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1. Introduction  

In this contribution, three nonlinear control strategies are presented for a two-degree-of-
freedom parallel robot that is actuated by two pairs of pneumatic muscle actuators as 
depicted in Fig. 1. Pneumatic muscles are innovative tensile actuators consisting of a fibre-
reinforced vulcanised rubber hose with appropriate connectors at both ends. The working 
principle is based on a rhombical fibre structure that leads to a muscle contraction in 
longitudinal direction when the pneumatic muscle is filled with compressed air. Pneumatic 
muscles are low cost actuators and offer several further advantages in comparison to 
classical pneumatic cylinders: significantly less weight, no stick-slip effects, insensitivity to 
dirty working environment, and a higher force-to-weight ratio. The achievable closed-loop 
performance using such actuators has already been investigated experimentally at a linear 
axis with a pair of antagonistically arranged pneumatic muscles (Aschemann & Hofer, 
2004). Current research activities concentrate on the use of pneumatic muscles as actuators 
for parallel robots, which are known for providing high stiffness, and especially for the 
capability of performing fast and highly accurate motions of the end-effector. The planar 
parallel robot under consideration is characterised by a closed-chain kinematic structure 
formed by four moving links and the robot base, which offers two degrees of freedom, see 
Fig. 1. All joints are revolute joints, two of which - the cranks - are actuated by a pair of 
pneumatic muscles, respectively. The coordinated contractions of a pair of pneumatic 
muscles are transformed into a rotation of the according crank by means of a toothed belt 
and a pulley. The mass flow rate of compressed air is provided by a separate proportional 
valve for each pneumatic muscle. 
The paper is structured as follows: first, a mathematical model of the mechatronic system is 
derived, which results in a symbolic nonlinear state space description. Second, a cascaded 
control structure is proposed: the control design for the inner control loops involves a 
decentralised pressure control for each pneumatic muscle with high bandwidth, whereas 
the design of the outer control loop deals with decoupling control of the two crank angles 
and the two mean pressures of both pairs of pneumatic muscles. For the inner control loops 
nonlinear pressure controls are designed taking advantage of differential flatness. For the 
outer control loop three alternative approaches have been investigated: flatness-based 
control, backstepping, and sliding-mode control. Third, to account for nonlinear friction as 
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well as model uncertainties, a nonlinear reduced order disturbance observer is used in a 
disturbance compensation scheme. Simulation results of the closed-loop system show 
excellent tracking performance and high steady-state accuracy. 
 

 

Fig. 1. Test rig. 

2. System modelling 

The modelling of the pneumatically driven parallel robot involves the mechanical 
subsystem and the pneumatic subsystem, which are coupled by the torques resulting from 
the tension forces of a pair of pneumatic muscles, respectively. 

2.1 Multibody model of the parallel robot 
The control-oriented multibody model of the parallel robot part consists of three rigid 
bodies (Fig. 2): the two cranks as actuated links with identical properties (mass mA, reduced 
mass moment of inertia w.r.t. the actuated axis JA, centre of gravity distance sA to the centre 
of gravity, length of the link lA, pulley radius r) and the end-effector E (mass mE), which is 
modelled as lumped mass. 

 

Fig. 2. Multibody model of the parallel robot. 
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The inertia properties of the remaining two links with length lP, which are designed as light-
weight construction, shall be neglected in comparison to the other links. The inertial xz-
coordinate system is chosen in the middle of the straight line that connects both base joints.  
The motion of the parallel robot is completely described by two generalised coordinates q1(t) 
and q2(t) that denote the two crank angles, which are combined in the vector q = [q1, q2] T. 
Analogously, the vector of the end-effector coordinates is defined as r = [xE, zE] T. 
 

 

Fig. 3. Ambiguity of the robot kinematics. 

The direct kinematics can be stated in symbolic form and describes the vector of end-effector 
coordinates r in terms of given crank angles q,  i.e. 

