiding

Figure 1.
Innovative applications of the UAVs during the ongoing pandemic (adopted from [7]).
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obstacles with sufficient accuracy is a non-trial task mainly due to no human-
onboard control. Furthermore, communication from long distances, and
co-ordination among multiple UAVs to perform complex tasks jointly are main
barriers in the true realization of the UAVs technology. Besides the challenges and
issues given above, many issues concerning software and hardware also exist that
need rigorous developments and testing. Many solutions have been proposed to
address these issues via cross disciplinary approaches. Meanwhile, extensive testing
and analysis of these solutions is yet to be explored, especially in urban environ-
ments. In this chapter, we mainly focus on the ‘navigation’ that is one of the core
challenges in the UAVs technology. The navigation quandary is classified into three
cases: (i) where am I now?, (ii) where do I go?, and (iii) How do I get there?. The
first two cases belong to the localization and mapping, and the third case is about
path planning (PP) [8]. In this work, we cover third case comprehensively, and
provide concepts and developments in this regard. We present a comprehensive
overview about changing dynamics of the UAV applications in recent times,

Figure 2.
Overview of changing dynamics of the UAV applications, challenges, recent developments, and future research
trends in the PP area.
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challenges of the UAV technology, recent developments in the UAV technology,
and future research trends in the PP area in Figure 2. With this concise overview,
we aim to aid researchers in extracting the contents enclosed in this chapter conve-
niently.

The rest of this chapter is structured as follows. Section 2 discusses the basic
concept of the path planning, and categorizes the path planning approaches based
on the information available about underlying environment, and UAV used for the
aerial mission. Section 3 describes the three essential components of the PP. Section
4 critically analyzes various approaches that were proposed to lower the computing
time of the PP for UAVs. The future prospects of the research in the PP area are
discussed in Section 5. Finally, this chapter is concluded in Section 6.

2. Path planning and categorization of the path planning approaches

PP is to find a safe (i.e., collision-free) path between two pre-determined loca-
tions (e.g., source and destination, denoted with s and t, respectively) by optimizing
certain performance objectives. The performance objectives can be energy con-
sumption, computing time, distance, path smoothness, and turns etc. depending
upon the mission type, operating environment, and UAVs’ type. The most impor-
tant part of the PP is to identify the environment where the pathfinding is carried
out for UAVs. In this work, we categorize the PP approaches based on the type of
environment’s information, and UAVs strength, respectively.

2.1 Categorization of the path planning approaches based on information about
environment

Generally, there are three possibilities about the availability of information
regarding environment where UAVs tend to operate. The operating environment
can be fully known in advance (e.g., obstacles’ geometry information is known.), it
can be completely unknown, and/or it can be partially known (e.g., few portions are
known, and some portions are explored and modeled during the flight.). Based on
the degree of information about environment, PP approaches are mostly classified
into two categories, local PP (LPP) and global PP (GPP). In LPP, the environment is
not known, and UAVs use sensors or other devices in order to acquire information
about the underlying environment. In GPP, PP is performed in a fully known
environment, meaning all information about environment is known in advance.
Based on the availability of the information regarding underlying environment,
GPP approaches have lower complexity compared to the LPP approaches. Recently,
some PP approaches have jointly employed LPP and GPP concepts in order to find a
path for UAVs [9]. In literature, GPP and LPP approaches are also classified as
offline and online PP approaches, respectively. Based on the extensive review of the
literature, we present a categorization of the PP approaches based on information
about environment in Figure 3. We refer interested readers to gain more insights
about the LPP approaches in the previous studies [10, 11].

Apart from the categorization provided above, environment can be classified
into rural and urban environments. The tendency of UAVs applications were high
in the non-urban environments in the past. Moreover, due to the significant devel-
opment in control domain, UAVs are increasingly employed in the urban environ-
ment these days. For instance, in urban environments, they can be used to monitor
people compliance with the social guidelines given by the respective governments
in order to control the COVID-19’s spread.
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2.2 Categorization of the path planning problems

Based on the mission’s type, either one or multiple UAVs can be employed. The
scenarios in which only one UAV is deployed are referred as single agent PP
problem. In contrast, those scenarios in which multiple UAVs are used are called
multiple agent PP problems. PP for multiple agents is relatively complex since
UAVs need to avoid collision with the companion UAVs, and obstacles present in an
underlying operating environment. In addition, allocating target areas for coverage
and optimizing throughput also remain challenging, especially while operating at
lower altitudes in urban environments.

