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Chapter

Biological Understanding of 
Neurodevelopmental Disorders 
Based on Epigenetics, a New 
Genetic Concept in Education
Takeo Kubota

Abstract

Neurodevelopmental disorders, such as autism spectrum disorder, attention 
deficit hyperactive disorder, and learning disabilities, are heterogeneous condi-
tions that are thought to have a multifactorial etiology including congenital genetic 
abnormalities and acquired environmental factors. Epigenetics is a biological 
mechanism that controls gene expression based on chemical modifications of DNA 
and chromosomal histone proteins. Environmental factors, such as severe mental 
stress, have been demonstrated to alter gene expression by changing epigenetic 
chemical modifications in the brain. Therefore, epigenetics is not only involved in 
congenital autism spectrum disorder-like conditions (e.g., Prader-Willi syndrome 
and Rett syndrome) but may also be involved in acquired attention deficit hyperac-
tive disorder-like conditions (e.g., via child abuse and neglect). In this chapter, we 
introduce the basis of the epigenetic mechanism and the recent biological under-
standing of neurodevelopmental disorders based on epigenetics, which is a new 
genetic concept not only in medicine but also in education, which bridges internal 
brain mechanisms and external environmental factors.

Keywords: epigenetics, environmental factor, neurodevelopmental disorder, ASD, 
ADHD, child abuse, neglect, reversibility, education

1. Introduction

The number of children with autism spectrum disorder (ASD) is reportedly 
increasing by 10,000 cases per year in Japan [1], with similar increases observed 
in other countries, including the USA [2–4] and Korea [5]. These increases can 
be attributed, in part, to social factors, such as diagnostic substitution whereby 
children formerly diagnosed with mental retardation are now diagnosed as ASD. 
However, they cannot be explained fully by such diagnostic substitutions [6], and it 
is possible that biological changes in the brains of children may also play a role.

Thanks to advances in genomic DNA research, a number of genes associated 
with ASD have been identified. Mutations in genes encoding synaptic molecules, 
which facilitate communication between neuronal cells, have been identified in a 
subset of children with ASD [7, 8]. However, the increase in ASD is unlikely to be 
simply a result of genetic factors because there is no reason to suspect that mutation 
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rates have suddenly increased in recent years. Rather, a more likely explanation is 
that environmental factors are involved.

Epigenetic mechanisms are one of the ways by which gene expression is con-
trolled in higher vertebrates. These mechanisms are essential for normal develop-
ment during embryogenesis [9] and for the differentiation of various types of cells 
including neural cells [10, 11]. Therefore, it is important to gain an understanding 
of epigenetic mechanisms, which include chemical modifications of genetic compo-
nents such as DNA, histone proteins, and microRNAs. Furthermore, the failure of 
epigenetic mechanisms results in neurodevelopmental disorders [12–15]. Actually, 
a number of congenital neurological and mental disorders are reportedly caused by 
epigenetic abnormalities [16–22].

Epigenetic modifications offer one mechanism by which environmental factors 
might lead to changes in population health [12]. This is partly supported by studies 
in twins showing that environmental factors contribute to the occurrence of autism 
[23–25]. These findings led us to propose the hypothesis that “various environmen-
tal factors can change the epigenetic status and alter the expression of a number 
of neuronal genes (namely synaptic genes), resulting in abnormal brain function 
(aberrant synaptic function) associated with some neurodevelopmental disorders.”

In this chapter, on the basis of such scientific evidence, we review the current 
understanding of congenital neurodevelopmental disorders caused by epigenetic 
abnormalities and also provide a basic description of acquired neurodevelopmental 
disorders caused by environment-induced epigenetic alterations. Finally, we discuss 
the future directions of medical and educational interventions for neurodevelop-
mental disorders (namely ASD).