 3( , )k=r r q . (1) 

Here, the configuration parameter k3 is introduced to cope with two possible configurations, 
see Fig. 3. The relationship between the corresponding velocities is obtained by 
differentiation with respect to time 

 
∂

= =
∂

3
3 3

( , )
( , ) , ( , )

T

k
k k

r q
r J q q J q

q
$ $ , (2) 

where J(q, k3) denotes the corresponding Jacobian. Here, singularities in the Jacobian can be 
avoided by model-based trajectory planning. Analogously, the acceleration relationship is 
given by 

 3 3( , ) ( , )k k= +r J q q J q q$$$ $$ $ . (3) 

For a given end-effector position r the corresponding crank angles follow from the inverse 
kinematics 

 1 2( , , )k k=q q r , (4) 
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which can be determined in symbolic form. The given ambiguity is taken into account by 
introducing two configuration parameters k1 and k2 as shown in Fig. 3. The relationships 
between the corresponding velocities as well as the accelerations follow from direct 
kinematics 

 
1

3
1

3 3

( , ) ,

( , ) [ ( , ) ].

k

k k

−

−
=

= −

q J r r

q J q r J q q

$ $
$$$ $$ $

 (5) 

 

 

Fig. 4. Free-body diagram of the parallel robot. 

The equations of motion for the actuated links can be directly derived from the free-body 
diagram in Fig. 4 applying the principle of angular momentum 

 1

2

1 1 1 1 1 1 1

2 2 2 2 2 2 2

[ ] cos sin ,

[ ] cos sin .

A M l M r A A E A

A M l M r A A E A

J q r F F m g s q F l

J q r F F m g s q F l

β η
τ

β η
τ

⋅ = ⋅ − − ⋅ ⋅ ⋅ + ⋅ ⋅ +

⋅ = ⋅ − − ⋅ ⋅ ⋅ − ⋅ ⋅ +

$$ '**(**)

$$ '**(**)
 (6) 

Here, the driving torque τi of drive i depends on the corresponding muscle forces, i.e. τi = r 
[FMil − FMir]. At this, the indices of all variables describing a particular pneumatic muscle are 
chosen as follows: the first index i = {1, 2} denotes the drive under consideration, described 
by the generalised coordinate qi(t), whereas the second index j = {l, r} stands for the 
mounting position, i.e. for the left or the right pneumatic muscle. The disturbance torque ηi 
accounts for friction effects as well as remaining uncertainties in the muscle force 
characteristics (13) of drive i, respectively. The coupling forces F1E and F2E are obtained from 
Newton’s second law applied to the end-effector 

 
1 2 1

1 2 2

cos cos

sin sin( )
EE E

EE E

Fm x

Fm g z

γ γ
γ γ

−⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ + ⎣ ⎦ ⎣ ⎦⎣ ⎦

$$
$$ . (7) 

The equations of motion in minimal form for the crank angles can be derived in two steps. 
First, the last equation has to be solved for the unknown forces 
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1
1 1 2

2 1 2

cos cos

sin sin ( )
E E E

E E E

F m x

F m g z

γ γ
γ γ

−− ⋅⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⋅ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$$
$$ , (8) 

which then can be eliminated in (6). Second, the substitution of the variables Ǆi = Ǆi(q), ǃi = 
ǃi(q), and (3) resulting from direct kinematics leads to the envisaged minimal form of the 
equations of motion 

 ( ) ( , ) ( ) ( )+ + =$$ $M q q k q q G q Q q , (9) 

with the mass matrix M(q), the vector of centrifugal and Coriolis terms ( , )$k q q  and the 

vector of gravity torques G(q). The vector of generalised torques Q(q) contains the 
corresponding muscle forces times the radius r of the pulley 

 
1 1

2 2

( )
M l M r

M l M r

F F
r

F F

−⎡ ⎤
= ⋅ ⎢ ⎥−⎣ ⎦

Q q . (10) 

Note that this minimal form of the equations of motions is not compulsory. Instead the 
corresponding system of differential-algebraic equations can be utilised as well for the 
flatness-based control design. 