3. Essential components of the path planning for UAVs

Generally, there are three essential components of the PP: (i) modeling of
the environment with geometrical shapes by utilizing the obstacles/free spaces
knowledge provided by a real-environment map, (ii) task modeling with the
help of graphs/trees keeping source and target locations in contact, and (iii)
applying search algorithm inclusive of the heuristic function to determine a viable
path.

3.1 Modeling of the environment with geometrical shapes

In the first step, a raw environment map is converted into a modeled one, in
which obstacles are represented with the help of geometrical shapes. For example,
poles information provided by a real environment map can be modeled with the
help of cylinders in the modeled map. Similarly, buildings can be modeled with the
help of rectangles or polyhedron. In some cases, UAVs do not model the whole
environment map, and utilize sense and avoid (SAA) abilities to operate safely in

Figure 3.
Categorization of the PP approaches based on the availability of information about operating environment.
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the airspace. We present an example of environment modeling, and well-known
obstacles’ representation techniques used for the PP in Figure 4. Each obstacles
representation technique has different complexity and accuracy in terms of real
environment obstacles representations. In addition, each representation can be
adopted considering the UAV operating environment. For example, polygons can
be used to model an urban environment populated by various buildings.

3.2 Task modeling with the graphs/trees

After modeling environment with the help of geometrical shapes, the next step
is task modeling (e.g., generating network of paths with a graph/tree or selecting a
desired portion to be modeled). For example, road-map approach is a well-known
task modeling approach for the PP, in which a graph is constructed from the
starting location to destination location by capturing the connectivity of free spaces
and obstacles’ corners. Apart from it, cell-decomposition and potential field are
promising solutions for the task modeling. We present most widely used task
modeling methods in Figure 5.

Recently, trees-based task modeling methods have been widely used for the task
modeling due to their quick convergence in the final solution. We present an
overview of the task modeling with the help of tree in Figure 6. Furthermore, in
some cases, more than one methods are jointly used to model the tasks on a pro-
vided map. In addition, some approaches use task modeling and path searching
simultaneously [12].

Figure 4.
Overview of environment modeling and obstacles’ representation techniques.

Figure 5.
Overview of the famous task modeling methods used in the PP adopted from [26].
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3.3 Applying path search algorithm to determine a viable path

In the last step, a search algorithm is employed on the graph/tree to find a viable
path. During the path search, a heuristic function usually accompany the path
search. For example, in the A* algorithm, the low-cost nodes are determined
leveraging distance as a heuristic function. Similarly, the heuristic function can be
energy consumption or smoothness depending upon the scenario. In literature,
many techniques have been suggested to find reliable paths. The path search algo-
rithms, such as differential evolution [13], firefly algorithm [14], ant colony opti-
mization [15], genetic algorithms [16], artificial bee colony [17], particle swarm
optimization [18], fuzzy logic [19], central force optimization [20], gravitational
search algorithm [21], simulated annealing [22] and their advanced variants are
used in the PP. Every algorithm has numerous distinguishing factors over others
regarding conceptual simplicity, computational complexity, robustness, and
convergence rates etc. We categorize the existing path search methods into five
categories, and present representative methods of each category in Figure 7.

3.4 Performance objectives of the path planning approaches

Every PP approach tends to optimize one or more performance objectives (PO)
while finding a viable path for UAVs. The PO can be related to hardware and
software. These PO are considered in the previous three components (i.e., environ-
ment modeling, task modeling, and path searching) related to the PP. For instance,

Figure 6.
Overview of task modeling with a random tree.