2.  Epigenetic abnormalities in “congenital” neurodevelopmental 
disorders

Epigenetic gene control is an essential mechanism for normal brain develop-
ment. Abnormalities in the molecules associated with this process cause various 
congenital diseases. It is notable that defects in epigenetic phenomena and epigen-
etic molecules involved in gene regulation result in congenital neurological features 
and mental retardation. Here, we show four examples.

2.1 Genomic imprinting

Genes are believed to be expressed equally between the maternal and paternal 
chromosomes. However, an exceptional phenomenon, i.e., genomic imprinting, 
has been discovered that is the result of an epigenetic gene regulation mechanism. 
For an imprinted gene, one of the two parental alleles is active and the other is 
epigenetically inactivated (Figure 1A). Therefore, a defect in the active allele of 
the imprinted gene results in the loss of expression. This has been found in some 
neurodevelopmental diseases, including Angelman syndrome, which is character-
ized by severe mental retardation and epilepsy, and Prader-Willi syndrome, which 
is characterized by neurocognitive deficits, excessive daytime sleepiness, muscle 
hypotonia, short stature, small hands and feet, hypergonadism, hyperphagia and 
obesity that leads to type 2 diabetes [26].

2.2 X chromosome inactivation

The X chromosome has a large number of genes, whereas the Y chromosome has 
relatively few. Thus, females (XX) have more genes than males (XY). To minimize 
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this sex imbalance, one of the two X chromosomes in females is inactivated by an 
epigenetic mechanism [27]. Improper X chromosome inactivation is thought to be 
an embryonic lethal condition [28, 29].

When X chromosome inactivation does not occur in women with one normal 
X chromosome and a small X chromosome due to a large terminal deletion, an 
over-dosage effect of X-linked genes derived from the small X chromosome leads to 
severe neurodevelopmental delay [30]. This indicates that proper epigenetic gene 
regulation is essential for normal development (Figure 1B).

2.3 DNA methyltransferases

DNA methylation is a fundamental step in epigenetic gene regulation that is 
regulated by DNA methyltransferases, which are enzymes that add a methyl group 
(CH3) to CpG dinucleotides within human genomic DNA. A defect in a DNA 
methyltransferase causes ICF syndrome, which is characterized by immunode-
ficiency, centromere instability, facial anomalies, and mild mental retardation 
(Figure 1C) [18–20].

2.4 Methyl-CpG-binding domain proteins

Methyl-CpG-binding domain proteins are also important molecules in the 
epigenetic control of gene expression. Abnormalities in the methyl-CpG-binding 
protein 2 (MECP2) gene cause Rett syndrome, which is characterized by seizures, 
ataxic gait, language dysfunction, and ASD-like behavior [21, 22]. Therefore, 
abnormal MECP2 expression in the brain is considered to result in the neurological 
features of Rett syndrome. In fact, several studies have shown that MECP2 controls 
a subset of neuronal genes [29–33], suggesting that epigenetic dysregulation of 
neuronal genes may cause the neurological features of this disease (Figure 1D).

Figure 1. 
Mental disorders caused by epigenetic abnormalities. A: Abnormal suppression of the active allele of imprinted 
genes causes genomic imprinted disorders. B: Abnormal activation of the inactive X chromosome in females 
causes X-chromosome inactivation disorders. C: Mutations of the genes encode DNA methyltransferase 
deficiency causes insufficient DNA methylation, which leads aberrant expression of the target genes. D: 
Mutations of the genes encode methyl-CpG binding proteins causes abnormal regulation of the target genes.



Learning Disabilities - Neurobiology, Assessment, Clinical Features and Treatments

4

3. Epigenetic abnormalities in “acquired” neurodevelopmental disorders

In neurodevelopmental disorders such as ASD, both environmental factors 
(e.g., environmental chemicals and infections) and genetic factors (e.g., defects in 
synaptic molecules) have historically been discussed [4, 8]. However, the biological 
links between these two groups of factors have not been identified. Epigenetics may 
bridge these factors in normal and disease development [12].