2.2 Modelling of the pneumatic subsystem 

The parallel robot is equipped with four pneumatic muscle actuators. The contraction 
lengths of the pneumatic muscles are related to the generalised coordinates, i.e. the crank 
angles qi. The position of the crank angle, where the corresponding right pneumatic muscle 
is fully contracted, is denoted by qi0. Consequently, by considering the transmission 
consisting of toothed belt and pulley, the following constraints hold for the contraction 
lengths of the muscles  

 0

,max 0

( ) ( ) ,

( ) ( ) .
Mil i i i

Mir i M i i

q r q q

q r q q

Δ = ⋅ −
Δ = Δ − ⋅ −
`
` `  (11) 

Here, ∆ℓM,max is the maximum contraction given by 25% of the uncontracted length.  
The volume characteristic of the pneumatic muscle (Fig. 5) can be approximated with high 
accuracy by the following nonlinear function of both contraction length and muscle 
pressure, where the coefficients in this polynomial approximation have been identified by 
measurements 

 ( ) ( )
3 1

0 0

( , ) m n
Mij Mij m Mij n Mij

m n

V p a b p
= =

Δ = ⋅ Δ ⋅ ⋅∑ ∑` ` . (12) 

The force characteristic FMij (pMij ,∆ℓMij) of the pneumatic muscle shown in Fig. 6 describes the 
resulting static tension force for given internal pressure pMij as well as given contraction 
length ∆ℓMij . This nonlinear force characteristic has been identified by static measurements 
and, then, approximated by the following polynomial description 

 ( ) ( )
3 4

0 0

( ) ( ) m n
Mij Mij Mij Mij Mij Mij m Mij Mi n Mij

m n

F F p f c p d
= =

= Δ ⋅ − Δ = ⋅Δ ⋅ − ⋅ Δ∑ ∑` ` ` ` . (13) 
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Fig. 5. Volume characteristic of a pneumatic muscle. 

 

 

Fig. 6. Force characteristic of a pneumatic muscle. 

The dynamics of the internal muscle pressure follows directly from a mass flow balance in 
combination with the pressure-density relationship. As the maximum internal muscle 
pressure is limited by a maximum value of pmax = 7 bar, the ideal gas equation can be utilised 
as accurate description of the thermodynamic behaviour of the compressed air 

 Mij Mij Mijp R T ρ= ⋅ ⋅ . (14) 

 Here, the density ρMij , the gas constant R of air, and the thermodynamic temperature TMij 
are introduced. For the thermodynamic process a polytropic change of state is assumed. 
Thus, the relationship between the time derivative of the pressure and the time derivative of 
the density results in 

 Mij Mij Mijp n R T ρ= ⋅ ⋅ ⋅$ $ . (15) 
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The mass flow balance for the pneumatic muscle is governed by 

 
( ) ( )1

,
,

Mij Mij Mij Mij Mij Mij

Mij Mij Mij

m V p
V p

ρ ρ⎡ ⎤= − ⋅ Δ⎣ ⎦Δ
$$ $ `

`
. (16) 

The resulting pressure dynamics is given by a nonlinear first order differential equation and 
shall not be neglected as in (Carbonell et. al., 2001) 

 
1 Mij Mij

Mij Mij Mij Mij i
Mij Mij i

Mij Mij
Mij

V
p R T m p q

V q
V n p

p

⎡ ⎤∂ ∂Δ
= ⋅ ⎢ ⋅ ⋅ − ⋅ ⋅ ⋅ ⎥∂ ∂Δ ∂⎢ ⎥⎣ ⎦+ ⋅ ⋅

∂

`
$ $ $

`
. (17) 

The internal temperature TMij can be approximated with good accuracy by the constant 

temperature T0 of the ambiance (Göttert, 2004). Thereby, temperature measurements can be 

avoided, and the implementational effort is significantly reduced. 

3. Control design based on differential flatness 

A nonlinear system in state space notation is denoted as differentially flat (Fliess et. al., 
1995), if flat outputs  

 ( )( , , ,..., ), dim( ) dim( )α= =y y u u u y u$x  (18) 

exist that allow for expressing all system states x and all system inputs u in the form 

 
( )

( 1)

( , ,..., ) ,  

( , ,..., ) .