Figure 7.
Categorization of path searching methods/algorithms.
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in order to lower the PS computing time, only some portion of a map can be
modeled and a sparse tree/graph can be constructed/used while finding a path.
Similarly, memory can be preserved by exploring some portions of a graph/tree
rather than loading and exploring whole graph/tree at a same time. The selection of
PO solely depend on the nature and urgency of the mission. For example, in search
and rescue missions, the PO can be path computing time in order to reach the
affected regions quickly. In contrast, in normal circumstances, the PO can be the
path length in order to reach the target location in a most economical way by
preserving UAV’s resources. We describe various most commonly used PO in
Table 1.

These PO are usually considered during PP irrespective of the environment
whether it is known or unknown. Furthermore, plenty of techniques have been

PO Concise description

Computing time It denotes overall time required to find a path using a graph/tree.

Path length It denotes the Euclidean distance between two locations.

Energy It denotes amount of energy required/consumed while reaching to target from

source.

Turns It denotes number of turns (infeasible curvature) a path has in total.

Smoothness It denotes a turns in a path with a feasible curvatures.

Memory It denotes amount of memory used while computing a path.

Path nodes It denotes set of nodes that a UAV follows during flight.

No. of obstacles It denotes set of obstacles to be processed during path search.

Accuracy It denotes accuracy of obstacles modeling or path clearance from obstacles.

Problem size It denotes size of problem on which path is determined.

Graph size It denotes size of graph (no. of nodes, edges) employed to find a path.

Convergence rate It denotes how quickly a feasible solution can be obtained.

Constraints

handling

It denotes the effective resolution of constrains UAV faces during mission.

Completeness It denotes availability/non-availability of solution in a finite time.

Flexibility It denotes efforts/time required to make a solution usable for different missions.

Path re-

configuration

It denotes efforts/time required to gain the control of a lost path.

Path following It denotes the ability to keep following a path despite disturbances.

Path safety It denotes the ability to avoid collisions with static/dynamic obstacles.

Hyper parameter It denotes the number and variety of parameters to find a path.

Obstacle avoidance It denotes the ability to avoid static/dynamic obstacles with low-cost.

Generalization It denotes the ability of a method to be applicable for different types of UAVs.

Application-

speciality

It denotes the ability of a method to yield superior performance in some context.

Endurance It denotes the ability of a UAV to fly for a long period of time with low-cost

planning.

Some PO are positively co-related. For example, finding path with less turns can save energy.
Improving two negatively co-related PO (speed and time) require optimization of another PO (problem size).

Table 1.
Overview of the PO improved by the PP approaches.
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proposed to improve these PO with innovative techniques or employing cross-
disciplinary concepts. In addition, many PP approaches have targeted optimizing
multiple objectives rather than one/two for practical UAVs application. These PO
can be expressed as a functional model while finding a path P between two locations
s and t. Some algorithms tend to optimize more than one POs. The overview of two
PO to be optimized by a PP approach is mathematically expressed as follows.

P ¼ s ¼ p1, p2, p3, … , pn, pnþ1 ¼ t
� �

Minimize f 1 Pð Þ ¼ Path  Length Pð Þ

Minimize f 2 Pð Þ ¼ Computation  Time Pð Þ
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4. Path planning algorithms that were proposed in the past five years

In this section, we discuss various PP algorithms that were proposed to lower the
time complexity of the PP process. We selected various algorithms that were pro-
posed in last five years (i.e., 2016–2021), and have somewhat identical concepts in
terms of space restrictions and problem size reduction etc. We provide brief over-
view, and technically evaluation of all algorithms and highlight their deficiencies.
Consequently, this analysis can pave the ways to improve PP algorithms for future
UAVs’ applications.

4.1 Global path planning algorithms

4.1.1 Brief overview of the selected path planning algorithms

We present brief overview of the selected algorithms in Table 2. These algo-
rithms have become state-of-the-art for many practical applications of the UAVs in
the urban/non-urban environments. They are famous due to their novel working
mechanisms, and conceptual simplicity. In addition, they have mainly focused on
the UAV applications in urban environments that is focus of research across the
globe. Also, the UAVs’ applications in the urban environments are likely to increase
in the coming years.