3.1 Epigenetic bridge between genetic molecules and environmental factors

Besides intrinsic (congenital) epigenetic defects (described in Section 2), 
several lines of evidence suggest that extrinsic (environmental) factors, such as 
malnutrition [34, 35], drugs [36–40], mental stress during the neonatal period 
[41], and neuronal stimulation [42], alter the epigenetic status, thereby affecting 
brain function. Therefore, it is intriguing to think that acquired neurodevelop-
mental disorders, including child abuse- and neglect-induced ADHD-like phe-
notypes, may be the result of epigenetic dysregulation caused by environmental 
factors (Figure 2).

3.2 Environmental factors that affect brain function via epigenetic mechanisms

Short-term mental stress after birth may alter gene expression in the brain and 
result in persistent abnormal behavior (Figure 2).

In rat pups from mothers exhibiting low levels of maternal care, an epigen-
etic DNA modification in the promoter of the glucocorticoid receptor gene was 
increased in the hippocampus, leading to the suppressed expression of this gene 
within the first week of life (Figure 3 right). Conversely, this promoter DNA 
modification was decreased in the brains of offspring who received high maternal 
care during the same period (Figure 3 left) [41].

Figure 2. 
Current understanding of intrinsic and extrinsic mechanism for neurodevelopmental and mental disorders. 
Congenital epigenetic disorders are caused by intrinsic mechanism through mutations in the proteins associated 
with epigenetic gene regulation or epimutation (e.g., de novo DNA methylation) during spermatogenesis and 
oogenesis. Acquired epigenetic disorders are caused by extrinsic mechanism via various environmental factors.
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This rat experiment provided a putative animal model for childhood neglect 
and maltreatment in humans. In fact, in a human study, postmortem analysis of 
the hippocampus of suicide victims with a history of childhood abuse revealed the 
hyper-modification of the neuron-specific promoter of the glucocorticoid receptor 
gene in combination with its decreased expression [43]. These findings suggest 
that the adverse effects of early-life stress on the DNA methylation program may 
last throughout life [44], and also indicate that neurodevelopmental problems may 
arise from epigenetic dysregulation caused by environmental factors in early life 
(Figure 3).

A similar epigenetic mechanism is also likely to be relevant in drug addiction. 
Gene expression in the dopaminergic and glutamatergic systems is mediated by 
epigenetic mechanisms, and cocaine and alcohol can alter the epigenetic state, 
which may be associated with permanent behavioral consequences [45, 46].

3.3 Environment-induced epigenetic changes

The above findings were mainly obtained from animal studies, and there is little 
evidence from humans. However, the fact that epigenomic differences are larger in 
older monozygotic twins than in younger twins suggests that epigenetic status may 
be altered during aging by environmental factors in humans [47].

Likewise, the epigenomic patterns of monozygotic twins with discordant sever-
ity of Rett syndrome differ and they show differences in the expression of neuronal 
genes [25]. This indicates that environmental factors may alter the human epig-
enome and the resulting epigenomic differences may create phenotypic differences 
between twins.

Birth weight has decreased over the past 20 years, which is thought to be a result 
of the popularity of dieting among young women and of the recommendation by 
obstetricians to minimize pregnancy weight gain to reduce the risk of medical prob-
lems during pregnancy [48]. According to epidemiological studies of populations 
affected by famines in the Netherlands and China, offspring with low birth weight 
are expected to have an increased risk of not only metabolic disorders (e.g., obesity 
and diabetes mellitus) but also mental disorders [49–51]. Recent studies have 
demonstrated that malnutrition during the fetal period causes a hypomodification 

Figure 3. 
Mental stress-induced DNA methylation changes. Maternal separation-stress during the first week of life 
induced hypermethylation in the glucocorticoid receptor gene promoter in the mouse hippocampus, and this 
environment-induced epigenetic changes persists life-time long with abnormal behavior.
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of the peroxisome proliferator-activated receptor alpha (PPARa) gene in the rat 
liver [52]. Similar epigenetic changes have been identified in people who suffered 
malnutrition during a period of famine in the Netherlands [53]. The use of assisted 
reproductive technologies by women, which are now used widely due to increases 
in the age at which individuals wish to conceive, reportedly decreases the epigenetic 
modification of DNA at multiple maternally imprinted regions [54, 55].