β

β +
=

=

x x y y y

u u y y y

$
$

 (19) 

As a result, offline trajectory planning considering state and input constraints become 

possible. Moreover, the stated parametrization of the complete system dynamics by the flat 

outputs can be exploited for pure feedforward control as well as combined feedforward and 

feedback control.  

3.1 Flatness-based pressure control 

The nonlinear state equation (17) for the internal muscle pressure pMij represents the basis 
for the decentralized pressure control. It can be re-formulated as 

 ( ) ( )= − Δ Δ ⋅ + Δ ⋅$$ $` ` `, , ,Mij pij Mij Mij Mij Mij uij Mij Mij Mijp k p p k p m . (20) 

With the internal muscle pressure as flat output candidate yijp = pMij , (20) can be solved for 

the mass flow Mijm$  as control input uijp and leads to the inverse model for the pressure 

control 

 
( ) ( )1

, ,
,

Mij ij pij Mij Mij Mij Mij

uij Mij Mij

m v k p p
k p

⎡ ⎤= ⋅ + Δ Δ ⋅⎣ ⎦Δ
$$ ` `

`
, (21) 
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Since the internal pressure pMij as state variable is identical to the flat output and dim(yijp) = 
dim(uijp) = 1 holds, the differential flatness property is proven. The contraction length ∆ℓMij 
as well as its time derivative can be considered as scheduling parameters in a gain-
scheduled adaptation of kuij and kpij . With the internal pressure as flat output, its first time 
derivative is introduced as new control input 

 Mij ijp v=$ . (22) 

Consequently, the state variable of the corresponding Brunovsky form has to be provided 

by means of measurements, i.e. zijp = pMij . Each pneumatic muscle is equipped with a 

pressure transducer mounted at the connection flange that connects the muscle with the 

toothed belt. For the contraction length and its time derivative either measured or desired 

values can be employed: in the given implementation, the scheduling parameter ∆ℓMij results 

from the measured crank angle qi, which is obtained by an encoder providing high 

resolution. Furthermore, the second scheduling parameter, the contraction velocity, is 

derived from the crank angle qi by means of real differentiation using a DT1-System with the 

corresponding transfer function 

 1
1

( )
1

DT
s

G s
T s

=
⋅ +

. (23) 

The error dynamics of each muscle pressure pMij can be asymptotically stabilised by the 
following control law which is evaluated with the measured pressure. Using this control law 
all nonlinearities are compensated for. An asymptotically stable error dynamics is obtained 
by pole placement 

 10
10

0
( )

Mij ij

pij pij
ij Mijd Mijd Mij

p v
e e

v p p p
α

α

= ⎫⎪ ⇒ + ⋅ =⎬= + − ⎪⎭

$
$

$ , (24) 

where the constant α10 is determined by pole placement. Here, the desired value for the time 

derivative of the internal muscle pressure can be obtained either by real differentiation of 

the corresponding control input uij in (33) or by model-based calculation using only desired 

values, i.e. 

 ( , , , , )Mijd Mijd Mid Midp p p p= r r r$ $$$ $ $ . (25) 

The corresponding desired trajectories are obtained from a trajectory planning module that 

provides synchronous time optimal trajectories according to given kinematic and dynamic 

constraints (Aschemann & Hofer, 2005). It becomes obvious that a continuous time 

derivative Mijdp$  requires a three times continuously differentiable desired end-effector 

trajectory r. 

The implementation of the underlying flatness-based pressure control structure for drive i is 

depicted in Fig. 7. In each input channel, the nonlinear valve characteristic (VC) is 

compensated by pre-multiplying with its approximated inverse valve characteristic (IVC). 

This inverse valve characteristic is implemented as look-up-table and depends both on the 

commanded mass flow and on the measured internal pressure. 
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Fig. 7. Implementation of the underlying pressure control structure for drive i. 