Ref. Publication

year

Environment

used

PO improved

Maini et al. [23] 2016 3D Computing time and collision-free paths.

Frontera et al. [24] 2017 3D Computing speed and solution quality.

Ahmad et al. [25] 2017 3D Computing speed and energy-optimized paths.

Majeed et al. [26] 2018 3D Computing speed and path quality.

Han et al. [27] 2019 3D Feasible paths with reduced time.

Ghambari et al. [28] 2020 3D Computing time and memory consumption.

Majeed et al. [29] 2021 3D Computing speed and path quality.

All these approaches have used concepts related to search space reduction in order to find time-efficient paths.

Table 2.
Overview of the latest GPP approaches that were proposed to reduce the computing time of PP process.

9

Recent Developments in Path Planning for Unmanned Aerial Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.99576



4.1.2 Technical evaluation of the selected path planning algorithms

In this subsection, we provide concise description of the selected algorithms, and
highlight their technical problems. We mainly describe the key steps of the
proposed algorithms.

• Maini et al. [23] algorithm computes a low-cost path using two-steps approach.
In the first step, modified version of the Dijkstra algorithm is used to find an
initial path. In the second step, initial path is optimized more by considering
the initial path nodes, and reverse path search.

• Frontera et al. [24] algorithm computes a low-cost path using three-steps
approach. First, the proposed method reduce the search space by considering
the obstacles that are on the straight axis between s and t. Later, a visibility
graph is generated solely from the corners of the selected obstacles. In the last
step, A* algorithm is employed to compute a shortest path incrementally.

• Ahmad et al. [25] algorithm computes a low-cost path using four-steps
approach. Firstly, search space is bounded using obstacles of the straight line
only. Later, the bounded space is extended to next level by using the obstacles
that hit the boundary of the first bounded space. In the third step, a relatively
dense visibility graph is generated from the bounded spaces. In the final step,
A* algorithm is employed to find an energy-optimized path.

• Majeed et al. [26] algorithm computes a low-cost path using five-steps
approach. First, the space is reduced into a half-cylinder form with path
guarantees between s and t. In the second step, multi-criteria based method is
employed to check the suitability of the reduced space for low-cost
pathfinding. Later space is extended if needed, and sparse visibility graph is
generated that ensure connectivity between s and t, and path is computed.
Moreover, in some cases, path is improved by adding more nodes around the
initial path’s nodes.

• Han et al. [27] algorithm computes a low-cost path using three-steps approach.
First, critical obstacles are identified through straight-axis between s and t. In
the second step, a node set is generated around the corners of the critical
obstacles only. In the last step, a feasible path is obtained by exploring nodes
set. This approach is beneficial by resolving constraints related to obstacles
shapes.

• Ghambari et al. [28] computes a global and local path with the help of four-
steps. In the first step, search space is reduced around the straight axis. In the
second step, differential evolution algorithm is applied to construct a graph.
Later, A* algorithm is used to find a path from a graph constructed in the first
step. In the third step, subspace is divided into small portions with alternate
routes in each subspace. In the last step, a mechanism is suggested to avoid
collision with the dynamic obstacles that may appear unexpectedly during the
flight.

• Majeed et al. [29] recently proposed a PP method for low-cost pathfinding for
UAVs based on the constrained polygonal space and a waypoint graph that is
extremely sparse. In proposed approach, search space is restricted into a
polygonal form, and its analysis is performed from optimality point of view
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with the help of six complexity parameters. Later, space can be extended to
next level if needed, else a very sparse graph is generated by exploiting the
visibility, far-reachability, and direction guidance concepts. The suggested
approach computes time-efficient paths without degrading path quality while
finding paths from urban environments.