4.  Medical interventions for epigenetics-associated neurodevelopmental 
disorders

The administration of folic acid to pregnant rats alters the DNA modification 
status of their offspring [56]. Furthermore, folic acid supplementation to pregnant 
rats under malnutrition conditions prevents the hypomodification of a hepatic gene 
in their offspring [57]. In addition to folic acid, various nutritional and other envi-
ronmental factors, such as royal jelly [58], drugs for mental disorders [36, 38, 40], 
environmental chemicals [59, 60], and external stimuli (electro-convulsive treat-
ment for psychiatric diseases) [42], have also been demonstrated to alter the DNA or 
histone modification status of the brain.

As mentioned above, mental stress in the first week of life causes epigenetic 
abnormalities in the brains of mice. Conversely, several mouse studies have demon-
strated that appropriate educational conditions may ameliorate the features of neu-
rodevelopmental disorders. Environmental enrichment, consisting of larger-sized 
home cages with a variety of objects including running wheels, improves motor 
coordination and decreases anxiety-related behavior in female mice with an Mecp2 
defect, a model of human Rett syndrome [61, 62]. Environmental enrichment also 
improves locomotor activity with reduced ventricular volume, and restores the 
expression of synaptic proteins in the hypothalamus and syntaxin 1a and synapto-
tagmin expression in the cortex of the brain of these mice [63, 64].

Children with congenital neurodevelopmental disorders caused by genetic 
defects are considered to be difficult to cure, because it is technically challenging 
to distribute gene products to the appropriate brain regions and at the appro-
priate time of development. However, it was recently demonstrated that Rett 
syndrome may be an exception, partly because MECP2 is not essential for brain 
structure, but rather encodes a “lubricant” that works at a relatively later period 
of brain development. As a consequence, the reintroduction of MECP2 into 
mice with a defect in Mecp2 after birth is sufficient to rescue Rett-like neuro-
logical symptoms [65, 66]. Furthermore, the restoration of MECP2 function in 
astrocytes substantially improves locomotion, anxiety levels, and respiratory 
abnormalities in mice with a defect in Mecp2 [67]. These results suggest that the 
up-regulation of MECP2, possibly mediated by drug treatment, might help to 
improve the brain function of patients with Rett syndrome. Additionally, these 
results indicate that neurodevelopmental disorders caused by epigenetic abnor-
malities can be treated.

5.  Educational interventions for epigenetic neurodevelopmental 
disorders

5.1 Evidence for epigenetic reversibility

Unlike DNA mutations, epigenetic modifications of DNA are reversible, since 
they are based on the attachment and detachment of chemical residues without any 
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change to the DNA sequence. Therefore, environmental stress-induced epigenetic 
abnormalities are potentially reversible, and thus possibly treatable. Here, we show 
examples.

A mouse study demonstrated that chronic social defeat stress-induced epi-
genetic alterations can be reversed and brain-derived neurotrophic factor gene 
expression in the brain can be activated with a commonly used antidepressant 
(imipramine) by inducing histone acetylation via the down-regulation of histone 
deacetylases, which ameliorates depression-like behavior [36].

As mentioned above, malnutrition during the fetal period induces the chemical 
modification of PPARa in the peripheral blood of individuals who suffered malnu-
trition during a famine in the Netherlands [53] and in the liver of rats fed a protein-
restricted diet [52]. However, the protein-restricted diet-induced hypomethylation 
of PPARa in the offspring could be avoided by supplementation of the diet of 
maternal rats with folic acid (an essential substrate for methyl residues) [57].