3.2 Inverse dynamics of the decoupling control 
For the outer control loop design the generalised coordinates and the mean muscle 
pressures are chosen as flat output candidates  

 

1

1 2

2 1 1

1

2 2 2

( , )
2

2

M l M r

M

M M l M r

q
q q
q p p
p

p p p

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥+⎢ ⎥= = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

+⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

y y x u , (26) 

where the input vector u contains the four muscle pressures 

 1 1 2 2
T

M l M r M l M rp p p p= ⎡ ⎤⎣ ⎦u  (27) 

and the state vector x consists of the vector of generalised coordinates q as well as their time 
derivatives q$  

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

q
x

q$
. (28) 

The trajectory control of the mean pressure allows for increasing stiffness concerning 
disturbance forces acting on the end-effector (Bindel et. al., 1999). As the decentralised 
pressure controls have been assigned a high bandwidth, these four controlled muscle 
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pressures pMij can be considered as ideal control inputs of the outer control loop. Subsequent 
differentiation of the first two flat output candidates until one of the control appears leads to 
 

                                                            
1 1

1 1

1 1 1 1

,

,

( , , , ),M l M r

y q

y q

y q p p

=
=
= q q

$ $
$$$ $$

                                                     (29) 

and  

                                                            
2 2

2 2

2 2 2 2

,

,

( , , , ) ,M l M r

y q

y q

y q p p

=
=
= q q

$ $
$$$ $$

                                                   (30) 

 

whereas the third and fourth flat output candidates directly depend on the control inputs 

 3 1 1 1

4 2 2 2

0.5 ( ),

0.5 ( ).
M M l M r

M M l M r

y p p p

y p p p

= = ⋅ +
= = ⋅ +

 (31) 

The differential flatness can be proven as follows: all system states can be directly expressed 
by the flat outputs and their time derivatives 

 1 2 1 2
T

y y y y
⎡ ⎤

= = ⎡ ⎤⎢ ⎥ ⎣ ⎦
⎣ ⎦

q
x

q
$ $

$ . (32) 

The equations of motion (9) are available in symbolic form. Inserting the muscle force 
characteristics, the internal muscle pressures as control inputs can be parameterized by the 
flat outputs and their time derivatives 

 

1 1

1 1
1 2

2 2

2 2

( , , , )

( , , , )
( , , , , )

( , , , )

( , , , )

M l M

M r M
M M

M l M

M r M

p p

p p
p p

p p

p p

⎡ ⎤
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

q q q

q q q
u u q q q

q q q

q q q

$ $$
$ $$

$ $$
$ $$
$ $$

. (33) 

In the following, three different nonlinear control approaches are employed to stabilize the 
error dynamics of the outer control loop: flatness-based control, backstepping and sliding-
mode control (Khalil, 1996). For all these alternative designs, the differential flatness 
property proves advantageous (Sira-Ramirez & Llanes-Santiago, 1995; Aschemann et. al., 
2007). 

3.3 Flatness-based control 
In the case of flatness-based control, the inverse dynamics is evaluated with the measured 
crank angles and the corresponding angular velocities obtained by real differentiation 
(Aschemann & Hofer, 2005). For the mean pressures, however, desired values are utilized. 
The second derivatives of the crank angles, the angular accelerations, serve as stabilizing 
inputs 

                               1 1 2 2 1 2 1 2( , , , , , )
T

M l M r M l M r M d M dp p p p v v p p= =⎡ ⎤⎣ ⎦u u q q$ .              (34) 
 

The inverse dynamics leads to a compensation of all nonlinearities. An asymptotic 
stabilization is achieved by pole placement with Hurwitz-polynomials for the error 
dynamics for each drive i = {1, 2} 
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 2 1 0

0

( ) ( ) ( )
t

i id i id i i id i i id iv q q q q q q q dα α α τ= + ⋅ − + ⋅ − + ⋅ −∫$$ $ $ . (35) 

3.4 Backstepping control 
The first step of the backstepping control design (Khalil, 1996) involves the definition of the 
tracking error variable for each drive i = {1, 2},  

 1 1i id i i id ie q q e q q= − ⇒ = −$ $ $ . (36) 

Next, a first Lyapunov function Vi1 is introduced 

 
!