Besides the computing time, these algorithms can indirectly optimize certain PO
listed in Table 1. For example, Ahmad et al. [25] PP approach reduces the number
of turns also in order to lower the energy consumption. Han et al. [27] PP approach
can be applied to the environments with arbitrary shaped obstacles (e.g., there exist
no constraint related to the obstacles’ geometries). Hence, it can be applied in
different settings (e.g., areas with sparse obstacles or areas with dense obstacles) of
the urban environment. Similarly, Majeed et al. [29] PP approach can significantly
reduce the problem size, thereby memory requirements can be magnificently lower.
Ghambari et al. [28] approach can be used to re-configure paths during the flight
when a UAV finds an unexpected obstacle. Hence, this approach can be used in
both (i.e., local, and global) environments. Despite the utility of these approaches in
many real-world applications, they often yield poor performance due to the local/
global constraints. Based on the in-depth review of all studies, we identified poten-
tial problems of all approaches that may hinder their use in actual deployment. We
describe technical challenges of the existing approaches in Table 3.

Ref. Technical problems in the proposed approach

Maini et al. [23] The performance cannot be ensured in each scenario due to heavy reliance on

specific maps.

Overheads can increase exponential with the problem size.

It models the whole map thereby path exploration cost is very high.

Frontera et al.

[24]

Path can collide with the nearby obstacles.

In some cases, proposed approach fails to find a path even though it exists.

Visibility graph can contain many needless and redundant nodes.

Memory consumption is higher due to loading of whole visibility map in the

memory.

Ahmad et al. [25] Two bounded spaces are used that can increase the computing time of the PP.

Visibility graph is constructed using layered approach with many redundant nodes

and edges.

Visibility check function is expensive since visibility in all directions and nodes is

checked.

Majeed et al. [26] Path can contain turns due to the strict boundary of the search space.

Path optimization cost may increase if initial path has many nodes.

Han et al. [27] Path quality cannot be ensured in all scenarios if obstacles’ sizes are large.

Path cost can increase exponentially with the point set.

Both time and optimality can be impacted if diverse shape obstacles exist in a map.

Since this is grid-based approach thereby memory consumption is higher.

Ghambari et al.

[28]

Path computing time can rise with the distance between s and t.

Recognition and avoiding obstacles in realtime can be costly.

Fidelity of the proposed approach were analyzed with limited testing.

Since path searching is carried out twice, thereby computing time can rise.

Majeed et al. [29] Accurate modeling of the tiny obstacles is not possible.

Excessive calculations are performed in space analysis thereby complexity can rise.

All these problems have been highlighted by existing studies or reported by the authors.

Table 3.
Overview of the technical problems in the proposed GPP approaches.
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These challenges lay foundation for the future research in the UAVs area. Fur-
thermore, they can assist researchers to devise better and practical PP approaches in
order to address these technical problems. Apart from the challenges provided in
Table 3, it is paramount to take into account the local constraints while devising PP
methods that have been mostly assumed in the existing approaches.

4.2 Local path planning algorithms

Majority of the approaches discussed above are the GPP approaches, and LPP
approaches have not been discussed. To cover this gap, we discuss various repre-
sentative LPP approaches in Table 4 along with the methodological specifics.

These approaches perform PP in environments that are mostly unknown, and
are complex compared to the GPP approaches. These approaches enable UAVs to
perform tasks in complex environments in real time leveraging low-cost sensors,
and robust artificial intelligence (AI) techniques. In addition, these techniques have
abilities to co-work with the emerging technologies including cloud, edge, and fog
computing etc. for variety of applications. The role of UAVs was dominant during
the ongoing pandemic in different countries across the globe. To this end, LPP
approaches contributed significantly, and enhanced UAVs role in curbing the pan-
demic spread via online missions. Barnawi et al. [47] proposed an IoT-based plat-
form for COVID-19 scanning in which UAVs were used as a main source of
temperature data collection in the outdoor environments. Apart from the COVID-
19 scanning, UAVs were extensively used for spraying and disinfecting multi-use
facilities and contaminated places. In some countries, they were used for alerting

Ref. UAV used Technical aspects of the approach

Stecz et al. [30] Multiple Indicated sensors based LPP approach.

Wojciech et al. [31] Single EO/IR systems and SARs based navigation.