Besides malnutrition, maternal smoking is known to have a negative impact 
on fetuses, e.g., stillbirth, low birth weight, and small for gestational age, and on 
offspring, e.g., sudden infant death syndrome, reduced lung function, bronchial 
asthma, and increased incidence of neurocognitive disorders, tobacco addiction, 
and obesity [68–70].

Recent cohort studies using cord blood samples originating from fetuses demon-
strated that maternal smoking changes DNA methylation at several genes, including 
a CpG locus in the myosin IG (MYO1G) gene. Since MYO1G encodes a membrane 
protein of immune system-associated blood cells [71–74], epigenetic changes in 
DNA modification presumably down-regulate gene expression, which may be 
associated with a predisposition to bronchial asthma [73].

Whereas the epigenetic status of MYO1G is altered in individuals who smoke 
during pregnancy, this alteration is not found in individuals who stop smoking 
during pregnancy, suggesting that smoking-induced alterations in methylation can 
be reversed by smoking cessation or that they may be produced in a dose-dependent 
manner during pregnancy [72]. These findings further indicate that smoking 
cessation during pregnancy may be effective at preventing offspring from develop-
ing bronchial asthma (Figure 4). These findings also suggest that the epigenetic 
mechanism is reversible.

Figure 4. 
Epigenetic effect of maternal smoking to the fetus. Maternal smoking changes epigenetic state in the fetus, which 
potentially cause various clinical features, such as bronchial asthma and obesity, in offspring.
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5.2 Epigenetic-based early educational intervention

In this chapter, we describe environmental stress-induced epigenetic alterations 
and their associated disorders. We also discuss the reversibility of the epigenetic 
mechanism to recover gene expression and potentially ameliorate disease condi-
tions. As a number of molecules associated with epigenetic gene regulation have 
been identified, pharmacological companies are developing drugs to target these 
molecules with an aim to correct aberrant gene expression, especially for neurode-
velopmental and psychiatric disorders [75].

Besides medical approach, “educational intervention” is another way taking 
advantage of use of epigenetic reversibility especially for children, because enriched 
nurturing environment that urged exercise and stimulated brain function amelio-
rated neurological features, which is demonstrated in a mouse model of Rett syn-
drome that is an autistic disorder caused by failure of epigenetic gene regulation as 
mentioned above [62–64]. Therefore, understanding of the epigenetic reversible con-
cept is important for all staffs in a preschool and a nursery school, because they are 
the caregivers who will be able to urge development of children who had an adverse 
experience before and after birth, by offering appropriate nurture and education.

6. Conclusion

It was reported that the number of children with ASD is increasing in various 
countries including US and Japan. When we think of biological mechanism for 
this increase, one can imagine that some factors in recent society increased ASD 
via epigenetic mechanism based on chemical modification of DNA and histone 
proteins which control gene expression in the children’s brain.

It has been known that abnormalities in epigenetic mechanisms lead to congeni-
tal neurodevelopmental disorders, such as Rett syndrome characterized by seizures, 
ataxic gait, language dysfunction, and ASD-like behavior.

Besides congenital epigenetic abnormalities, several lines of evidence suggest 
that environmental factors also alter the epigenetic status of brain-function associ-
ated genes. Therefore, it is intriguing to think that child abuse and neglect-induced 
ADHD-like phenotypes, which are thought to be increased in modern society, may 
be the result of epigenetic dysregulation caused by mental stress in early life.

Recent medical research demonstrated that some nutrients and drugs for mental 
illness reversed the epigenetic state and recover healthy physical and mental condi-
tion, and revealed that epigenetics is a reversible and thus treatable mechanism.

Besides such medical approach, “educational intervention” is another way 
taking advantage of use of epigenetic reversibility especially for children, because 
enriched nurturing environment that urged exercise and stimulated brain function 
ameliorated neurological features in mouse experiments. Therefore, epigenetics, 
described in this chapter, will be essential concept that contribute to future nurture 
and education.

In conclusion, epigenetics becomes a new genetic concept not only in medicine 
but also in education, which bridges internal brain mechanisms and external 
environmental factors.
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