2 2
1 1 1 1 1 1 1 1 1 1

1
( ) 0 ( ) ( )

2
i i i i i i i id i iV e e V e e e e q q c e= > ⇒ = ⋅ = ⋅ − =− ⋅$ $ $ $  (37) 

and the expression for its time derivative is solved for the virtual control input 

 1 1 1 1 1 1( , )i id i i i iI i id id ie q q c e q e q q c eα= − = − ⋅ ⇒ ≈ = + ⋅$ $ $ $ $ $ . (38) 

In the second step, the error variable ei2 is defined in the following form 

 2 1 1 1 1 2 1 1( , )i iI i id i id i i i i ie e q q q q c e e e c eα= − = − + ⋅ ⇒ = − ⋅$ $ $ $ $  (39) 

and its time derivative is computed 

 2 1 1 1 2 1 1( )i id i i id i i ie q q c e q q c e c e= − + ⋅ = − + ⋅ − ⋅$ $$ $$ $ $$ $$ . (40) 

Now, a second Lyapunov function Vi2 is specified. 

 2 2
2 1 2 1 2 2 1 2 1 1 2 2

1 1
( , ) 0 ( , )

2 2
i i i i i i i i i i i iV e e e e V e e e e e e= + > ⇒ = ⋅ + ⋅$ $ $  (41) 

The corresponding time derivative 

 
!

2 2 2
2 1 2 1 1 2 1 2 1 1 1 1 1 2 2( , ) [ ( ) ]i i i i i id i i i i i iV e e c e e q v c e c e e c e c e= − ⋅ + ⋅ − + ⋅ − ⋅ + =− ⋅ − ⋅$ $$  (42) 

can be made negative definite by choosing the stabilizing control input as follows 

 2
1 1 2 1 2(1 ) ( )i i id i iv q q e c e c c= = + ⋅ − + ⋅ +$$ $$ . (43) 

Backstepping control design offers several advantages in comparison to flatness based 
control. It becomes possible to avoid cancellations of useful, i.e. stabilizing nonlinearities. 
Furthermore, different positive definite functions can be used at control design, e.g. 
allowing for nonlinear damping. 

3.5 Sliding-mode control 
For sliding-mode control (Sira-Ramirez & Llanes-Santiago, 1995) the vector of tracking 
errors is considered  
 

                                                                      
id i

i
id i

q q

q q

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

z $ $ .                                                             (44) 
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Based on this error vector zi , the following sliding surfaces si  are defined for each drive  
i = {1, 2} 

 1 1( ) ( ) ( )i i id i i id i i id i i id is q q q q s q q q qβ β= − + ⋅ − ⇒ = − + ⋅ −z $ $ $ $$ $$ $ $ , (45) 

where βi1 represents a positive gain. The convergence to the corresponding sliding surface is 
achieved by introducing a discontinuous switching function in the time derivative of a 
quadratic Lyapunov function 

 21
( ) ( ) | | ( )

2
i i i i i i i i i i i iV s s V s s s s s sign sα α= ⇒ = ⋅ ≤ − = − ⋅ ⋅$ $ , (46) 

with a properly chosen coefficient αi that dominates remaining model uncertainties. The 
control design offers flexibility as regards the choice of the sliding surfaces and the reaching 
laws. For the implementation, however, a smooth switching function is preferred to reduce 
high frequency chattering. This results in the following stabilizing control law, which leads 
to a real sliding mode within a boundary layer 

 1 ( ) tanh( )i
i i id i id i i

s
v q q q qβ α

ε
= = + ⋅ − + ⋅$$ $$ $ $ . (47) 

The implemented control structure is depicted in Fig. 8. The desired trajectories are 
provided from an offline trajectory planning module that calculates time optimal trajec-
tories according to both state constraints and input constraints. This is achieved by proper 
time-scaling of polynomial functions with free parameters as described in (Aschemann & 
Hofer, 2005). 
 

 

Fig. 8. Implementation of the decoupling control structure. 