Siemiatkowska et al. [32] Multiple MILP based LPP using EO/IR camera and SARs.

Hong et al. [33] Multiple MILP-based multi-layered hierarchical architecture.

Hua et al. [34] Multiple Multi-target intelligent assignment model based LPP.

Cui et al. [35] Single Reinforcement learning (RL)-based LPP approach.

Maw et al. [36] Single Graph and learning based LPP approach.

Wei et al. [37] Single Improved ACO for LPP.

Zhang et al. [38] Single Markov decision process (MDP) based LPP approach.

Zammit et al. [39] Multiple LPP in the presence of uncertainties.

Wu et al. [40] Single Interfered fluid dynamic system (IFDS) based LPP.

Bayerlein et al. [41] Multiple Multi-agent reinforcement learning (MARL) approach for LPP.

Jamshidi et al. [42] Single LPP based on improved version of Gray Wolf Optimization.

Yan et al. [43] Single Sampling based LPP approach in urban environments.

Sangeetha et al. [44] Single Gain-based dynamic green ACO (GDGACO) LPP approach.

Sangeetha et al. [45] Single Fuzzy gain-based dynamic ACO (FGDACO) LPP approach.

Choi et al. [46] Single Improved CNN based LPP approach for UAV.

All these approaches have used the unknown environment during the PP.

Table 4.
Overview of the latest LPP approaches used for UAVs.
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people to wear masks properly, and stay indoors. The true realization of these
innovative application is possible through LPP approaches.

4.3 Coverage path planning: a subtopic of the path planning

Besides the LPP and GPP, another important subtopic of the PP is coverage path
planning (CPP) [48]. In the CPP, a path is determined that enables UAV to cover a
target area fully with the help of a device/tool mounted on it. The attached tool/
device can be a sensor, camera, speaker, and/or a spray tank depending upon the
mission. We present overview of the CPP in Figure 8. In Figure 8(a), a target area
in the form of a rectangle is given that need to be covered with a UAV. In In
Figure 8(b), a coverage path is shown that a UAV follows in order to cover the
target area.

In the CPP, most of the POs are identical with that of the PP, but path
overlapping, and coverage guarantees are two additional POs. Moreover, ensuring
consistent path quality with respect to shape of the target area is very challenging.
Therefore, shape of the target area is considered while finding a coverage path. CPP
can be performed in five steps, modeling of the operating environment, locating
target area on the modeled map, decomposition of the target area into disjoint sub
parts, task modeling (mainly traversal order of the sub parts) with the help of a
graph, and covering each sub-part using motion pattern (e.g., back and forth, spiral,
and circular etc.). In recent years, UAVs’ coverage applications in the urban envi-
ronments have significantly increased, and a substantial number of CPP approaches
have been proposed [49].

5. Prospects of the research in the near future in the PP area

In the near future, UAVs will be regarded as an inevitable tool for various
practical missions, especially in the urban environments. A substantial number of
developments are underway to fully realize smart cities, smart infrastructure, and
smart buildings, to name a few. Thence, the use and applications of the UAVs are
expected to grow significantly in the near future. Recently, many innovative tech-
nologies such as block-chain, IoT, 5G/6G technologies, and deep/machine learning
approaches have been integrated with the UAVs technology to serve mankind in

Figure 8.
Overview of coverage path planning for UAVs in a 3D urban environments.
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effective ways [50]. For example, BloCoV6 scheme [51] is one of the wonderful
applications of the UAVs in the new normal (e.g., COVID-19 era). Similarly, many
such innovative applications are likely to emerge in the near future as a replacement
of human beings for complex tasks. Therefore, refinements in the existing PP
approaches in relation with peculiarities of the applications/tasks, and development
of robust approaches leveraging cross-disciplinary (e.g., biological inspired, AI-
powered, and technology-driven) concepts have become necessary. Considering the
emerging applications of the UAVs, we list prospects of the research in the near
future in PP area in Figure 9. We categorize the avenues of future research in the
PP area on four grounds (e.g., UAV application specific PP approaches, optimiza-
tion of the existing approaches’ PO, integration of the emerging technologies and
their issues handling, and developing PP approaches that can cope up with the
dynamics of the UAV operating environment.).

The most important research avenues from the optimization point of view are,
devising new environment restriction methods to reduce the problem sizes, devis-
ing low-cost methods for reducing the task modeling overheads (i.e., graph/tree
sizes), and accelerating the PS methods that enable UAV to reach the target location
safely with a significantly reduced cost. Furthermore, improving overall cost of the
PP process is an important research direction to increase UAVs’ applications in the
urban environments. Optimization of multiple objectives rather than single/two is
handy in order to preserve UAV’s resources during aerial missions. From applica-
tions point of view, low-cost methods that can improve certain POs and can satisfy
the applications features at the same time are needed. To this end, identifying each
application’s features/requirements and embedding them into the PP process can
enhance the UAVs use in the coming year significantly. Therefore, applications-
oriented PP methods will be embraced more in the near future considering the
UAVs potential in executing tasks at low costs. From environment dynamics point
of view, PP methods that can effectively respond to the uncertainties/dynamics
emerging from the environment are paramount. For example, in LPP, decision
making to avoid obstacles with as least cost as possible can enhance UAV’s endur-
ance in the aerial missions. In this regard, LPP methods that can cope up with the

Figure 9.
Categorization of the avenues of future research in the PP/UAVs area.
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underlying operating environment variations and can ensure UAV’s safety consis-
tently in the practical applications are paramount.

Recently, many emerging technologies have been integrated with the UAV
technology. For example, blockchain, transfer learning, computer vision, federated
learning, 5G and 6G technologies, and cloud computing etc. have revolutionized the
UAVs’ applications. In this regard, incorporating more emerging technologies in the
UAV domain, and extending the current emerging technologies use to more
application areas is an important research direction for the future. Furthermore,
improving the hardware capabilities of the UAV by integrating latest technologies
are important need from technical perspectives. Despite the technical aspects men-
tioned above, tailoring computer vision applications in the UAV area is a most
promising avenue of the research considering UAV abilities to capture images with
good resolution [52]. In addition, identifying niche areas (i.e., water quality analy-
sis, target tracking, covering spatially distributed regions, and detection of wildfire
smoke, to name a few) where UAVs can perform well compared to humans, and
performing cost–benefit analysis of the UAVs versus human is important research
direction in the UAVs’ technology. Finally, exploring the possibilities towards joint
use of multiple latest technologies in order to serve mankind in an effective way
using UAVs is a vibrant area of research. Apart from the PP, devising low-cost CPP
methods for UAVs is also an attractive area of research in the near future. Devel-
opment from hardware perspectives (e.g., battery power, wing-span, payload
capabilities, robust decision making abilities, and control aspects) are also a poten-
tial avenues for development/research.

6. Conclusions

In this chapter, we have presented concepts, methods, and future research
prospects in the area of path planning (PP) for unmanned aerial vehicles (UAVs).
Specifically, we have presented the high-level categorization of the PP approaches
based on the availability of information regarding UAV operating environment, and
UAV strengths. We have discussed three essential components of the PP approaches
that are widely adopted by most of the PP approaches. We have discussed substan-
tial number of performance objectives that are improved/optimized by the PP
approaches via new concepts/propositions. Furthermore, we have discussed latest
approaches that have been proposed to lower the time complexity of pathfinding
and their technical challenges. We have described various PP approaches that are
used for the PP in unknown environments (aka local PP). We have briefly
described the concepts of coverage path planning (CPP) that is subtopic of the PP.
The prospects of future research in the UAVs PP area keeping emerging technolo-
gies in the loop have also been discussed. With this concise overview, we aim to
provide deep understanding about the PP concepts related to the UAVs, and need of
the further developments/research in order to enhance UAVs endurance in the
airspace specifically in the urban environments. The contents presented in this
chapter can help early researchers to quickly grasp the status of existing
developments and potential avenues of the research in this area.
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