4. Disturbance observer design 

The observer provides a vector 2x̂  of estimated disturbance torques that accounts for both 

model uncertainties and nonlinear friction. The main idea consists in the extension of the 
system state equations with the measurable state vector 
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 1 [ , ]T= =y x q q$  (48) 

by two integrators, which serve as disturbance models (Aschemann et. al., 2007) 

 
2

2 2

ˆ( , , ), dim( ) 4,

ˆ ˆ, dim( ) 2.

= =

= =

y f y x u y

x 0 x

$
$  (49) 

The reduced-order disturbance observer according to (Friedland, 1996) is given by  

 η
η

= Φ =
⎡ ⎤

= = +⎢ ⎥
⎣ ⎦

2

1
2

2

ˆ( , , ), dim( ) 2,

ˆ
ˆ ,

ˆ

z y x u z

x H y z

$
 (50) 

where H denotes the observer gain matrix and z the observer state vector. The observer gain 
matrix is chosen as follows 

 
11 11

22 22

0 0

0 0

h h

h h

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H , (51) 

involving only two design parameters h11 and h22. Aiming at an asymptotically stable 
observer dynamics 

 
!

2 2
ˆlim lim( )

t t→∞ →∞
= − =e x x 0 , (52) 

the observer gains are determined by pole placement based on a linearization using the 
corresponding Jacobian (Friedland, 1996). In Fig. 9 a comparison of simulated disturbance 
forces and the observed forces provided by the proposed disturbance observer is shown. 
Here, the resulting tangential force at the pulley with radius r is depicted, which is related to 

the disturbance torque according to η= ˆ /iU iF r . Obviously, the simulated disturbance 

forces are reconstructed with high accuracy. 
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Fig. 9. Comparison of simulated disturbance force and observed disturbance force using the 
reduced-order disturbance observer. 
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5. Simulation results 

The efficiency of the proposed cascade control structure is investigated using the desired 
trajectory shown in Fig. 10 with maximum velocities of approx. 0.9 m/s and maximum 
accelerations of approx. 7 m/s2 for each axis.  
The first part of the desired trajectory involves the motion on a quarter-circle with the radius 
0.2 m from the starting point (x = 0 m, z = 1 m) to the point (x = −0.2 m, z = 0.8 m). The next 
three movements consist of straight lines: the second part comprises a diagonal movement 
in the xz-plane to the point (x = −0.1 m, z = 0.6 m), followed by a straight line motion in x-
direction to the point (x = 0.1 m, z = 0.6 m). The fourth part is given by a diagonal movement 
to the point (x = 0.2 m, z = 0.8 m). The fifth part involves the return motion on a quarter-
circle to the starting point (x = 0 m, z = 1 m). 
 

 

Fig. 10. Desired trajectory in the workspace. 
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Fig. 11. Comparison of the tracking errors in the workspace without disturbance observer. 
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Fig. 11 shows a comparison of the resulting tracking errors in the workspace for flatness-
based control (FB), backstepping control (BS) and sliding-mode control (SM). Without 
observer-based disturbance compensation, the best results are obtained using sliding-mode 
control. 
The efficiency of the observer based disturbance compensation is emphasized by Fig. 12. For 
all considered control approaches a further improvement of tracking accuracy is achieved. 

6. Conclusion 

In this contribution, a cascaded trajectory control based on differential flatness is presented 
for a parallel robot with two degrees of freedom driven by pneumatic muscles. The 
modelling of this mechatronic system leads to a system of nonlinear differential equations of 
eighth order. For the characteristics of the pneumatic muscles polynomials serve as good 
approximations. The inner control loops of the cascade involve a flatness-based control of 
the internal muscle pressure with high bandwidth. For the outer control loop three different 
control approaches have been investigated leading to a decoupling of the crank angles and 
the mean pressures as controlled variables. Simulation results emphasize the excellent 
closed-loop performance with maximum position errors of approx. 1 mm during the 
movements, vanishing steady-state position error and steady-state pressure error of less 
than 0.03 bar, which have been confirmed by first experimental results at a prototype 
system. 
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Fig. 12. Tracking errors in the workspace with observer-based disturbance compensation. 
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